transparent lcd display pc case factory
LCD Transparent Displays, transparent screens, transparent monitors, see through screens, transparent touch screen technology, and kits from CDS as we have our own range of transparent screens / displays and transparent video screens manufactured for us, and as we control the manufacturing, we can not only offer more sizes than anyone else in the world, but also guarantee stable supply, long term availability LCDs with amazing quality. We have replaced the Samsung Transparent Displays / see through Displays and LG Transparent OLEDs that are no longer available!
CDS has increased the use of these see through screens / see through displays / see through computer screens / clear monitors across the world including touchscreen computer screens combined with the transparent LCD touch screens and Transparent OLED displays.
Screen Solutions offers complete solutions for transparent displays including standard and custom display cases. SSI has designed and built transparent displays for companies like Chrysler, Lockheed Martin, Mazda and many others over the last 15 years.
Standard Sizes start as small as 10″ and can get as big as 86″ Diagonal as seen in the video to your left. These complete displays include transparent panel, lighting, glass, display case and even a touch screen if you want.
LCD Spec: 19” transparent TN LCD side panel display with 1280 x 1024 resolution enabling the complete customization of the side panel. Users can configure the digital display to feature video wallpaper, images, or system temperatures in real-time
Case modding took off in the late 90s, and taught us all that computers could (and should!) look awesome. Much of the aesthetic went mainstream, and now tons of computer cases come with lights and windows and all the rest. [WysWyg_Protogen] realized those simple case windows could be way cooler with a neat LCD hack, and set to work.
The concept is simple. Take an old LCD monitor, remove the backlight and extraneous hardware, and then install it to the window in a computer case. When lit from behind via LEDs in the case, the screen creates a ghostly display through which the computer’s internals can still partially be seen. It’s a really compelling effect, and in theory, quite easy to achieve. All one need do is mount the stripped-down screen to the case and pipe it video from the graphics card.
In practice, it’s a little tricky. Disassembling the screen and removing things like the anti-glare coating can be tough to do without damaging the delicate panel inside. The windows typically used on computer cases can dull the effect, too. However, [WysWyg_Protogen] is continuing to tinker with the project and the results are getting increasingly impressive with each iteration. It doesn’t photograph too well, but it looks truly amazing in motion.
We often forget LCDs are transparent in their basic form, as we generally only use them with backlights or reflective backers. They really do look great when used in this transmissive way, though. Video after the break.
Actually beside myself right now. How does this look this good? This was a trash pile monitor and this looks like a 700 dollar case upgrade pic.twitter.com/4yBXlcY921
The present invention relates generally to refrigerated display cases and refrigerator doors and, more particularly, to a refrigerator door with a transparent LCD panel. BACKGROUND OF THE INVENTION
The invention described herein includes the use of a transparent LCD glass panel as one of the panes in a three-pane unit, such as one used in an insulated glass refrigerator/freezer door.
One of the issues with such a door is supplying power, data and/or communications to the components within the refrigerated display case. Glass refrigerator/freezer doors commonly have a mechanism to supply 120VAC or 240VAC power to the door for anti-sweat heaters. Most stores use a traditional electrical cord. This cord flexes in the cold and suffers from copper conductor fatigue, and insulation cracking. To overcome these weaknesses, solutions have been provided in which the electrical conductors are passed through the hinge pin. By running the conductors concentric with the axis of the hinge pin, flexing and fatigue is minimized, thus improving reliability. The high voltage conductors and associated contacts require appropriate insulation and spacing as dictated by UL and other safety certification organizations. See, for example, U.S. Pat. No. 4,671,582 (referred to herein as the “"582 patent”), issued on Jun. 9, 1987 to Stromquist, et al., the entirety of which is incorporated herein by reference.
Other types of refrigerator/freezer doors also require both power and data. For example, LED light fixtures mounted to the swinging door, LED illuminated marquee signs mounted inside the insulated glass assembly of the door, LCD displays mounted on the door handle, and transparent LCD glass panels with advertising all require both power and data. Most of these products require UL Class 2 low voltage (<60VDC), and many require a data supply, e.g. LCD displays with advertising pictures or videos requiring TCP/IP type data communications.
Generally, the invention is to use a transparent LCD glass panel as one of the panes in a three-pane unit, such as one used in an insulated glass refrigerator/freezer door. With the transparent LCD panel, a consumer can see the media shown on the LCD panel, but can also see inside the display case/refrigerator to view the contents therein. For example, transparent LCD panels are commercially available from Samsung. In a preferred embodiment, the LCD glass panel is used as the center panel. It is within the scope of the present invention to use the LCD glass panel as the inner or outer pane or to add the LCD glass panel as an additional pane. However, in a preferred embodiment, the LCD glass panel needs to be protected from impact and/or moisture damage. Mounting the panel externally may decrease visible transmittance and would also subject the panel to impact by shopping carts. Also, if the store ambient temperature and humidity are not properly controlled, the door can be subject to condensation which may damage the LCD panel or associated electronics. Mounting the panel inside the freezer (adjacent to the food) may cause condensation when the door is opened. Housing the LCD panel inside the hermetically sealed glass unit protects the panel from condensation damage. The associated electronics can also optionally be mounted inside the hermetically sealed glass assembly to protect them from condensation damage. In another embodiment, the electronics can be mounted outside the hermetically sealed glass assembly, such as in the rail of the door.
The door preferably includes the following distinctive features: (1) transparent LCD panel functioning as the center insulating pane of a three-pane low-temp glass freezer door to maximize visible transmittance while maintaining thermal insulating performance; (2) transparent LCD panel mounted between an inner and outer pane of glass to it protect from impact damage; (3) transparent LCD panel mounted inside the hermetically sealed glass unit to protect from moisture damage; (4) mounting the associated electronics, wires, and media player inside the sealed glass unit to protect it from moisture damage or inside the rail of the door; (5) using selectively decorated opaque areas (e.g. screen printing, dot matrix decorating, roller printing, ink jet printing, painting or the like) of the outer or inner pane of glass to hide the circuit boards around the LCD panel perimeter, the wires, and media player hardware of the door assembly, allowing the complete system to be conveniently housed inside the door. The “LCD door” can be used for advertising merchandise, nutritional value, pricing, etc.
In accordance with a first aspect of the present invention there is provided a door assembly that includes a single glass unit having at least first, second and third panels, a front surface, a rear surface, and an outside edge. At least one of the first, second or third panels is a transparent LCD panel on which media can be displayed. The single glass unit also includes a frame that at least partially surrounds the outside edge of the single glass unit, and electronic components in electrical communication with the LCD panel. In a preferred embodiment, the second panel comprises the transparent LCD panel and is positioned between the first and third panels and the first panel is spaced from the second panel by a first spacer and the third panel is spaced from the second panel by a second spacer. The first, second and third panels each have an outside edge and a length and a width. The length and the width of the second panel is smaller than the length and the width of the first and third panels, thereby defining a margin between the outer edge of the second panel and the outer edges of the first and third panels. The first panel is spaced from the third panel by a third spacer that is positioned within the margin.
In a preferred embodiment, the single glass unit includes insulation disposed within the margin and between the first and third panels and the second panel is hermetically sealed between the first and third panels. Furthermore, the first panel includes an outer opaque section and an inner transparent section through which the second panel is visible. In one embodiment, the electronic components for running the LCD panel are disposed between the first and third panels. In another embodiment, the electronic components are positioned in the rail and the rail includes a removable cover for accessing the electronic components. In an embodiment, one of the panels includes an electro-conductive film thereon that is generally clear, wherein when a voltage is applied across a portion of the film, the film becomes opaque. In an embodiment, the electronic components are powered by 24V DC. BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of a series of refrigerated display cases that each include a door assembly with single glass unit having a center LCD panel;
FIG. 2 is a front elevational view of one of the single glass unit having a center LCD panel of FIG. 1 with a portion of the front outer pane cut away to show the electronic components;
Without intent to further limit the scope of the disclosure, examples of instruments, apparatus, methods and their related results according to the embodiments of the present disclosure are given below. Note that titles or subtitles may be used in the examples for convenience of a reader, which in no way should limit the scope of the disclosure. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions, will control.
FIG. 1 shows a series of refrigerated display case doors 100 that include a three-pane unit, single glass unit or package 10 with a transparent LCD panel 16 associated therewith. FIGS. 2-4 show the single glass unit 10 with front/outer pane 12, rear/inner pane 14 and center transparent LCD panel 16. It will be understood that in FIGS. 2-4 and 8, the outer perimeter or frame 102 of the door 100 is not shown. In a preferred embodiment, the panes are glass. However, any transparent material, such as plastic, can be used.
As shown in FIG. 3, in a preferred embodiment, the single glass unit 10 includes front and rear panes 12 and 14, LCD panel 16, electronic components 18, spacers 20 a, 20 b, 20 c,and insulation 22. In a preferred embodiment, the front and rear panes 12 and 14 include an opaque section 24 that obscures or hides components inside the unit 10. For example, by providing the opaque section 24 (preferably done by screen printing or some other type of coating) on selected areas of one or more of the panes 12 and/or 14, the spacers 20 a, 20 b, 20 cinsulation 22, electronic components 18 and other components can be housed inside the unit 10 (and the door 100) and hidden from view. Thermal insulation 22 may be added in certain areas to maintain the overall thermal performance of the door.
Each panel 12, 14 and 16, has a front and rear surface, For ease of description, these are described herein and depicted in FIG. 4 as surfaces 121, 122, 123, 124, 125 and 126. It will be appreciated by those skilled in the art that in use surface 121 faces the customer and surface 126 faces the interior space of the display case.
In a preferred embodiment, the opaque section 24 on the front and rear panes 12 and 14 (or dot matrix decorating, etc.) is placed on surfaces 122 and 125 to hide the components therein and the margin of the LCD panel, etc. However, this is not a limitation and the opaque section(s) can be placed on any desired surface.
It will be understood that the LCD panel may include a number of different layers or panes of glass/plexiglass or the like laminated to one another. Accordingly, as used herein, the LCD panel can be a single layer or multi-layer panel that includes an LCD screen for playing media. For example, the LCD screen may include a layer of glass adhered thereto to improve strength and reduce flex when the door is slammed. This can add strength to the LCD panel by essentially making it a double laminated panel. In a preferred embodiment, the LCD panel 16 has an aluminum rail therearound.
In a preferred embodiment, as shown in FIG. 3, unit 10 includes at least three different spacers 20 a, 20 band 20 c.Spacer 20 aspans the space between the front and rear panels 12 and 14, spacer 20 bspans the space between the front panel 12 and the LCD panel 16, and spacer 20 cspans the space between the rear panel 14 and the LCD panel 16, as is shown in FIG. 4. It will be understood that the spacers 20 a, 20 band 20 care adhered to a surface of the panel 12, 14 or 16. For example, spacer 20 ais adhered to the inner surfaces of front panel 12 and rear panel 14. In a preferred embodiment, the spacers 20 a, 20 band 20 care made of an elastomeric material. However, this is not a limitation on the present invention. The spacers can be made of other materials, such as a polymer, a metal such as aluminum, etc. The elastomeric material or spacers 20 band 20 csupports and suspends the LCD panel 16 inside the door and between the front and rear panels 12 and 14, thus helping prevent damage from shock and vibration when the door 100 closes. In another embodiment, the spacers 20 a, 20 band 20 ccan be formed as a unit, as shown in FIG. 8 and as shown in U.S. Pat. No. 6,148,563, the entirety of which is incorporated herein by reference. In this embodiment, the front and rear panels 12 and 14 are spaced from the center panel by spacers 20 band 20 c,but they are also connected by spacer 20 a.This essentially forms a single spacer with a detent in the middle for receiving the LCD panel 16.
When incorporating a single glass unit 10 with a transparent LCD panel 16, the door includes components 18 for operation of the LCD screen. As shown in FIGS. 2 and 4, in a preferred embodiment, the LCD panel 16 is smaller (length and width dimensions) than the outer panes 12 and 14. This provides space or a margin 25 around the perimeter of the LCD panel 16 for housing the components 18. For example, the unit 10 or door 100 can include circuit board(s) 26 (labeled A-D board in FIG. 2), wires or cables 28, a media player 30 (that includes a hard drive with memory and appropriate software) and associated connectors and such for providing media and/or power to the LCD panel 16. In another embodiment, the unit 10 can include one or more speakers 29, as shown in FIG. 7. In a preferred embodiment, components 18 are positioned within the margin 25 under the LCD panel 16. However, this is not a limitation on the present invention and the components 18 can be positioned as desired. See, for example, FIG. 7, where the components are positioned in the rail of the door, which is described more fully below.
It will be understood that the single glass unit 10 can be modified as necessary to fit within any type of door to be used in a refrigerated display case or the like. FIG. 5, shows the unit 10 within an exemplary door assembly 100. The door preferably includes a handle 104 to open or close and alternately seal or unseal the interior space of the display case. Typical display cases include numerous other structures for attaching the door(s) to the display case, as well as features for housing wiring, mullions, gaskets and other associated brackets and components that are typically included in refrigerated display cases. These features are well known in the art and will not be discussed in detail herein. An example of such components are discussed in U.S. Pat. Nos. 6,606,832, and 6,606,833 the disclosures of which are incorporated by reference herein in their entireties.
As discussed above, in a preferred embodiment, unit 10 includes a media player 30 for controlling and playing media on the LCD panel 16. Data can be provided to the media player 30 via wires or cables or wirelessly, e.g., Wi-Fi, 802.11:x, etc., as desired (with the appropriate transmitter and/or receiver). In a preferred embodiment, the media player 30 includes a solid-state drive to prevent a spinning hard drive from failing when the door is slammed. However, this is not a limitation on the present invention and a spinning hard drive or other type of drive can also be used. Wireless (or wired) communications with the media player 30 can be used to deliver desired content to be played on the LCD panel 16, e.g, advertising content, nutritional content, special offers, etc. For example, the invention can implement IP addressable communications so an advertiser can remotely feed new data over the Internet. Furthermore, this allows remote monitoring of the health of the hard drive of the media player and associated electronic components.
In a preferred embodiment, the case into which the door 100 is mounted is pre-wired with low-voltage DC power supply, e.g. 12V, 24V, UL Class 2, etc. so that it accepts a transparent LCD door 100 with power through the hinge pin 31, or wired cords near the rotating hinge pin. However, this is not a limitation on the present invention. For example, a high-voltage option can also be implemented. As shown in FIG. 5, insulated electrical conductors and/or wired communications (for the media player 30 and associated components) can be directed through the hinge pin 31 (e.g., via TCP/IP-type Internet communications).
One feature of a preferred embodiment of the invention is to provide an electrical hinge pin 31, similar to the "582 patent hinge pin, but replacing the AC conductors of the "582 patent with low-voltage DC conductors and a data cable. The elimination of the high voltage AC conductors makes more space available in the hinge pin 31 for both the low-voltage DC antisweat heat and powering the electronics, and a data cable, e.g. Cat 5 with TCP/IP type communications. The low voltage conductors (e.g., 24V DC) can be used to power all electronic components, such as the components 18 for the LCD panel 16, heated glass, anti-sweat perimeter heating, etc. In another embodiment, the electrical hinge pin can be omitted and a regular hinge pin can be used. For example, in an outside mount embodiment of the door, the electronic components can be powered by (and data communicated therewith) a cord that does not run through the hinge pin. This type of door may be used, for example, on a self serve case at the end of a check out aisle in a store.
In a preferred embodiment, (and preferably in low-temp applications), an insulating gas, such as argon, xenon or other insulating gas can be used to fill the inner and/or outer cavities 32 between the LCD panel 16 and the front and rear panes 12 and 14, as shown in FIG. 4 (and other voids or cavities within the unit 10). In a preferred embodiment, the gas-filled inner cavities 32 are hermetically sealed (see seal 33 in FIG. 4) to keep from contaminating the transparent LCD panel 16 with dust, residue or outgassing from the outer insulated cavity containing insulation and electronics.
The thickness of the unit 10 can be different for different applications. However, in an exemplary embodiment, the overall thickness of the unit 10 is preferably about 0.125″, with the front and rear panes 12 and 14 being about 0.125″ thick and the center LCD pane 16 being about 0.125″ thick. These dimensions are not a limitation on the present invention.
In a preferred embodiment, panes 12, 14 and 16 are preferably designed to maximize visible light transmission from inside the case to the customer, thereby improving the ability of customers to view display items. However, it is also desirable to minimize the transmission of non-visible light (i.e., ultraviolet and infrared light) through glass unit 10 from outside to inside the case in order to improve thermal performance and to protect items therein. Coolers are a type of refrigerated display case which operate at a temperature of approximately 38° F. Freezers are another type of refrigerated display case which operate below 0° F. When the glass unit 10 of such display cases comes into contact with ambient air, the relatively colder glass unit 10 can cause moisture in the air to condense on the surfaces of the glass unit. Thus, besides the use of the electro-conductive coating described above, it is desirable to use the non-visible wavelengths of light to heat the glass panels, thus reducing or preventing condensation. In a preferred embodiment, the panes 12, 14 and 16 can also include a UV inhibitor, which can help increase the shelf life of products inside. Also, panes 12, 14 and 16 may include low-emissivity heat-reflective coatings to improve overall thermal resistance and/or prevent external condensation. In an embodiment where reflection is an issue, an anti-reflective coating can be applied to any of the panes the glass unit 10.
In a preferred embodiment, touch screen technology 34, as shown in FIGS. 1 and 6, can be used. Exemplary touch screen technology is disclosed in U.S. Patent Publication Nos. 2009/0146945 and 2007/0216657, the entireties of which are incorporated by reference herein. In this embodiment, a user can touch the front of the outer panel 12 and access information as desired. In various embodiments, the entire outer panel 12 can incorporate touch screen technology or only various portions of the outer panel 12 can include touch screen technology. For example, the user can access nutritional information about the contents of the case or the user can access information about the layout of the store.
In a preferred embodiment, the unit 10 includes motion sensor technology, such as a visual recognition camera 36, as shown in FIG. 6. In this embodiment, the media player 30 only plays content on the LCD panel 16, when a person walks by or in front of the unit 10. In an exemplary embodiment, the unit 10 can include software that allows the camera 36, and/or the components thereof, to recognize if a man or a woman is standing in front of the door 100. Therefore, the advertisement or other media played on the LCD panel 16 can be tailored to the specific gender of the person standing in front of the door 100.
The single glass unit 10 can be used in other insulated glass assemblies for refrigerators/freezers. For example, the single glass unit 10 can be implemented in a sliding door for a multi-deck refrigerator, a fixed insulated glass “end” window for a multi-deck refrigerator, a fixed window for a walk-in cooler, an insulated service deli case window/door, an insulated single-deck, low-temp island case sliding lid, etc.
In another preferred embodiment, two or more smaller screens can be combined in a matrix to increase the visible display area. For example a 46″ 16:9 standard TV size in a 30″×67″ door leaves a large opaque margin top and bottom. Two smaller adjacent panels would leave more space for visible transmittance. Another way to increase the visible area is to cut down the long side of a larger 16:9 LCD panel such that it better fits the typical 67″ or 75″ vertical height but would otherwise exceed the standard 30″ width.
In another embodiment, a series of doors can be synchronized to display one images or related images on each of the doors, similar to a JumboTron that displays an image or images on a series of synched screens. In this embodiment, a central control unit that is in electrical communication (wired or wirelessly) with electrical components within each door can be used.
Furthermore, the LCD panel does not have to be the center panel. In other embodiments, the LCD panel can be the inside or outside panel. For example, a transparent LCD screen can be adhered or laminated to the outside panel or the inside panel of a triple pane refrigerator door. In another embodiment, the unit 10 can include more than three panels or panes. For example, the LCD panel 16 can be inserted between the first and second or second and third panels in a triple pane refrigerator door.
In a preferred embodiment, a separate pocket is created in the margin of the door outside the hermetic seal of the insulated glass, that would allow access to the media player and related electronic components 18 for service or upgrade. This can be implemented by using an “offset” insulated glass package/unit (e.g. pane number three is smaller than pane number one) to create the pocket to contain the media player or other electronics to allow service. However, the glass package/unit does not have to be offset. In another embodiment, as shown in FIG. 7, the pocket 38 is created or defined in the hollow area made by the rail 106. As shown, the rail 106 can include a cover 40 that is removably attached to the rail 106 by threaded fasteners or the like. The cover 40 can be removed to allow access to the pocket 38 and the electronic components 18 therein, thus allowing repair, upgrade, replacement, etc. In FIG. 7, the pocket 38, cover 40 and components 18 are shown in the top rail 106 of the door 100. However, the pocket 38, cover 40 and components 18 (such as speaker 29) can be mounted in any rail or portion of the frame. In another embodiment, the electronic components for running the LCD panel can be mounted in the display case or refrigerator.
In another preferred embodiment, the unit 10 includes a switchable film or glass 42 disposed or laminated on at least one of the surfaces of the front or rear panels 12 and/or 14, as shown in FIGS. 6 and 8. In a preferred embodiment, the film is disposed on surface five, which is the front surface of the rear panel 14. The panel with the switchable film 42 can be formed by laminating a liquid crystal switchable film thereon or the film can be directly mounted on the panel with a double sided tape, optical glue or the like. In use, a voltage is selectively applied to the film to make it either clear or opaque as desired. In a preferred embodiment, if a voltage is applied to the film, it goes clear and if no voltage is applied it is opaque or frosted. Therefore, in use, if no voltage is applied, images on the clear LCD panel look like a regular television, which helps accentuate the images on the transparent LCD panel and eliminate the distracting contrast of the product in the display case. Then when a voltage is applied, the film goes clear and the product in the case is easier to see. In another embodiment, the film 42 is disposed on the front or center panels. In another embodiment, the film 42 is disposed on another panel, such as a fourth panel. In another embodiment, the single glass unit includes only two panels, one of which is the LCD panel and the other includes the switchable film 42. This type of unit can be used in non-door applications, such as in department store windows, etc. where the window is desirable to be transparent at times and opaque at other times to better see the media on the LCD panel. As will be appreciated by those skilled in the art, appropriate wiring and the like can be associated with the film 42 to supply the voltage. In a preferred embodiment, switchable film 42 is backlit with the display case lighting.
In an embodiment, the door 100 can include a light guide plate (made of glass, plexiglass or the like) that helps illuminate (preferably via LED lighting) the images on the LCD panel. Other types of lighting for LCD panel are also within the scope of the invention.
In another embodiment of the invention, the glass unit may be a laminated glass unit without any space between the panes, as is shown in U.S. Patent Publication No. 2010/0043293, the entirety of which is incorporated herein by reference. Also, the display case may or may not be refrigerated.
A see-through display or transparent display is an electronic display that allows the user to see what is shown on the screen while still being able to see through it. The main applications of this type of display are in head-up displays, augmented reality systems, digital signage, and general large-scale spatial light modulation. They should be distinguished from image-combination systems which achieve visually similar effects by optically combining multiple images in the field of view. Transparent displays embed the active matrix of the display in the field of view, which generally allows them to be more compact than combination-based systems.
Broadly, there are two types of underlying transparent display technology, absorptive (chiefly LCDs) and emissive (chiefly electroluminescent, including LEDs and "high-field" emitters). Absorptive devices work by selectively reducing the intensity of the light passing through the display, while emissive devices selectively add to the light passing through the display. Some display systems combine both absorptive and emissive devices to overcome the limitations inherent to either one. Emissive display technologies achieve partial transparency either by interspersing invisibly small opaque emitter elements with transparent areas or by being partially transparent.
The development of practical transparent displays accelerated rapidly around the end of first decade of the 21st century. An early commercial transparent display was the Sony Ericsson Xperia Pureness released in 2009, although it did not succeed in the market due to the screen not being visible outside or in brightly lit rooms.
Samsung released their first transparent LCD in late 2011, and Planar published a report on a prototype electroluminescent transparent display in 2012.LCD technology. LG also uses OLED technology. Electroluminescent Displays enabled by Atomic layer deposition (ALD). This display technology was used by Valtra in 2017 to develop its SmartGlassSamsung and Planar Systems previously made transparent OLED displays but discontinued them in 2016.
There are two major see-through display technologies, LCD and LED. The LED technology is older and emitted a red color, OLED is newer than both using an organic substance. though OLED see-through displays are becoming more widely available. Both technologies are largely derivative from conventional display systems, but in see-through displays, the difference between the absorptive nature of the LCD and emissive nature of the OLED gives them very different visual appearances. LCD systems impose a pattern of shading and colours on the background seen through the display, while OLED systems impose a glowing image pattern on the background. TASEL displays are essentially transparent thin-film Electroluminescent Displays with transparent electrodes.
An LCD panel can be made "see-through" without applied voltage when a twisted nematic LCD is fitted with crossed polarizers. Conventional LCDs have relatively low transmission efficiency due to the use of polarizers so that they tend to appear somewhat dim against natural light. Unlike LED see-through displays, LCD see-throughs do not produce their own light but only modulate incoming light. LCDs intended specifically for see-through displays are usually designed to have improved transmission efficiency. Small scale see-through LCDs have been commercially available for some time, but only recently have vendors begun to offer units with sizes comparable to LCD televisions and displays. Samsung released a specifically see-through designed 22-inch panel in 2011. As of 2016, they were being produced by Samsung, LG, and MMT, with a number of vendors offering products based on OEM systems from these manufacturers. An alternative approach to commercializing this technology is to offer conventional back-lit display systems without the backlight system. LCD displays often also require removing a diffuser layer to adapt them for use as transparent displays.
The key limitation to see-through LCD efficiency is its linear polarizing filters. An ideal linear polarizer absorbs half of the incoming unpolarized light. In LCDs, light has to pass two linear polarizers, either in the crossed or parallel-aligned configuration.
LED screens to have two layers of glass on both sides of a set of addressable LEDs. Both inorganic and organic (OLED) LEDs have been used for this purpose. The more flexible (literally and figuratively) OLEDs have generated more interest for this application, though as of July 2016 the only commercial manufacturer Samsung announced that the product would be discontinued.LCDs in that OLEDs produce their own light, which produces a markedly different visual effect with a see-through display. The narrow gap between the pixels of the screen as well as the clear cathodes within allows the screens to be transparent. These types of the screen have been notoriously difficult and expensive to produce in the past, but are now becoming more common as the method of manufacturing them is advancing.
Unlike transparent LCDs and OLEDs that requires integrated electronic modules to process visual signals or emit their own light, a passive transparent display uses a projector as the external light source to project images and videos onto a transparent medium embedded with resonance nanoparticles that selectively scatter the projected light.
See-through screens are an emerging market that has several potential uses. Cell phones, tablets and other devices are starting to use this technology. It has an appealing appearance but more importantly it is also effective for augmented reality applications. The device can add its own twist to what is behind the screen. For example, if you look through a tablet with a see-through display at a street, the device could overlay the name of the street onto the screen. It could be similar to Google street view, except in real-time. For example, Google Translate has a feature that allows the user to point the camera at a sign or writing in another language and it automatically displays the same view, but with the writing in the language of your choosing. This could be possible with see-through displays as well.
A device using a transparent display will have much higher resolution and will display much more realistic augmented reality than video augmented reality, which takes video, adds its own supplement to it, and then displays that onto the screen.Microsoft HoloLens is an application of this idea.
These displays are also used in shop windows. The shopping windows show the product on the inside as well as show text or advertisements on the glass.
Antikainen, Mika; et al. (2012). "Transparent emissive thin-film electroluminescent display". SID Symposium Digest of Technical Papers. 31 (1): 885–887. doi:10.1889/1.1833096. S2CID 135606881.
Kiger, Patrick (2012-09-20). "Can a TV be transparent?". How Stuff Works. Archived from the original on October 31, 2012. Retrieved November 14, 2012.
"MIT Researchers Created a New Type of Transparent Screen Display". Boston Magazine. 2014-01-22. Archived from the original on 2019-12-13. Retrieved 2019-12-13.
Kiyokawa, K.; Kurata, Y.; Ohno, H. (August 29, 2017). "An optical see-through display for mutual occlusion of real and virtual environments". Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000). pp. 60–67. doi:10.1109/ISAR.2000.880924. ISBN 978-0-7695-0846-7. S2CID 9295821.
Antonimuthu, Rajamanickam (22 January 2014). "Transparent Displays for Car Windshields and Window Advertisements". Archived from the original on 26 June 2014. Retrieved 23 January 2014 – via YouTube.
The transparent interface Rælclear is a liquid crystal display realized by JDI"s advanced technology which can display contents without using the backlight. It is a monitor with 84% transmissivity, which is realized by combining it with a power supply, drive circuit and HDMI interface. The projected image can be viewed clearly from both sides (front and back).
Rælclear’s name was born from its unique two-way transparency: starting from the letter “c”, Rælclear reads as “clear” in both directions. With the world’s highest transparency and two-way viewability, Rælclear enables brand-new display applications.
There are transcription apps for smartphones and tablets that display words in text as an alternative means of communication, but because you look at the screen that displays the text, your gaze is turned away from the speaker’s face. Thus, until now, there was no way for deaf people and the hard of hearing to check the speaker’s facial expression while looking at the text.
Set the transparent interface Rælclear between you and the person facing you and activate the transcription system*3. When you speak to the person facing you, the voice input through the microphone to the PC or tablet is transcribed and displayed on the second monitor, Rælclear.
Since the display is highly transparent and you can view images from both front and back, you can read the transcribed content of the conversation while looking at the facial expression as you speak, improving the understanding of the listener. Furthermore, using a speech transcription system with translational capabilities*3, face-to-face communication between different languages is also possible.
Conventional liquid crystal displays require a backlight on the back of the LCD panel preventing users from seeing the speaker’s expression through the display.
Our transparent display monitor Rælclear adopts proprietary technology to successfully remove not only the backlight but also the polarizer, and has an extremely high transmissivity of 84%, providing glass-like transparency.
With our transparent display technology, pixels emit light in all directions. Thus, there is no viewing angle, which is a phenomenon peculiar to liquid crystal displays. This means that images can be clearly recognized from both front and back of the display, allowing the speaker to see what was said on the spot.
The transparent display monitor Rælclear has a very simple design consisting of only an HDMI interface and a power supply. Just plug in the AC adapter and connect Ralclear to your PC via HDMI and it will work as a second monitor, making it very easy-to-use product. In addition, it is light weighing only around 1.1kg, making it convenient to carry around.
Kenta Yamamoto, Ippei Suzuki, Akihisa Shitara, and Yoichi Ochiai. 2021. See-Through Captions: Real-Time Captioning on Transparent Display for Deaf and Hard-of-Hearing People.
We are manufacturer of digital signage,touch screen panel,transparent lcd display,transparent lcd box,open frame touch screen monitor.We have our own metal housing workshop.We can customized all types of digital signage as your drawing.With totally 150sqm workshop coverage in metal housing workshop.
We offer both potential and long-standing clients a complete supply solution, like we can do OEM-ODM service, OEM service included the Packing design, Brand/LOGO printing, Manual customize, ODM service included the PCBA motherboard amend, housing design or amend,Software customization etc.
There are many transparent lcd box, including stretched displays, media players, touch displays, LED-backlit display that support different audio and video formats. These transparent lcd box slickly display content in ultra-high and HD definitions and stand out as the most cost-effective and reliable digital signage players. Added with unique ultramodern features to deliver vibrant displays, these transparent lcd box are ideal for restaurants, offices, supermarkets, retail shops, and more.
If your advertisement requires larger displays and fuller presentations, we encourage you to check the available options for projection advertising equipment. It is designed to showcase your entertaining ads, and with its versatility, you can use it in a variety of settings. You can also find trade show advertisement equipment, including tabletop banners, backdrop decorations, and retractable banners. Hurry and browse through our vast selection to find the right transparent lcd box for your business.
When you need transparent lcd box products for your business or for bulk personal use, you"ll find a wide range of products available at Alibaba.com. Our motivated and ready global wholesalers sell all kinds of transparent l display box supplies for any need. these products are affordable, attractive, versatile, customizable and also good for the environment. You can find different weights of paper and card, a variety of colors and finishes, boxes with and without plastic inserts, folding and collapsing boxes and plenty more! Whether you need tiny decorative boxes or large attic storage boxes, head to Alibaba.com today for transparent lcs box supplies.
I saw a really cool video of a PC case called "Snowblind", that had a transparent LCD Screen as a side panel. I was amazed over how cool it was. The only problem was that it was really expensive. Therefore, I tried making my own! In this instructables I will go through how I made it, and how you could make your own. The best of all, since it was made from an old monitor that was thrown away, it was basically free! I just added some LED strips on the inside of the case to get better contrast on the screen. You could probably re-use the monitors backlight, but it"s safer and easier to just get some cheap LED strips.
First, remove the frame of the panel. It is fixed with clips, so just bend the frame a little and lift the frame up. Next, separate the front LCD from the backlight. For the next step, you will have to be careful. This step involves removing the anti glare film. It is glued to the panel, and therefore it"s easy to break the LCD when trying to remove it.
Then you are done modding the LCD! Now, you can hook it up to the panel and test it. Just be careful with the ribbon cables going from the LCD PCB to the panel.
The side panel of this case fits the LCD perfectly. Just line it up to the side facing the back, and to the top, and use some tape to tape it to the glass. Then, use some vinyl on the outside where the LCD is not covering the glass.
It"s really important to have lots of lights inside the case, to make it easier to see the LCD. Therefore, try to fill the case with even more LED strips.
You are now ready to assemble everything. In this case, the controller fit nicely in the hard drive compartment, so I glued it there and fed the ribbon cable through the hole in the inside of the case. That way it was pretty much hidden inside the case.
You can now power up the computer, open the screen settings and set it up for dual screens. You might have to flip the display 180 degrees too. When you have done that, open Wallpaper Engine and set a wallpaper of choice!
I have the same problem, I have read on google that the lcd could also be 3,3v (check if you have 3.3v lanes) so i will be trying to solder a sata cable to it because it comes with 3,3 and 5v connectors but the im not sure if save to use sata cables0
Hey I have a little question, I also have a Dell 1905FP, but I think it"s an older model because I don"t have a ribbon cable but a normal cable with a plug. My problem is that I have peeled off one film but it still looks like there is a second film on the back because it is still a little blurry. But I"m afraid that if I try to pull them off, my LCD display will break. Maybe you have an idea. Thanks in advance
Stunning result ! Bought for 10€ a Dell 1907FPc which is fairly similar to yours. I have trouble identifying the pin layout to find the 5V pin. Did you plug in the power supply to your AC while checking with your multimetter ?0
Really neat. I saw the same snowblind case and wanted it but too expensive. I also saw someone who made their own using a USB monitor. But I like your setup better.2
Terrific job! May I ask why you would need to remove the front polarizer? If my understanding is correct, both the front and back polarizers are needed in order for the LCD to work properly (i.e., the light gets polarized by the back polarizer first, and then passes through the front polarizer)? You comments will be appreciated!
Hey, great work on this project. I wanted to buy the snowbind case but couldn"t justify the cost. I have the same case and I ended up picking up the same monitor that you used in your project.
Is it possible that you post or send me photos of the inside of the case when you have this installed? I"m just a bit confused on how you wired up everything?
I tried taking some photos, but I have covered the screen PCB with a cover, so it was hard to see in the photos. I basically just laid it inside the case with a 90-degree angle. I tried drawing it here: (view from the front)0
I think you should have more pics and info about the re- mounting the LCD. After all if you don"t do it right all that work is for nothing. While I understand your wiring diagram, I think that it should be explained and a larger part of this Instructible...for example to get white lite your are powering all 3 lanes (red,green,blue) on the RGB tape.
Hello, Wonderfull project, I have the same case and I would love to do it (if I have time and the screen to the right size). Just a question, can you put a photo of the cable connection to see if it"s easy to open the case ? One little suggestion, instead of connecting the panel to the graphic card (which mean to run a cable outside, why don"t you use a USB to VGA or DVI converter (like this https://www.amazon.fr/Adaptateur-convertisseur-adaptateur-Affichage-multi-écrans/dp/B079L81FRD/ref=asc_df_B079L81FRD/?tag=googshopfr-21&linkCode=df0&hvadid=227894524041&hvpos=&hvnetw=g&hvrand=17927658121409960098&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9055710&hvtargid=pla-442905712462&psc=1) ?More CommentsPost Comment