1.8 tft display module st7735s 128x160 arduino free sample
In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.
The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.
This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.
The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.
In which “Hello, World!” is the text you want to display and the (x, y) coordinate is the location where you want to start display text on the screen.
The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:
Note: some people find issues with this display when trying to read from the SD card. We don’t know why that happens. In fact, we tested a couple of times and it worked well, and then, when we were about to record to show you the final result, the display didn’t recognized the SD card anymore – we’re not sure if it’s a problem with the SD card holder that doesn’t establish a proper connection with the SD card. However, we are sure these instructions work, because we’ve tested them.
In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.
I wanted to try these ST7735 inexpensive displays that can be found all over the internet, so I ordered a couple for a few euros each. My quick research showed that a number of libraries support them and it turns out that you can display anything you want. Of course, we are not talking about playing modern games on it or watching 4k videos. These are just simple displays that can be really helpful to any project.
And here is how the TFT looks. As you see it also has a port for an SD card if you want to use e.g. for reading images from it. In my case, I didn’t connect it.
Once you have the connections ready next step is to install the TFT library in your Arduino IDE. Go to Tools – > Manage Libraries and then search for TFT_eSPI and click install. Alternatively, crab the lib from here.
After this, you can pick any of the examples from the library to upload to your ESP32 microcontroller. Some of them are really nice. For testing, I connected a DHT11 temperature/humidity sensor and I displayed the readings in the ST7735. Sweet!
I recently bought a cheap TFT display for a project I was doing and after a bit of research I decided upon a 1.8" 128x160 ST7735 Display from Karen"s eShop on eBay, it"s very affordable and looked great for my project. On the product page, the seller has got some really great, detailed instructions for getting the screen to work on an Arduino, however, I couldn"t find anywhere online for getting this screen to work on a Raspberry Pi. This post will quickly save you the trial and error of getting a ST7735 working with a Raspberry Pi.
I found a library for the screens using the ST7735 chip on GitHub. The instructions and examples on GitHub will work fine, but this is for a different size of the screen, the instructions and example code here will work from the 128x160 display from Karen"s eShop.
Ckingway technology Co., Ltd. Established in 2009, we focus researching & developing, design, manufacture and sales integrated into one target on resistive touch panel, capacitive touch panel and LCD/LCM (liquid crystal display module). Coming along with electronics consumer products increasing rapidly recently, our product has been holding steady marketing share in touch display field under our teamwork strongly, while industry chain getting more ruggedized, professionalized.
I display ADC5/6/7 using the ADC value and a bar graph. ADC7 is connected to the on board Potentiometer. I wired ADC6 to a IR detector circuit and ADC5 to an external potentiometer.
I display Port D pins using simulated green LEDs. I know that PD3/5/6 are not available as they are wired to the H-Bridge, but I’m only testing for PD0/1/2/4/7 in the code. PD0 is always on in my hook up because it is wired to the serial port. You can test the other Port D pins using a 10k Ohm resistor wired to Vcc.
Il display SPI TFT monocromatico da 1,77 pollici, con risoluzione da 128 x 160 pixel è uno dei display più prestanti sul mercato. Il display lcd perfetto per tutti i vostri progetti in cui è indispensabile avere una visualizzazione chiara e perfetta dei dati estratti.
Infatti, grazie alla diagonale dello schermo da 1,77 pollici, questo display per Raspberry ha una dimensione ottimale per leggere senza problemi i dati che vengono visualizzati, il suo elevato contrasto è una caratteristica fondamentale. Il display è costituito da pixel LCD che sono controllati singolarmente dal chip Integrato. Non è necessaria alcuna retroilluminazione; tutto questo ha degli effetti positivi sul consumo energetico, e contribuisce all’elevato contrasto che si riesce ad ottenere con questo display.
The display is driven by a ST7735R controller ( ST7735R-specifications.pdf (2.1 MB) ), can be used in a “slow” and a “fast” write mode, and is 3.3V/5V compatible.
Adafruit_ST7735 is the library we need to pair with the graphics library for hardware specific functions of the ST7735 TFT Display/SD-Card controller.
In the file dialog select the downloaded ZIP file and your library will be installed automatically. This will automatically install the library for you (requires Arduino 1.0.5 or newer). Restarting your Arduino software is recommended as it will make the examples visible in the examples menu.
The easiest way to remedy this is by extracting the GitHub ZIP file. Place the files in a directory with the proper library name (Adafruit_GFX, Adafruit_ST7735 or SD) and zip the folder (Adafruit_GFX, Adafruit_ST7735.zip, SD.zip). Now the Arduino software can read and install the library automatically for you.
Basically, besides the obvious backlight, we tell the controller first what we are talking to with the CS pins. CS(TFT) selects data to be for the Display, and CS(SD) to set data for the SD-Card. Data is written to the selected device through SDA (display) or MOSI (SD-Card). Data is read from the SD-Card through MISO.
So when using both display and SD-Card, and utilizing the Adafruit libraries with a SainSmart display, you will need to connect SDA to MOSI, and SCL to SCLK.
As mentioned before, the display has a SLOW and a FAST mode, each serving it’s own purpose. Do some experiments with both speeds to determine which one works for your application. Of course, the need of particular Arduino pins plays a role in this decision as well …
Note: Adafruit displays can have different colored tabs on the transparent label on your display. You might need to adapt your code if your display shows a little odd shift. I noticed that my SainSmart display (gree tab) behaves best with the code for the black tab – try them out to see which one works best for yours.
Low Speed display is about 1/5 of the speed of High Speed display, which makes it only suitable for particular purposes, but at least the SPI pins of the Arduino are available.
After connecting the display in Low Speed configuration, you can load the first example from the Arduino Software (“File” “Example” “Adafruit_ST7735” – recommend starting with the “graphictest“).
Below the code parts for a LOW SPEED display (pay attention to the highlighted lines) – keep in mind that the names of the pins in the code are based on the Adafruit display:
You can name your BMP file “parrot.bmp” or modify the Sketch to have the proper filename (in “spitftbitmap” line 70, and in “soft_spitftbitmap” line 74).
#define SD_CS 4 // Chip select line for SD card#define TFT_CS 10 // Chip select line for TFT display#define TFT_DC 9 // Data/command line for TFT#define TFT_RST 8 // Reset line for TFT (or connect to +5V)
#define SD_CS 4 // Chip select line for SD card#define TFT_CS 10 // Chip select line for TFT display#define TFT_DC 9 // Data/command line for TFT#define TFT_RST 8 // Reset line for TFT (or connect to +5V)
To use this in your Arduino Sketch: The first 2 characters represent RED, the second set of two characters is for GREEN and the last 2 characters represent BLUE. Add ‘0x’ in front of each of these hex values when using them (‘0x’ designates a hexadecimal value).
This function is used to indicate what corner of your display is considered (0,0), which in essence rotates the coordinate system 0, 90, 180 or 270 degrees.
However, if your application needs your screen sideways, then you’d want to rotate the screen 90 degrees, effectively changing the display from a 128×160 pixel (WxH) screen to a 160×128 pixel display. Valid values are: 0 (0 degrees), 1 (90 degrees), 2 (180 degrees) and 3 (270 degrees).
Based on these functions, I did create a little demo to show what these functions do. Either download the file or just copy the code and paste it into an empty Arduino Sketch.
tft.print("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, fringilla sed malesuada et, malesuada sit amet turpis. Sed porttitor neque ut ante pretium vitae malesuada nunc bibendum. Nullam aliquet ultrices massa eu hendrerit. Ut sed nisi lorem. In vestibulum purus a tortor imperdiet posuere. ");
The 1.8" display has 128x160 color pixels. The TFT driver (ST7735) can display full 18-bit color. The breakout has the TFT display soldered on (it uses a delicate flex-circuit connector).
In the below example, Node32-Lite and this 1.8-inch LCD. Please refer to the tutorial here: ST7735S interfacing with ESP32 to make the connections, Arduino library installation, and modification needed for it to works on this LCD.
Got three of them all working(1 with Arduino Leonardo and 2 with NodeMCU ESP8266).arduino will need a solution to the 5v out 3.3v in(10s solder job) NodeMCU is directly compatible.i used adafruits code.Very happy. getting more. also hiletgo products have all been functional so far. becoming a fan.Update: switched to TFT_eSPI.h library. Wow. Orders of magnitude faster display now. A bit trickier to setup but well worth it.
The 1.8 inch TFT LCD Module SPI Serial 51 128 x 160 is a compact colourful display that works well with Raspberry Pi, Android and other microcontrollers.
The display module is bight, anti-reflective and offers the choice of loading images via SD card through the slot on the back of the screen or via a microcontroller.
16-BIT RGB 65K colour display and the internal driver IC is ST7735S, which uses 4-wire SPI communication. The module contains an LCD display and a PCB control backplane.
It only takes a few IOs to illuminate the display with an SD card slot for convenient function expansion provide underlying libraries and rich sample programs forArduino, C51, and STM32 platforms.
(2) Copy the dependent libraries in the Install libraries directory in the package (shown below) to the libraries folder of the Arduino project directory ( Don’t know the Arduino project directory?)
In this project time and date are displayed on ST7735 SPI TFT display (128 x 160 pixel resolution) and they could be set with two push buttons connected to the Arduino board.
The ST7735S shown in the circuit diagram has 8 pins: (from right to left): RST (reset), CE (chip enable), DC (or D/C: data/command), DIN (data in), CLK (clock), VCC (5V or 3.3V), BL (back light) and Gnd (ground).
Normally the ST7735 display works with 3.3V only, but many boards of this display have a built-in 3.3V regulator (AMS1117 3V3) like the one shown in the circuit diagram. This regulator supplies the display controller with 3.3V from 5V source.
All Arduino UNO board output pins are 5V, connecting a 5V pin to the ST7735 display board may damage its controller circuit. To avoid that, I connected each control line of the display to the Arduino board through 1k ohm resistor.
The DS1307 RTC SDA (serial data) and SCL (serial clock) pins are respectively connected to Arduino A4 and A5 pins (ATmega328P hardware I2C module pins).
The ST7735 TFT display is connected to Arduino hardware SPI module pins (clock and data), the other pins which are: RST (reset), CS (chip select) and DC (data/command) are defined as shown below:
Hi guys, welcome to today’s tutorial. Today, we will look on how to use the 1.8″ ST7735 colored TFT display with Arduino. The past few tutorials have been focused on how to use the Nokia 5110 LCD display extensively but there will be a time when we will need to use a colored display or something bigger with additional features, that’s where the 1.8″ ST7735 TFT display comes in.
The ST7735 TFT display is a 1.8″ display with a resolution of 128×160 pixels and can display a wide range of colors ( full 18-bit color, 262,144 shades!). The display uses the SPI protocol for communication and has its own pixel-addressable frame buffer which means it can be used with all kinds of microcontroller and you only need 4 i/o pins. To complement the display, it also comes with an SD card slot on which colored bitmaps can be loaded and easily displayed on the screen.
The schematics for this project is fairly easy as the only thing we will be connecting to the Arduino is the display. Connect the display to the Arduino as shown in the schematics below.
Due to variation in display pin out from different manufacturers and for clarity, the pin connection between the Arduino and the TFT display is mapped out below:
We will use two example sketches to demonstrate the use of the ST7735 TFT display. The first example is the lightweight TFT Display text example sketch from the Adafruit TFT examples. It can be accessed by going to examples -> TFT -> Arduino -> TFTDisplaytext. This example displays the analog value of pin A0 on the display. It is one of the easiest examples that can be used to demonstrate the ability of this display.
The second example is the graphics test example from the more capable and heavier Adafruit ST7735 Arduino library. I will explain this particular example as it features the use of the display for diverse purposes including the display of text and “animated” graphics. With the Adafruit ST7735 library installed, this example can be accessed by going to examples -> Adafruit ST7735 library -> graphics test.
The first thing, as usual, is to include the libraries to be used after which we declare the pins on the Arduino to which our LCD pins are connected to. We also make a slight change to the code setting reset pin as pin 8 and DC pin as pin 9 to match our schematics.
Next, we create an object of the library with the pins to which the LCD is connected on the Arduino as parameters. There are two options for this, feel free to choose the most preferred.
Next, we move to the void setup function where we initialize the screen and call different test functions to display certain texts or images. These functions can be edited to display what you want based on your project needs.
The complete code for this is available under the libraries example on the Arduino IDE. Don’t forget to change the DC and the RESET pin configuration in the code to match the schematics.
Uploading the code to the Arduino board brings a flash of different shapes and text with different colors on the display. I captured one and its shown in the image below.
That’s it for this tutorial guys, what interesting thing are you going to build with this display? Let’s get the conversation started. Feel free to reach me via the comment section if you have any questions as regards this project.