arduino tft lcd 240x320 sd display bmp pricelist
I"m working on a project which uses a Elegoo 2.8" 240x320 TFT LCD display hardwired (breakout) to a Mega2560 Pro (mini) board. Everything works as expected, but the bmp image display draws extremely slowly on the screen, taking about 21 seconds to reveal, every time. My project displays several lines of text over top of the image, and also drives a 24 LED NeoPixel ring, which all work perfectly. I load the BMP upon power up as a background image one time, which takes 21 seconds, then everything works with very good speed thereafter. I"ve stripped my code down to only include the necessary lines to load and display the BMP. It"s pretty much the example code which came with the screen. Are there any obvious errors or changes I can make to improve the drawing speed of the image? Here is my code:
open command prompt, the write the following (you should copy your input/output file address then copy and paste it to yourinputfile.jpg/youroutputfile.bmp:
In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.
The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.
This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.
The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.
In which “Hello, World!” is the text you want to display and the (x, y) coordinate is the location where you want to start display text on the screen.
The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:
Note: some people find issues with this display when trying to read from the SD card. We don’t know why that happens. In fact, we tested a couple of times and it worked well, and then, when we were about to record to show you the final result, the display didn’t recognized the SD card anymore – we’re not sure if it’s a problem with the SD card holder that doesn’t establish a proper connection with the SD card. However, we are sure these instructions work, because we’ve tested them.
In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work you can check my particular tutorial. Here you can download that file:
I"ve been looking for a product for my 8-bit cpu project and I liked the look of this screen. I was impressed that the claims on the Amazon page says it works with an Arduino mega 2560, so I bought a screen and an Alegoo mega 2560. My project depends the ability to read sn SD card. I currently have an external reader, which may or may not work. However with this TFT screen great I would have a screen and an SD card reader all in one!
The product arrived very after one day. When I opened the screen display, I found the display, a DVD and a touch screen pen. I read the contents of the DVD looking for a manual. There"s a German and English user guide. Looking through I was encouraged to see the mega 2560 being used to control the screen.
Example05-ShowBMP and SDCard Exten Example can not work on MEGA2560, because SPI IO of MEGA2560 is different from that of UNO. So example need to read the SD card can not work on MEGA 2560. The result of the examples are the same as that on UNO."
So to get the screen working I bought a genuine Uno (wasn"t going to buy an Elegoo clone. Was annoyed with them at this time). The Uno arrived and yes the SD card works. The product works well with an Arduino Uno, but not a Mega 2560.
I have looked over the Amazon web page a few times and I don"t see any indication the SD card part of the screen will work with an Arduino Mega 2560. Another annoyance now is that the screen is dedicated to using the Uno. The Uno has only 1 or 2 IO pins remaining to connect to external devices,but the screen covers them over.
The software was disappointing. Quality control of the hardware drivers is lacking. The examples work, but there are compiler warnings from the hardware drivers. I looked on github for updates, but last updatesd 2018.
For me to give this product five starts, Elegoo need to provide a shield that fits between the Mega2560 board and screen and allows the SD and screen to work. Access to the 53 IO ports is required.
Anyway now I commented that line, beacuse I am not interested in speed right now. But now the problem seems to be the programation code. the error message is as follows: ( I am using Arduino 1.8.7)
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:101:37: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:106:42: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:118:39: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:121:42: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:151:40: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:163:39: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:176:37: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:183:38: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:188:38: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:193:38: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:198:38: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:205:39: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:210:39: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:215:39: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:220:39: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino: In function "void drawBMP(char*, int, int, boolean)":
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:267:40: warning: converting to non-pointer type "int" from NULL [-Wconversion-null]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino: In function "void drawRAW(char*, int16_t, int16_t, int16_t, int16_t)":
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:377:40: warning: converting to non-pointer type "int" from NULL [-Wconversion-null]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2/ILI9341_draw_bitmap_v2.ino:355: undefined reference to `FatFile::close()"
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2/ILI9341_draw_bitmap_v2.ino:338: undefined reference to `FatFile::read(void*, unsigned int)"
The Shield TFT is usually supplied with an SD card module to store data or images. Touchscreen LCDs to display images and create graphical user interfaces. In this tutorial, we use the Kuman TFT 2.8″ shield (very similar to the 3.5″ shield) and we will see how to interface with the microSD card.
The shield is placed directly on an Arduino UNO or Mega board. The shield uses almost all the pins of the Arduino UNO. Make sure you don’t use the same ones for other modules. The SD card module of the TFT shield uses the SPI bus and selector pin 10.
The main interest of the MicroSD module on the TFT shield is to be able to store images in order to display them on the screen. If you don’t have a bitmap image at hand, you can download the one we use in this example.
We will create a button for each file and with the help of the previous function we will display the images contained in the SD card when we press the corresponding button.
Once the code is uploaded, a menu will appear with a button for each file contained on the SD card. If you press a button, the corresponding bitmap image will be displayed on the screen. If you press the screen again you will return to the main menu.
open command prompt, the write the following (you should copy your input/output file address then copy and paste it to yourinputfile.jpg/youroutputfile.bmp:
Displaying a custom image or graphic on a LCD display is a very useful task as displays are now a premium way of providing feedback to users on any project. With this functionality, we can build projects that display our own logo, or display images that help users better understand a particular task the project is performing, providing an all-round improved User Experience (UX) for your Arduino or ESP8266 based project. Today’s tutorial will focus on how you can display graphics on most Arduino compatible displays.
The procedure described in this tutorial works with all color displays supported by Adafruit’s GFX library and also works for displays supported by the TFTLCD library from Adafruit with little modification. Some of the displays on which this procedure works include:
While these are the displays we have, and on which this tutorial was tested, we are confident it will work perfectly fine with most of the other Arduino compatible displays.
For each of the displays mentioned above, we have covered in past how to program and connect them to Arduino. You should check those tutorials, as they will give you the necessary background knowledge on how each of these displays works.
For this tutorial, we will use the 2.8″ ILI9325 TFT Display which offers a resolution of 320 x 340 pixels and we will display a bitmap image of a car.
As usual, each of the components listed above can be bought from the links attached to them. While having all of the displays listed above may be useful, you can use just one of them for this tutorial.
To demonstrate how things work, we will use the 2.8″ TFT Display. The 2.8″ TFT display comes as a shield which plugs directly into the Arduino UNO as shown in the image below.
Not all Arduino displays are available as shields, so when working with any of them, connect the display as you would when displaying text (we recommend following the detailed tutorial for the display type you use of the above list). This means no special connection is required to display graphics.
Before an image is displayed on any of the Arduino screens, it needs to be converted to a C compatible hex file and that can only happen when the image is in bitmap form. Thus, our first task is to create a bitmap version of the graphics to be displayed or convert the existing image to a bitmap file. There are several tools that can be used for creation/conversion of bitmap images including, Corel Draw and Paint.net, but for this tutorial, we will use the Paint.net.
The resolution of the graphics created should be smaller than the resolution of your display to ensure the graphics fit properly on the display. For this example, the resolution of the display is 320 x 340, thus the resolution of the graphics was set to195 x 146 pixels.
Your graphics could also include some text. Just ensure the background is black and the fill color is white if you plan to change the color within your Arduino code.
With the graphics done, save both files as .bmp with 24bits color.It is important to keep in mind that large bitmaps use up a lot of memory and may prevent your code from running properly so always keep the bitmaps as small as possible.
Image2Code is an easy-to-use, small Java utility to convert images into a byte array that can be used as a bitmap on displays that are compatible with the Adafruit-GFX or Adafruit TFTLCD (with little modification) library.
Paste the bit array in the graphics.c file and save. Since we have two graphics (the car and the text), You can paste their data array in the same file. check the graphics.c file attached to the zip file, under the download section to understand how to do this. Don’t forget to declare the data type as “const unsigned char“, add PROGEM in front of it and include the avr/pgmspace.h header file as shown in the image below. This instructs the code to store the graphics data in the program memory of the Arduino.
With this done, we are now ready to write the code. Do note that this procedure is the same for all kind of displays and all kind of graphics. Convert the graphics to a bitmap file and use the Img2code utility to convert it into a hex file which can then be used in your Arduino code.
To reduce the amount of code, and stress involved in displaying the graphics, we will use two wonderful libraries; The GFX library and the TFTLCD library from Adafruit.
The GFX library, among several other useful functions, has a function called drawBitmap(), which enables the display of a monochrome bitmap image on the display. This function allows the upload of monochrome only (single color) graphics, but this can be overcome by changing the color of the bitmap using some code.
The Adafruit libraries do not support all of the displays but there are several modifications of the libraries on the internet for more displays. If you are unable to find a modified version of the library suitable for your the display, all you need do is copy the code of the drawBitmap() function from the GFX library and paste it in the Arduino sketch for your project such that it becomes a user-defined function.
The first two are thex and y coordinates of a point on the screen where we want the image to be displayed. The next argument is the array in which the bitmap is loaded in our code, in this case, it will be the name of the car and the text array located in the graphics.c file. The next two arguments are the width and height of the bitmap in pixels, in other words, the resolution of the image. The last argument is the color of the bitmap, we can use any color we like. The bitmap data must be located in program memory since Arduino has a limited amount of RAM memory available.
As usual, we start writing the sketch by including the libraries required. For this procedure, we will use the TFTLCD library alone, since we are assuming you are using a display that is not supported by the GFX library.
Next, we specify the name of the graphics to be displayed; car and title. At this stage, you should have added the bit array for these two bitmaps in the graphics.c file and the file should be placed in the same folder as the Arduino sketch.
With that done, we proceed to the void loop function, under the loop function, we call the drawbitmap() function to display the car and the text bitmap using different colors.
The last section of the code is the drawBitmap function itself, as earlier mentioned, to use the drawbitmap() function with the Adafruit TFTLCD library, we need to copy the function’s code and paste into the Arduino sketch.
Plug in your screen as shown above. If you are using any other display, connect it as shown in the corresponding linked tutorial. With the schematics in place, connect the Arduino board to your PC and upload the code. Don’t forget the graphics file needs to be in the same folder as the Arduino sketch.
That’s it for this tutorial guys. The procedure is the same for all kinds of Arduino compatible displays. If you get stuck while trying to replicate this using any other display, feel free to reach out to me via the comment sections below.