paper thin lcd screen factory

paper thin lcd (Liquid crystal display) are made of liquid crystals that form digital images made visible through ambient light or through LED backlight. LCDs are used in the place of other displays that are less efficient such as cathode ray tubes (CRTs) and have become the most popular display type on the market.

Explore the extensive selection of wholesale paper thin lcd LCD displays, TFT, and HMI that can be used across a range of industries, including domestic, medical, industrial, automotive, and many others. You can choose from a number of standard industry sizes and find the paper thick lcd that are applicable to your required use. If you would like options that allow a smaller environmental footprint due to low power consumption, you can browse the Chip-on-Glass (COG) LCDs. COGs are designed without PCBs so have a slimmer profile.

Browse cutting-edge paper thin lcd on Alibaba.com at reasonable prices. paper thin lcd in varying display size and resolution are accessible on the site. The merchandise are useful in automotive, medical, and industrial screen displays. paper thin lcd having multiple interface types and display technology are in stock. paper thin lcd on Alibaba.com have high resolution and luminance to display precise details. They have a capacitive touch for convenient use. They can show multiple characters per line. paper thin lcd can be manufactured to suit smaller wearable devices or large projectors. They can be integrated with smart home systems for face recognition and office equipment. They feature multiple interfacing types like MPU or RS232. They are sturdy, thanks to a toughened glass structure with a considerable operating temperature range. The life span of paper thin lcd stretches up to several thousand pages hours get.

paper thin lcd screen factory

A wide variety of paper thin lcd screen options are available to you, such as repair, return and replacement.You can also choose from lcd, paper thin lcd screen,As well as from new, {2}, and {3}. And whether paper thin lcd screen is 68%, {2}, or {3}.

paper thin lcd screen factory

BEIJING: Scientists from China and Hong Kong have designed a paper-thin LCD screen that is light and flexible, paving the way for smart daily newspapers that could be uploaded onto the display in real time.

Researchers from Donghua University in Shanghai and Hong Kong University of Science and Technology estimate that the technology would be cheap to produce, costing about USD 5 for a 5-inch screen.

Unlike conventional liquid crystals where electrical connections on the plates create the fields required to switch individual pixels from light to dark, optically rewritable LCDs coat the plates with special molecules that realign in the presence of polarized light and switch the pixels.

Consequently, optically rewritable LCDs are thinner than traditional LCDs, at less than half a millimetre thick, can be made from flexible plastic, and weigh only a few grams.

Optically rewritable LCDs are durable and cheap to manufacture because of their simple structure. Moreover, like an electronic paper screen in an e-book, energy is only required to switch display images or text.

Spacers are used in all LCDs to determine the thickness of the liquid crystal. A constant thickness is necessary for good contrast ratio, response time and viewing angle.

However, when plates bend, it forces the liquid crystal away from the impact site and leaves sections of the screen blank and so alterations in spacer design are critical to prevent liquid crystal in flexible LCDs from moving excessively.

The researchers tried three different spacer designs and found that a mesh-like spacer prevented liquid crystal from flowing when their LCD was bent or hit.

An additional innovation involved improved colour rendering. The scientists report that until this study, optically rewritable LCDs had only been able to display two colours at a time.

Now, their optically rewritable LCD simultaneously displays the three primary colours. They achieved this by placing a special type of liquid crystal behind the LCD, which reflected red, blue and green.

paper thin lcd screen factory

1. Is the recent development of optically rewritable LCDs. Like conventional LCD displays, the display is structured like a sandwich, with a liquid crystal filling between two plates. Unlike conventional liquid crystals where electrical connections on the plates create the fields required to switch individual pixels from light to dark, optically rewritable LCDs coat the plates with special molecules that realign in the presence of polarized light and switch the pixels. This removes the need for traditional electrodes, reduces the structure’s bulk and allows more choices in the type and thickness of plates. Consequently, optically rewritable LCDs are thinner than traditional LCDs, at less than half a millimeter thick, can be made from flexible plastic, and weigh only a few grams. “It’s only a little thicker than paper,” said Jiatong Sun, a co-author from Donghua University in China.

Optically rewritable LCDs are durable and cheap to manufacture because of their simple structure. Moreover, like an electronic paper screen in an e-book, energy is only required to switch display images or text. Therefore, running costs are low because these new LCDs don’t need power to sustain an image once it is written on the screen.

2. Another innovation is the spacers that create the separation of the plastic or glass plates. “We put spacers between glass layers to keep the liquid crystal layer uniform,” Sun said. Spacers are used in all LCDs to determine the thickness of the liquid crystal. A constant thickness is necessary for good contrast ratio, response time and viewing angle. However, when plates bends, it forces the liquid crystal away from the impact site and leaves sections of the screen blank and so alterations in spacer design are critical to prevent liquid crystal in flexible LCDs from moving excessively. Developing a flexible design that overcomes this barrier has proven challenging.

paper thin lcd screen factory

Create either one, two, or three-dimensional items with paper thin lcd video brochure from Tradechina.com. These paper thin lcd video brochure hold an aesthetic value and are great teaching tools for children and adults. Art with paper doesn’t have strict protocols, thus offering you an avenue to express your creativity freely and have fun. paper thin lcd video brochure can help children improve their focus as they will see and experience the joy of starting and completing a project.

paper thin lcd video brochure are great for involving family members or friends. Paper is inexpensive and easy to work with. You can create bonds with other like-minded individuals who enjoy creating with paper. paper thin lcd video brochure provides opportunities to play with textures, colors, or designs that match your feelings. Tradechina.com offers you a variety of paper thin lcd video brochure to choose from to create either simple crafts or attempt more complex projects.

Crafting with paper thin lcd video brochure also improves your mental agility and motor skills as it is a hands-on activity that requires following precise motions. It also improves patience and adherence to instructions. paper thin lcd video brochure can help you relax and stop worrying about what’s going on in the world. It becomes a form of meditation that helps stabilize the mind to achieve calmness. The conclusion of a paper thin lcd video brochure project gives you the joy of achieving a goal and gives you confidence in your abilities.

Get the best paper thin lcd video brochure on Tradechina.com and gain a creative outlet to express yourself. Crafting with paper is educational and therapeutic as it promotes multi-cultural mindfulness and helps you get problem-solving skills. paper thin lcd video brochure sellers and wholesalers can find products that suit your requirements from among the vast variety on offer.

paper thin lcd screen factory

When you look at a display device – your phone, your TV, your smartwatch, the screen in your car – what do you see?  You see the image. A bright, vivid image on surfaces of all shapes and sizes. Flat, curved, flexible, thinner than ever before.

When you stop and think about what goes into displaying one of these amazing images, you might recognize most are protected by a glass cover. You might even be familiar with display types like LCD or OLED. Yet for many, the recognition stops there. You may see the image on the surface, but rarely think about what creates that image, how it achieves life-like, vibrant color, and the journey it makes to reach our eyes.

If we look deeper, beyond the surface and the cover glass of our devices, we would find one or more layers of ultra-thin, technical glass make such images possible. Each layer with a different purpose, all working together to deliver the beautiful, thin displays we use each and every day. Combined, these layers form what we at Corning call the “glass stack.”

Though each layer of the glass stack is formed with the same fusion manufacturing process, the compositions of the glass are different – allowing for different properties and benefits. LCD and OLED displays, whether on mobile devices with glass cover and back or otherwise, utilize different super-thin layers of glass specific to their applications:

paper thin lcd screen factory

FlexEnable’s glass-free organic LCD (OLCD) delivers high-brightness, long lifetime flexible displays that are low cost and scalable to large areas, while also being thin, lightweight and shatterproof.

OLCD is a plastic display technology with full colour and video-rate capability. It enables product companies to create striking designs and realise novel use cases by merging the display into the product design rather than accommodating it by the design.

Unlike flexible OLED displays, which are predominantly adopted in flagship smartphones and smartwatches, OLCD opens up the use of flexible displays to a wider range of mass-market applications. It has several attributes that make it better suited than flexible OLED to applications across large-area consumer electronics, smart home appliances, automotive, notebooks and tablets, and digital signage.

OLCD can be conformed and wrapped around surfaces and cut into non-rectangular shapes during the production process. Holes can be also added to fit around the functional design of the system – for example around knobs and switches.

As with glass-based LCD, the lifetime of OLCD is independent of the display brightness, because it is achieved through transmission of a separate light source (the backlight), rather than emission of its own light. For example OLCD can be made ultra-bright for viewing in daylight conditions without affecting the display lifetime – an important requirement for vehicle surface-integrated displays.

OLCD is the lowest cost flexible display technology – it is three to four times lower cost that flexible OLED today. This is because it makes use of existing display factories and supply chain and deploys a low temperature process that results in low manufacturing costs and high yield.

Unlike other flexible display approaches, OLCD is naturally scalable to large sizes. It can be made as small or as large as the manufacturing equipment used for flat panel displays allows.

The flexibility of OLCD allows an ultra-narrow bezel to be implemented by folding down the borders behind the display. This brings huge value in applications like notebooks and tablets where borderless means bigger displays for the same sized device. The bezel size allowed by OLCD is independent of the display size or resolution. In addition, OLCD can make a notebook up to 100g lighter and 0.5mm thinner.

OLCD is the key to the fabrication of ultra-high contrast dual cell displays with true pixel level dimming, offering OLED-like performance at a fraction of the cost. The extremely thin OLCD substrate brings advantages in cost, viewing angle and module thickness compared to glass displays. At the same time OLCD retains the flexibility required for applications such as surface-integrated automotive displays.

Due to its unique properties, OLCD has the potential to transform how and where displays are used in products. The videos below give a glimpse into this innovative technology.

OLCD brings the benefits of being thin, light, shatterproof and conformable, while offering the same quality and performance as traditional glass LCDs. The mechanical advantages of plastic OLCD over glass LCD are further enhanced by the technology’s excellent optical performance, much of which originates from the extreme thinness of plastic TAC substrates compared to glass.

paper thin lcd screen factory

One of the things that sets us apart from other touchscreen display manufacturers is the level of customization we offer. Our product portfolio includes a wide range of TFT & Monochrome LCDs, OLED, touch sensor and glass technologies, which we can provide stand-alone or integrated into complete assemblies.

Our custom display, touch and cover lens solutions are used in a variety of end-user applications. For example, our touchscreens are used in many vehicle infotainment systems and dashboard controls. We also provide custom touch displays for popular marine applications such as watercraft navigation screens and fish finders. For consumer electronics, we manufacture custom touchscreen display solutions and smartphone screen protectors. Whether your application will be used in the great outdoors, a construction site, or a hospital operating room, we can build a custom, all-in-one solution for your needs.

paper thin lcd screen factory

STONE Technologies is a proud manufacturer of superior quality TFT LCD modules and LCD screens. The company also provides intelligent HMI solutions that perfectly fit in with its excellent hardware offerings.

STONE TFT LCD modules come with a microcontroller unit that has a 1GHz Cortex-A8 CPU. Such a module can easily be transformed into an HMI screen. Simple hexadecimal instructions can be used to control the module through the UART port. Furthermore, you can seamlessly develop STONE TFT LCD color user interface modules and add touch control, features to them.

Becoming a reputable TFT LCD manufacturer is no piece of cake. It requires a company to pay attention to detail, have excellent manufacturing processes, the right TFT display technology, and have a consumer mindset.

Now, we list down 10 of the best famous LCD manufacturers globally. We’ll also explore why they became among the top 10 LCD display Manufacturers in the world.

LG Display is a leading manufacturer of thin-film transistor liquid crystal displays (TFT-LCD) panels, OLED, and flexible displays.LG Display began developing TFT-LCD in 1987 and currently offers Display panels in a variety of sizes and specifications using different cutting-edge technologies (IPS, OLED, and flexible technology).

With innovative and differentiated technologies, QINNOOptoelectronics provides advanced display integration solutions, including 4K2K ultra-high resolution, 3D naked eye, IGZO, LTPS, AMOLED, OLED, and touch solutions. Qinnooptoelectronics sets specifications and leads the market. A wide range of product line is across all kinds of TFT LCD panel modules, touch modules, for example, TV panel, desktop and laptop computer monitor with panels, small and medium scale “panels, medical, automotive, etc., the supply of cutting-edge information and consumer electronics customers around the world, for the world TFT – LCD (thin-film transistor liquid crystal display) leading manufacturers.

AU Optronics Co., LTD., formerly AU Optronics Corporation, was founded in August 1996. It changed its name to AU Optronics after its merger with UNIOPtronics in 2001. Through two mergers, AU has been able to have a full range of generations of production lines for panels of all sizes.Au Optronics is a TFT-LCD design, manufacturing, and r&d company. Since 2008, au Optronics has entered the green energy industry, providing customers with high-efficiency solar energy solutions.

Sharp has been called the “father of LCD panels”.Since its founding in 1912, Sharp developed the world’s first calculator and LIQUID crystal display, represented by the living pencil, which was invented as the company name. At the same time, Sharp is actively expanding into new areas to improve people’s living standards and social progress. Made a contribution.

BYD IT products and businesses mainly include rechargeable batteries, plastic mechanism parts, metal parts, hardware electronic products, cell phone keys, microelectronics products, LCD modules, optoelectronics products, flexible circuit boards, chargers, connectors, uninterruptible power supplies, DC power supplies, solar products, cell phone decoration, cell phone ODM, cell phone testing, cell phone assembly business, notebook computer ODM, testing and manufacturing and assembly business, etc.

Tianma microelectronics co., LTD., founded in 1983, the company focus on smartphones, tablets, represented by high order laptop display market of consumer goods and automotive, medical, POS, HMI, etc., represented by professional display market, and actively layout smart home, intelligent wear, AR/VR, unmanned aerial vehicles (UAVs) and other emerging markets, to provide customers with the best product experience.IN terms of technology, the company has independently mastered leading technologies such as LTPS-TFT, AMOLED, flexible display, Oxide-TFT, 3D display, transparent display, and in-cell/on-cell integrated touch control. TFT-LCD key Materials and Technologies National Engineering Laboratory, national enterprise Technology Center, post-doctoral mobile workstation, and undertake national Development and Reform Commission, The Ministry of Science and Technology, the Ministry of Industry and Information Technology, and other major national thematic projects. The company’s long-term accumulation and continuous investment in advanced technology lay the foundation for innovation and development in the field of application.

paper thin lcd screen factory

A flexible display or rollable display is an electronic visual display which is flexible in nature, as opposed to the traditional flat screen displays used in most electronic devices.e-readers, mobile phones and other consumer electronics. Such screens can be rolled up like a scroll without the image or text being distorted.electronic ink, Gyricon, Organic LCD, and OLED.

Electronic paper displays which can be rolled up have been developed by E Ink. At CES 2006, Philips showed a rollable display prototype, with a screen capable of retaining an image for several months without electricity.pixel rollable display based on E Ink’s electrophoretic technology.flexible organic light-emitting diode displays have been demonstrated.electronic paper wristwatch. A rollable display is an important part of the development of the roll-away computer.

With the flat panel display having already been widely used more than 40 years, there have been many desired changes in the display technology, focusing on developing a lighter, thinner product that was easier to carry and store. Through the development of rollable displays in recent years, scientists and engineers agree that flexible flat panel display technology has huge market potential in the future.

Flexible electronic paper (e-paper) based displays were the first flexible displays conceptualized and prototyped. Though this form of flexible displays has a long history and were attempted by many companies, it is only recently that this technology began to see commercial implementations slated for mass production to be used in consumer electronic devices.

The concept of developing a flexible display was first put forth by Xerox PARC (Palo Alto Research Company). In 1974, Nicholas K. Sheridon, a PARC employee, made a major breakthrough in flexible display technology and produced the first flexible e-paper display. Dubbed Gyricon, this new display technology was designed to mimic the properties of paper, but married with the capacity to display dynamic digital images. Sheridon envisioned the advent of paperless offices and sought commercial applications for Gyricon.

In 2005, Arizona State University opened a 250,000 square foot facility dedicated to flexible display research named the ASU Flexible Display Center (FDC). ASU received $43.7 million from the U.S. Army Research Laboratory (ARL) towards the development of this research facility in February 2004.demonstration later that year.Hewlett Packard demonstrated a prototype flexible e-paper from the Flexible Display Center at the university.

This company develops and manufactures monochrome plastic flexible displays in various sizes based on its proprietary organic thin film transistor (OTFT) technology. They have also demonstrated their ability to produce colour displays with this technology, however they are currently not capable of manufacturing them on a large scale.Dresden, Germany, which was the first factory of its kind to be built – dedicated to the high volume manufacture of organic electronics.plastic and do not contain glass. They are also lighter and thinner than glass-based displays and low-power. Applications of this flexible display technology include signage,wristwatches and wearable devices

In 2004, a team led by Prof. Roel Vertegaal at Queen"s University"s Human Media Lab in Canada developed PaperWindows,Organic User Interface. Since full-colour, US Letter-sized displays were not available at the time, PaperWindows deployed a form of active projection mapping of computer windows on real paper documents that worked together as one computer through 3D tracking. At a lecture to the Gyricon and Human-Computer Interaction teams at Xerox PARC on 4 May 2007, Prof. Vertegaal publicly introduced the term Organic User Interface (OUI) as a means of describing the implications of non-flat display technologies on user interfaces of the future: paper computers, flexible form factors for computing devices, but also encompassing rigid display objects of any shape, with wrap-around, skin-like displays. The lecture was published a year later as part of a special issue on Organic User InterfacesCommunications of the ACM. In May 2010, the Human Media Lab partnered with ASU"s Flexible Display Center to produce PaperPhone,MorePhone

During Samsung"s CES 2013 keynote presentation, two prototype mobile devices codenamed "Youm" that incorporated the flexible AMOLED display technology were shown to the public.OLED screen giving this phone deeper blacks and a higher overall contrast ratio with better power efficiency than traditional LCD displays.LCD displays. Samsung stated that "Youm" panels will be seen in the market in a short time and production will commence in 2013.

Samsung subsequently released the Galaxy Round, a smartphone with an inward curving screen and body, in October 2013.Galaxy Note Edge released in 2014.Galaxy S series with the release of the Galaxy S6 Edge, a variant of the S6 model with a screen sloped over both sides of the device.foldable smartphone prototype, which was subsequently revealed in February 2019 as the Galaxy Fold.

The Flexible Display Center (FDC) at Arizona State University announced a continued effort in forwarding flexible displays in 2012.Army Research Lab scientists, ASU announced that it has successfully manufactured the world"s largest flexible OLED display using thin-film transistor (TFTs) technology.

In January 2019, Chinese manufacturer Xiaomi showed a foldable smartphone prototype.Xiaomi demoed the device in a video on the Weibo social network. The device features a large foldable display that curves 180 degrees inwards on two sides. The tablet turns into a smartphone, with a screen diagonal of 4,5 inch, adjusting the user interface on the fly.

Flexible displays have many advantages over glass: better durability, lighter weight, thinner as plastic, and can be perfectly curved and used in many devices.glass and rollable display is that the display area of a rollable display can be bigger than the device itself; If a flexible device measuring, for example, 5 inches in diagonal and a roll of 7.5mm, it can be stored in a device smaller than the screen itself and close to 15mm in thickness.

Flexible screens can open the doors to novel and alternative authentication schemes by emphasizing the interaction between the user and the touch screen. In “Bend Passwords: Using Gestures to Authenticate on Flexible Devices,” the authors introduce a new method called Bend Passwords where users perform bending gestures and deform the touch screen to unlock the phone. Their work and research points to Bend Passwords possibly becoming a new way to keep smartphones secure alongside the popularization of flexible displays.

Flexible displays using electronic paper technology commonly use Electrophoretic or Electrowetting technologies. However, each type of flexible electronic paper vary in specification due to different implementation techniques by different companies.

The flexible electronic paper display technology co-developed by Arizona State University and HP employs a manufacturing process developed by HP Labs called Self-Aligned Imprint Lithography (SAIL).

The flexible electronic paper display announced by AUO is unique as it is the only solar powered variant. A separate rechargeable battery is also attached when solar charging is unavailable.

Many of the e-paper based flexible displays are based on OLED technology and its variants. Though this technology is relatively new in comparison with e-paper based flexible displays, implementation of OLED flexible displays saw considerable growth in the last few years.

In May 2011, Human Media Lab at Queen"s University in Canada introduced PaperPhone, the first flexible smartphone, in partnership with the Arizona State University Flexible Display Center.

Nokia introduced the Kinetic concept phone at Nokia World 2011 in London.Engadget described interactions such as "[when] bend the screen towards yourself, [the device] acts as a selection function, or zooms in on any pictures you"re viewing."

Hamilton, Brian (15 December 2005). "Xerox erases electronic paper subsidiary, Gyricon LLC, in Scio Twp". Ann Arbor Business Review. Archived from the original on 1 May 2006. Retrieved 12 February 2013.

Holman, D., Vertegaal, R. and Troje, N. (2005). PaperWindows: Interaction Techniques for Digital Paper. In Proceedings of ACM CHI 2005 Conference on Human Factors in Computing Systems. ACM Press, 591–599.

Lahey, Byron; Girouard, Audrey; Burleson, Winslow and Vertegaal, Roel (May 2011). PaperPhone: Understanding the Use of Bend Gestures in Mobile Devices with Flexible Electronic Paper Displays, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Pages 1303–1312.

Gomes, A., Nesbitt, A., and Vertegaal, R. (2013) MorePhone: A Study Of Actuated Shape Deformations for Flexible Thin-Film Smartphone Notifications. In Proceedings of ACM CHI’13 Conference on Human Factors in Computing. ACM Press, 2013, pp. 583–592.

Davies, Trevor (28 October 2011). "Nokia Kinetic bendy phone is the next big thing". Conversations by Nokia. Archived from the original on 27 February 2018. Retrieved 12 February 2013.

Sasaoka, Tatsuya; Sekiya, Mitsunobu; Yumoto, Akira; Yamada, Jiro; Hirano, Takashi; Iwase, Yuichi; Yamada, Takao; Ishibashi, Tadashi; Mori, Takao; Asano, Mitsuru; Tamura, Shinichiro; Urabe, Tetsuo (1 January 2001). "24.4L: Late-News Paper: A 13.0-inch AM-OLED Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC)". SID Symposium Digest of Technical Papers. 32 (1): 384. doi:10.1889/1.1831876. S2CID 59976823.

Drzaic, P.; Comiskey, B.; Albert, J. D.; Zhang, L.; Loxley, A.; Feeney, R.; Jacobson, J. (1 January 1998). "44.3L: A Printed and Rollable Bistable Electronic Display". SID Symposium Digest of Technical Papers. 29 (1): 1131. doi:10.1889/1.1833686. S2CID 135723096.

"LG SHOWS ITS FIRST OLED TV WITH CURVED SCREEN". LG Electronics. 9 January 2013. Archived from the original on 12 December 2013. Retrieved 12 February 2013.

paper thin lcd screen factory

a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments

paper thin lcd screen factory

Liquid crystal refers to the intermediate status of a substance between solid (crystal) and liquid. When crystals with a high level of order in molecular sequence are melted, they generally turn liquid, which has fluidity but no such order at all. However, thin bar-shaped organic molecules, when they are melted, keep their order in a molecular direction although they lose it in molecular positions. In the state in which molecules are in a uniform direction, they also have refractive indices, dielectric constants and other physical characteristics similar to those of crystals, depending on their direction, even though they are liquid. This is why they are called liquid crystal. The diagram below shows the structure of 5CB (4-pentyl-4’-Cyanobiphenyl) as an example of liquid crystal molecules.

A liquid crystal display (LCD) has liquid crystal material sandwiched between two sheets of glass. Without any voltage applied between transparent electrodes, liquid crystal molecules are aligned in parallel with the glass surface. When voltage is applied, they change their direction and they turn vertical to the glass surface. They vary in optical characteristics, depending on their orientation. Therefore, the quantity of light transmission can be controlled by combining the motion of liquid crystal molecules and the direction of polarization of two polarizing plates attached to the both outer sides of the glass sheets. LCDs utilize these characteristics to display images.

An LCD consists of many pixels. A pixel consists of three sub-pixels (Red/Green/Blue, RGB). In the case of Full-HD resolution, which is widely used for smartphones, there are more than six million (1,080 x 1,920 x 3 = 6,220,800) sub-pixels. To activate these millions of sub-pixels a TFT is required in each sub-pixel. TFT is an abbreviation for "Thin Film Transistor". A TFT is a kind of semiconductor device. It serves as a control valve to provide an appropriate voltage onto liquid crystals for individual sub-pixels. A TFT LCD has a liquid crystal layer between a glass substrate formed with TFTs and transparent pixel electrodes and another glass substrate with a color filter (RGB) and transparent counter electrodes. In addition, polarizers are placed on the outer side of each glass substrate and a backlight source on the back side. A change in voltage applied to liquid crystals changes the transmittance of the panel including the two polarizing plates, and thus changes the quantity of light that passes from the backlight to the front surface of the display. This principle allows the TFT LCD to produce full-color images.

paper thin lcd screen factory

QS-9000, ISO-9001 & ISO-14001 certified manufacturer of high bright LCD displays. Liquid crystal displays include character displays, serial displays, COG LCD displays & graphic displays. Specifications of liquid crystal displays include character pattern ranging from 1 x 8 to 4 x 40, module size ranging from 22 mm W x 25 mm H to 190 mm W x 54 mm H, character size ranging from 5 mm W x 3 mm H to 15 mm W x 6 mm H. Displays are available in white, green, blue, orange, yellow & gray color with or without backlight. LCD displays are suitable for a variety of markets including handhelds, industrial, irrigation, medical, scales, POS, telecom & vending. RoHS compliant.