tft lcd vs ips lcd brands

If you want to buy a new monitor, you might wonder what kind of display technologies I should choose. In today’s market, there are two main types of computer monitors: TFT LCD monitors & IPS monitors.

The word TFT means Thin Film Transistor. It is the technology that is used in LCD displays.  We have additional resources if you would like to learn more about what is a TFT Display. This type of LCDs is also categorically referred to as an active-matrix LCD.

These LCDs can hold back some pixels while using other pixels so the LCD screen will be using a very minimum amount of energy to function (to modify the liquid crystal molecules between two electrodes). TFT LCDs have capacitors and transistors. These two elements play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy while still generating vibrant, consistent images.

Industry nomenclature: TFT LCD panels or TFT screens can also be referred to as TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology.

IPS (in-plane-switching) technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but has more enhanced features and more widespread usability.

These LCD screens offer vibrant color, high contrast, and clear images at wide viewing angles. At a premium price. This technology is often used in high definition screens such as in gaming or entertainment.

Both TFT display and IPS display are active-matrix displays, neither can’t emit light on their own like OLED displays and have to be used with a back-light of white bright light to generate the picture. Newer panels utilize LED backlight (light-emitting diodes) to generate their light hence utilizing less power and requiring less depth by design. Neither TFT display nor IPS display can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to produce the color consumers see. If you use a magnifier to inspect your monitor, you will see RGB color in each pixel. With an on/off switch and different level of brightness RGB, we can get many colors.

Winner. IPS TFT screens have around 0.3 milliseconds response time while TN TFT screens responds around 10 milliseconds which makes the latter unsuitable for gaming

Winner. the images that IPS displays create are much more pristine and original than that of the TFT screen. IPS displays do this by making the pixels function in a parallel way. Because of such placing, the pixels can reflect light in a better way, and because of that, you get a better image within the display.

As the display screen made with IPS technology is mostly wide-set, it ensures that the aspect ratio of the screen would be wider. This ensures better visibility and a more realistic viewing experience with a stable effect.

Winner. While the TFT LCD has around 15% more power consumption vs IPS LCD, IPS has a lower transmittance which forces IPS displays to consume more power via backlights. TFT LCD helps battery life.

Normally, high-end products, such as Apple Mac computer monitors and Samsung mobile phones, generally use IPS panels. Some high-end TV and mobile phones even use AMOLED (Active Matrix Organic Light Emitting Diodes) displays. This cutting edge technology provides even better color reproduction, clear image quality, better color gamut, less power consumption when compared to LCD technology.

This kind of touch technology was first introduced by Steve Jobs in the first-generation iPhone. Of course, a TFT LCD display can always meet the basic needs at the most efficient price. An IPS display can make your monitor standing out.

tft lcd vs ips lcd brands

IPS (In-Plane Switching) lcd is still a type of TFT LCD, IPS TFT is also called SFT LCD (supper fine tft ),different to regular tft in TN (Twisted Nematic) mode, theIPS LCD liquid crystal elements inside the tft lcd cell, they are arrayed in plane inside the lcd cell when power off, so the light can not transmit it via theIPS lcdwhen power off, When power on, the liquid crystal elements inside the IPS tft would switch in a small angle, then the light would go through the IPS lcd display, then the display on since light go through the IPS display, the switching angle is related to the input power, the switch angle is related to the input power value of IPS LCD, the more switch angle, the more light would transmit the IPS LCD, we call it negative display mode.

The regular tft lcd, it is a-si TN (Twisted Nematic) tft lcd, its liquid crystal elements are arrayed in vertical type, the light could transmit the regularTFT LCDwhen power off. When power on, the liquid crystal twist in some angle, then it block the light transmit the tft lcd, then make the display elements display on by this way, the liquid crystal twist angle is also related to the input power, the more twist angle, the more light would be blocked by the tft lcd, it is tft lcd working mode.

A TFT lcd display is vivid and colorful than a common monochrome lcd display. TFT refreshes more quickly response than a monochrome LCD display and shows motion more smoothly. TFT displays use more electricity in driving than monochrome LCD screens, so they not only cost more in the first place, but they are also more expensive to drive tft lcd screen.The two most common types of TFT LCDs are IPS and TN displays.

tft lcd vs ips lcd brands

Before you get a new monition for your organization, comparing the TFT display vs IPS display is something that you should do. You would want to buy the monitor which is the most advanced in technology. Therefore, understanding which technology is good for your organization is a must. click to view the 7 Best Types Of Display Screens Technology.

Technology is changing and becoming advanced day by day. Therefore, when you are looking to get a new monitor for your organization, LCD advantages, and disadvantage,  you have to be aware of the pros and cons of that monitor. Moreover, you need to understand the type of monitor you are looking to buy.

That is why it is important to break it down and discuss point by point so that you can understand it in a layman’s language devoid of any technical jargon. Therefore, in this very article, let’s discuss what exactly TFT LCDs and IPS LCDs are, and what are their differences? You will also find out about their pros and cons for your organization.

The word TFT means Thin-Film-Translator. Click to view: what is TFT LCD,  It is the technology that is used in LCD or Liquid Crystal Display. Here you should know that this type of LCD is also categorically referred to as active-matrix LCDs. It tells that these LCDs can hold back some pixels while using other pixels. So, the LCD will be using a very minimum amount of energy to function. TFT LCDs have capacitors and transistors. These are the two elements that play a key part in ensuring that the display monitor functions by using a very small amount of energy without running out of operation.

Now, it is time to take a look at its features that are tailored to improve the experience of the monitor users significantly. Here are some of the features of the TFT monitor;

No radiation, no scintillation, no harm to the user’s health. In particular, the emergence of TFT LCD electronic books and periodicals will bring humans into the era of a paperless office and paperless printing, triggering a revolution in the civilized way of human learning, dissemination, and recording.

It can be normally used in the temperature range from -20℃ to +50℃, and the temperature-hardened TFT LCD can operate at low temperatures up to -80 ℃. It can not only be used as a mobile terminal display, or desktop terminal display but also can be used as a large screen projection TV, which is a full-size video display terminal with excellent performance.

The manufacturing technology has a high degree of automation and good characteristics of large-scale industrial production. TFT LCD industry technology is mature, a mass production rate of more than 90%.

TFT LCD screen from the beginning of the use of flat glass plate, its display effect is flat right angles, let a person have a refreshing feeling. And LCDs are easier to achieve high resolution on small screens.

The word IPS refers to In-Plane-Switching which is a technology used to improve the viewing experience of the usual TFT displays. You can say that the IPS display is a more advanced version of the traditional TFT LCD module. However, the features of IPS displays are much more advanced and their applications are very much widespread. You should also know that the basic structure of the IPS LCD is the same as TFT LCD if you compare TFT LCD vs IPS.

As you already know, TFT displays do have a very quick response time which is a plus point for it. But, that does not mean IPS displays a lack of response time. In fact, the response time of an IPS LCD is much more consistent, stable, and quick than the TFT display that everyone used to use in the past. However, you will not be able to gauge the difference apparently by watching TFT and IPS displays separately. But, once you watch the screen side-by-side, the difference will become quite clear to you.

The main drawback of the TFT displays as figured above is the narrow-angle viewing experience. The monitor you buy for your organization should give you an experience of wide-angle viewing. It is very much true if you have to use the screen by staying in motion.

So, as IPS displays are an improved version of TFT displays the viewing angle of IPS LCDs is very much wide. It is a plus point in favor of IPS LCDs when you compare TFT vs IPS. With a TFT screen, you cannot watch an image from various angles without encountering halo effects, blurriness, or grayscale that will cause problems for your viewing.

It is one of the major and remarkable differences between IPS and TFT displays. So, if you don’t want to comprise on the viewing angles and want to have the best experience of viewing the screen from wide angles, the IPS display is what you want. The main reason for such a versatile and wonderful viewing angle of IPS display is the screen configuration which is widely set.

Now, when you want to achieve wide-angle viewing with your display screen, you need to make sure it has a faster level of frequency transmittance. It is where IPS displays overtake TFT displays easily in the comparison because the IPS displays have a much faster and speedier transmittance of frequencies than the TFT displays.

Now the transmittance difference between TFT displays and IPS displays would be around 1ms vs. 25ms. Now, you might think that the difference in milliseconds should not create much of a difference as far as the viewing experience is concerned. Yes, this difference cannot be gauged with a naked eye and you will find it difficult to decipher the difference.

However, when you view and an IPS display from a side-by-side angle and a TFT display from a similar angle, the difference will be quite evident in front of you. That is why those who want to avoid lagging in the screen during information sharing at a high speed; generally go for IPS displays. So, if you are someone who is looking to perform advanced applications on the monitor and want to have a wider viewing angle, then an IPS display is the perfect choice for you.

As you know, the basic structure of the IPS display and TFT displays are the same. So, it is quite obvious that an IPS display would use the same basic colors to create various shades with the pixels. However, there is a big difference with the way a TFT display would produce the colors and shade to an IPS display.

The major difference is in the way pixels get placed and the way they operate with electrodes. If you take the perspective of the TFT display, its pixels function perpendicularly once the pixels get activated with the help of the electrodes. It does help in creating sharp images.

But the images that IPS displays create are much more pristine and original than that of the TFT screen. IPS displays do this by making the pixels function in a parallel way. Because of such placing, the pixels can reflect light in a better way, and because of that, you get a better image within the display.

As the display screen made with IPS technology is mostly wide-set, it ensures that the aspect ratio of the screen would be wider. This ensures better visibility and a more realistic viewing experience with a stable effect.

As you already know the features of both TFT and IPS displays, it would be easier for you to understand the difference between the two screen-types. Now, let’s divide the matters into three sections and try to understand the basic differences so that you understand the two technologies in a compressive way. So, here are the difference between an IPS display and a TFT display;

Now, before starting the comparison, it is quite fair to say that both IPS and TFT displays have a wonderful and clear color display. You just cannot say that any of these two displays lag significantly when it comes to color clarity.

However, when it comes to choosing the better display on the parameter of clarity of color, then it has to be the IPS display. The reason why IPS displays tend to have better clarity of color than TFT displays is a better crystal oriental arrangement which is an important part.

That is why when you compare the IPS LCD with TFT LCD for the clarity of color, IPS LCD will get the nod because of the better and advanced technology and structure.

IPS displays have a wider aspect ratio because of the wide-set configuration. That is why it will give you a better wide-angle view when it comes to comparison between IPS and TFT displays. After a certain angle, with a TFT display, the colors will start to get a bit distorted.

But, this distortion of color is very much limited in an IPS display and you may see it very seldom after a much wider angle than the TFT displays. That is why for wide-angle viewing, TFT displays will be more preferable.

When you are comparing TFT LCD vs. IPS, energy consumption also becomes an important part of that comparison. Now, IPS technology is a much advanced technology than TFT technology. So, it is quite obvious that IPS takes a bit more energy to function than TFT.

Also, when you are using an IPS monitor, the screen will be much larger. So, as there is a need for much more energy for the IPS display to function, the battery of the device will drain faster. Furthermore, IPS panels cost way more than TFT display panels.

1. The best thing about TFT technology is it uses much less energy to function when it is used from a bigger screen. It ensures that the cost of electricity is reduced which is a wonderful plus point.

2. When it comes to visibility, the TFT technology enhances your experience wonderfully. It creates sharp images that will have no problems for older and tired eyes.

1. One of the major problems of TFT technology is that it fails to create a wider angle of view. As a result, after a certain angle, the images in a TFT screen will distort marring the overall experience of the user.

Although IPS screen technology is very good, it is still a technology based on TFT, the essence of the TFT screen. Whatever the strength of the IPS, it is a TFT-based derivative.

Finally, as you now have a proper understanding of the TFT displays vs IPS displays, it is now easier for you when it comes to choose one for your organization. Technology is advancing at a rapid pace. You should not be surprised if you see more advanced display screens in the near future. However, so far, TFT vs IPS are the two technologies that are marching ahead when it comes to making display screens.

STONE provides a full range of 3.5 inches to 15.1 inches of small and medium-size standard quasi TFT LCD module, LCD display, TFT display module, display industry, industrial LCD screen, under the sunlight visually highlight TFT LCD display, industrial custom TFT screen, TFT LCD screen-wide temperature, industrial TFT LCD screen, touch screen industry. The LCD module is very suitable for industrial control equipment, medical instruments, POS system, electronic consumer products, vehicles, and other products.

tft lcd vs ips lcd brands

As you might already be aware, there’s a large variety of versatile digital display types on the market, all of which are specifically designed to perform certain functions and are suitable for numerous commercial, industrial, and personal uses. The type of digital display you choose for your company or organization depends largely on the requirements of your industry, customer-base, employees, and business practices. Unfortunately, if you happen to be technologically challenged and don’t know much about digital displays and monitors, it can be difficult to determine which features and functions would work best within your professional environment. If you have trouble deciphering the pros and cons of using TFT vs. IPS displays, here’s a little guide to help make your decision easier.

TFT stands for thin-film-transistor, which is a variant of liquid crystal display (LCD). TFTs are categorized as active matrix LCDs, which means that they can simultaneously retain certain pixels on a screen while also addressing other pixels using minimal amounts of energy. This is because TFTs consist of transistors and capacitors that respectively work to conserve as much energy as possible while still remaining in operation and rendering optimal results. TFT display technologies offer the following features, some of which are engineered to enhance overall user experience.

The bright LED backlights that are featured in TFT displays are most often used for mobile screens. These backlights offer a great deal of adaptability and can be adjusted according to the visual preferences of the user. In some cases, certain mobile devices can be set up to automatically adjust the brightness level of the screen depending on the natural or artificial lighting in any given location. This is a very handy feature for people who have difficulty learning how to adjust the settings on a device or monitor and makes for easier sunlight readability.

One of the major drawbacks of using a TFT LCD instead of an IPS is that the former doesn’t offer the same level of visibility as the latter. To get the full effect of the graphics on a TFT screen, you have to be seated right in front of the screen at all times. If you’re just using the monitor for regular web browsing, for office work, to read and answer emails, or for other everyday uses, then a TFT display will suit your needs just fine. But, if you’re using it to conduct business that requires the highest level of colour and graphic accuracy, such as completing military or naval tasks, then your best bet is to opt for an IPS screen instead.

Nonetheless, most TFT displays are still fully capable of delivering reasonably sharp images that are ideal for everyday purposes and they also have relatively short response times from your keyboard or mouse to your screen. This is because the pixel aspect ration is much narrower than its IPS counterpart and therefore, the colours aren’t as widely spread out and are formatted to fit onto the screen. Primary colours—red, yellow, and blue—are used as the basis for creating brightness and different shades, which is why there’s such a strong contrast between different aspects of every image. Computer monitors, modern-day HD TV screens, laptop monitors, mobile devices, and even tablets all utilize this technology.

IPS (in-plane-switching) technology is almost like an improvement on the traditional TFT display module in the sense that it has the same basic structure, but with slightly more enhanced features and more widespread usability. IPS LCD monitors consist of the following high-end features.

IPS screens have the capability to recognize movements and commands much faster than the traditional TFT LCD displays and as a result, their response times are infinitely faster. Of course, the human eye doesn’t notice the difference on separate occasions, but when witnessing side-by-side demonstrations, the difference is clear.

Wide-set screen configurations allow for much wider and versatile viewing angles as well. This is probably one of the most notable and bankable differences between TFT and IPS displays. With IPS displays, you can view the same image from a large variety of different angles without causing grayscale, blurriness, halo effects, or obstructing your user experience in any way. This makes IPS the perfect display option for people who rely on true-to-form and sharp colour and image contrasts in their work or daily lives.

IPS displays are designed to have higher transmittance frequencies than their TFT counterparts within a shorter period of time (precisely 1 millisecond vs. 25 milliseconds). This speed increase might seem minute or indecipherable to the naked eye, but it actually makes a huge difference in side-by-side demonstrations and observations, especially if your work depends largely on high-speed information sharing with minimal or no lagging.

Just like TFT displays, IPS displays also use primary colours to produce different shades through their pixels. The main difference in this regard is the placement of the pixels and how they interact with electrodes. In TFT displays, the pixels run perpendicular to one another when they’re activated by electrodes, which creates a pretty sharp image, but not quite as pristine or crisp as what IPS displays can achieve. IPS display technologies employ a different configuration in the sense that pixels are placed parallel to one another to reflect more light and result in a sharper, clearer, brighter, and more vibrant image. The wide-set screen also establishes a wider aspect ratio, which strengthens visibility and creates a more realistic and lasting effect.

When it comes to deciphering the differences between TFT vs. IPS display technologies and deciding which option is best for you and your business, the experts at Nauticomp Inc. can help. Not only do we offer a wide variety of computer displays, monitors, and screen types, but we also have the many years of experience in the technology industry to back up our recommendations and our knowledge. Our top-of-the-line displays and monitors are customized to suit the professional and personal needs of our clients who work across a vast array of industries. For more information on our high-end displays and monitors, please contact us.

tft lcd vs ips lcd brands

The word TFT means Thin Film Transistor. It is the technology that is used in LCD or Liquid Crystal Display. It is also called Active Matrix LCD which differentializes from Passive Matrix LCD. A TFT substrate is composed of a matrix of pixels and ITO electrode (Indium Tin Oxide, a transparent electric conducting film) each with a TFT device and is so called array. Thousands or millions of these pixels together create an image on the display. The diagram below shows the simple structure of a pixel.

As long as there are TFT in the LCD, the LCD should be called a TFT LCD. But when the TFT LCD display was first commercialized, 100% TFT LCDs were TN (twisted Nematic) type TFT displays. As TN is a very technical term so most of the users ignored TN and named TN type TFT display as TFT display. While the newly developed TFT LCD display technologies such as IPS (in-plane-switching ) type TFT display, O-Film type TFT display (derived from TN type TFT display), MVA( Multi-domain Vertical Alignment) type TFT display, AFFS (Advanced Fringe Field Switching) type TFT display, they are widely call IPS display, O-Film display, MVA display and AFFS display. As the above terms have been used for long and widely accepted in the market, we will not try to correct the misunderstanding here. We will still use the TFT display (should be TN type TFT display) and IPS display (should be IPS type TFT display) in the following.

The twisted nematic effect (TN-LCD) was a main technology breakthrough that made LCDs practical. TN LCDs first make battery powered devices popular. TN-LCD displays led to the rapid expansion in the display field, quickly replacing other displays like LEDs, plasma, CRTs etc. By the 1990s, TN LCDs were widely used in portable electronics.

The TN display takes advantage of the ability of the nematic substance to rotate the polarization of light beams passing through it. Two polarizing filters, parallel planes of glass with their polarizing lines oriented at right angles with respect to each other, are positioned on either side of the liquid crystal. When light enters the display, it is polarized by the input filter. In the absence of an electric field, all the incoming light is transmitted. This is because the light polarization is rotated 90 degrees by the nematic liquid crystal, and the light therefore passes easily through the output filter, which is oriented to match the 90-degree shift. With the application of a voltage, an electric field is produced in the nematic liquid crystal. Under these conditions the polarization effect is reduced. If the voltage is large enough, the polarization effect disappears altogether, and the light is blocked by the output polarizing filter. The diagram below shows how a TN LCD works.

The best feature of TFT displays is the low cost due to a simpler manufacturing process, low-cost raw materials, and one of the oldest technologies for LCD displays. But they are not the best quality considering poor viewing angles, lower contrast ratio, slower response time, lower aperture ratio (each pixel not bright enough), and the worst is that there is one view angle with gray scale inversion (reversed image), see the below picture for reference.

IPS (in-plane-switching) technology is also one type of TFT LCD display. The basic LCD structure is similar to TN type TFT display but the inside display schematic is different.

In 1992, Hitachi researchers in Japan first developed details of the IPS technology. NEC and Hitachi became early manufacturers of active-matrix addressed LCDs based on the IPS technology. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and in-plane switching subsequently remained the dominant LCD designs through 2006. IPS technology is widely used in LCD panels for TVs, laptops, monitors, and smartphones. Apple Inc. products branded with the label Retina Display (such as iPhone 4 onward, iPad 3 on, iPad Mini 2 on, MacBook Pro with Retina display adopted IPS LCDs with LED backlighting.

An IPS LCD panel, when no electric field is applied to the liquid crystal cells, the cells naturally align in liquid crystal cells in a horizontal direction between two glass substrates which blocks the transmission of light from the backlight. This makes the display dark and results in a black display screen. When an electric field is applied, the liquid crystal cells are able to rotate through 90° allowing light to pass through resulting in a white display screen. IPS panels have superior image quality, good contrast ratio and wide viewing angles of up to 170°. IPS panels are well suited for graphics design and other applications which require accurate and consistent color reproduction.

In summary, normally high-end products such as Apple Mac computer monitors and Samsung mobile phones generally use IPS panels. Some high-end TV and mobile phones even use AMOLED (Active Matrix Organic Light Emitting Diodes) displays. This cutting-edge technology provides even better color reproduction, clear image quality, better color gamut, less power consumption when compared to LCD technology. Of course, a TFT LCD display can always meet the basic needs at the most efficient price.

This article is an original piece of content written by Bill Cheung, a marketing manager who has an engineering and technical support background at Orient Display. We are a LCD and display technology provider with over two decades of industry experience in delivering cutting edge display solutions. Please browse our knowledge base if you would like to learn more about LCDs!

tft lcd vs ips lcd brands

Some of the most popular gadget-related queries on the internet are based on TFT LCD vs IPS LCD and other related phrases. Some tech reviewers have also highlighted the difference between the two in their articles or videos. What exactly is the difference between the two?

For starters, the inquiry does not make sense from a technical perspective. It is important to stress the fact that it is impossible to compare a TFT LCD against an IPS LCD.

A thin-film-transistor liquid-crystal display is a specific variant of LCD technology that is based primarily on thin-film transistor or TFT technology. A TFT is a particular type of field-effect transistor or FET characterized by a thin transistor relative to the plane of the device. Note that a FET controls the flow of current in a semiconductor.

The defining characteristic of TFT LCDs is that they are also considered active matrix LCDs in which individual pixels are attached to individual transistors to allow individual switching and active addressing of the pixel state from an on or off state.

On the other hand, an IPS LCD or an in-plane switching liquid-crystal display is actually a type of a TFT LCD. It is a more specific LCD technology that involves placing a layer of liquid crystals between two glass surfaces and aligning the specific liquid crystal molecules parallel to these two surfaces in-plane or in predetermined directions.

An in-plane switching LCD fundamentally uses a thin-film transistor to allow the individual switching and active addressing of the individual pixels. It is interesting to note that the first IPS LCD introduced in 1996 was called Super TFT LCD.

Nevertheless, the better alternative to the TFT LCD vs IPS LCD inquiry and discussion is to compare each against better and more relevant display technologies.

The direct counterpart of a TFT LCD is passive matrix LCD technology. A passive matrix display controls and addresses segments of pixels rather than individual pixels. It is also referred to as direct-driven display technology.

It is also important to note that thin-film transistors are also used in other display technologies such as OLED displays or AMOLED displays. OLEDs are one of the primary display technologies used in mid-range to flagship-grade consumer electronic devices. They are based on organic light-emitting diodes while LCDs are based on liquid crystals.

OLEDs are also compared to IPS LCDs. In-plane switching LCDs are also used in several mid-range to flagship-grade devices. The Liquid Retina brand of displays used by Apple is based on in-plane switching LCD technology.

The closest rivals of IPS LCDs are other TFT LCD technologies such as twisted nematic or TN LCDs and vertical alignment LCDs. In-plane switching is the superior technology among the three. However, newer technologies have emerged. These include plane-to-line switching or PLS LCD and advanced hyper-viewing angle or AHVA.

tft lcd vs ips lcd brands

If you want to buy a monitor, normally there are only two choices: TFT display or IPS display. In order to make the right purchase decision, it is important to know the technologies behind the two displays.

The word TFT means thin film transistor. It is the technology that is used in LCD or Liquid Crystal Display. Here you should know that this type of LCDs is also categorically referred to as active-matrix LCDs. It says that these LCDs can hold back some pixels while using other pixels. So, the LCD will be using a very minimum amount of energy to function (actually to make the liquid crystal molecules between two electrodes twisting). TFT LCDs have capacitors and transistors. These are the two elements that play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy without running out of operation.

The brightest feature TFT displays have is its low cost because of the simpler process of manufacturing, low cost material and one of the oldest technologies for LCD displays. But they are not the best quality considering poor viewing angles, lower contrast ratio, slower response time, lower aperture ratio (each pixel not bright enough) and the worst is that there is one view angle with Gray Scale Inversion (reversed image), see the bottom one of picture 1 below.

IPS (in-plane-switching) technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but with more enhanced features and more widespread usability. IPS LCD monitors consist of the following high-end features. It has a much wider viewing angle, more consistent, accurate color in all viewing directions, it has higher contrast, faster response time. But IPS display is not perfect as its higher manufacturing cost. See the Fig.2 below

Both TFT display and IPS display are active matrix displays, neither can’t emit light like OLED, it has to be used with a back-light of white bright light to generate the picture. Newer panels utilize LED backlight (light emitting diodes) to generate their light and therefore utilize less power and require less depth by design. Actually neither TFT display nor IPS display can produce color, there is a layer of RGB (red,green,blue) color filter in each LCD pixel to make the LCD show color. If you use a magnifier to see your monitor, you will see RGB color. By switching on/off and different levels of RGB brightness, we can produce a spectrum of many colors.

Wider Viewing Angles: IPS Display Wins. If youdon’t want to compromise on the viewing angles and want to have the best experience of viewing the screen from wide angles, the IPS display is what you want.

Faster Response Time: IPS Display Wins. IPS TFT Screens have around 0.3 milliseconds response time while TN TFT Screens respond around 10 milliseconds which makes the latterpoor for gaming purposes.

Cost: TFT Display Wins (around 30%-50% lower). The TFT lcd production technology is more mature than IPS LCD, it has a better production yield than IPS LCD.

Lower Energy Consumption: TFT Display wins. TN TFT LCD has more than around 15% power consumption than IPS lcd. The reason still comes from the array way of liquid crystal inside the IPS LCD screen. Because the liquid crystal molecules are arrayed in the electrode plane, the power would be saved for switching on liquid crystal in IPS screen than twisting it in TFT lcd screens, that is the reason IPS screen is better than TN TFT lcd in power consumption. Regarding the IPS LCD screen have better contrast, but in the same time, it have less transmissive ratio (transmittance), so we need more light from lcd backlight, if used more led chips, so it also need more power to the lcd backlight, so the total display module might need more power consumption if the backlight driving current for IPS LCD panel. so we need to be moreconcerned about the backlight current consumption instead of the IPS TFT panel itself. The main power consumption would be from the lcd backlight, not the IPS TFT panel. Battery life will likely be longer if other hardware is the same.

Better “Image or Pixel Sticking” or “Ghosting” (Image Sticking is when an image will stay on for a short time when instead it should be off): Hard to say depending on different display screen manufacturers. Generally speaking, TFT Display has aslightly better chance not to have the issue.

In summary, normally high-end products like Apple Mac monitors and Samsung mobile phones most likely use IPS panels. Some of the even high end TV and mobile phones use AMOLED( Active Matrix Organic Light Emitting Diodes) Displays. The technology provides even better color reproduction, image quality, better color gamut, less power than LCD technology. Please note that OLED includes AMOLED and PMOLED (Passive Matrix Organic Light Emitting Diodes). What you need to choose is AMOLED for your TV and mobile phones instead of PMOLED. If you have more budget, you can have your screen with touch screen, most of the touch nowadays uses PCAP (Projective Capacitive) touch panel. This kind of touch technology was first introduced by Steven Jobs in the first generation iPhone. Of course, a TFT LCD display can always meet the basic needs with reasonable price.

tft lcd vs ips lcd brands

The two buzzwords the tech world has been chatting about for a number of years now is IPS, (In-Plane Switching) screen technology used for liquid crystal displays or LCD’s for short, and TFT (Thin-Film-Transistor) an active matrix screen technology, which is more expensive, but a sharper image.

Designed in the 1980’s, but not introduced until nearly a decade later, in 1996, by Hitachi, IPS technology is nothing new, and a type of LCD design that affords greater viewing angles and higher-quality color reproduction than the traditional TN or Twisted Nematic LCDs.

When Apple brought it to the public’s attention, it took off, and as they say, the rest is history; but, it really didn’t become widespread or worldwide until just the late 1990’s. Since then, IPS screens have been implemented in homes all over the world, with variations to suit one’s electronic needs.

TFT (Thin-Film-Transistor) Liquid Crystal Display is a thin display type, where a transistor embedded into each crystal gate; these transistors are then printed on thin-transparent film. The technology was designed to improve image qualities, such as contrast and addressability.

Also designed in the late 1980’s, TFT display technologies is just another variation of LCD displays that offer greater color, contrast, and response times as opposed to available passive matrix LCD’s. One of the primary differences between IPS and TFT display technologies is the cost. IPS is more expensive than TN technology. However, there are some key differences between the two that should be noted.

Before we go into the differences, let’s talk about features of each technology. Note that we’re not talking TVs, computer, or tablets, but screens on a much smaller scale, (think 7” or smaller) which uses different rules to fit that scale. First, it’s interesting to discover that the TFT display technologies is the most common type of color display technology; more monochrome displays still out-sell color, due to lower cost and lower power consumption, however, the narrow poor visibility of TFTs in direct sunlight is their downside; but I’m getting ahead of myself here.

IPS technology has come a long way in regards to cell phones and other LCD screens that are even much smaller. (Picture digital clocks on a radio, microwave, and hand-held games) Some of the features of an IPS screen include:Wider viewing angles – crystals are aligned horizontally rather than vertically, so it allows for better angled viewing, perfect for smaller screens, where you need to rotate the screen for better viewing

Brilliant color image – this is a huge advance in technology, from a Twisted Nematic (TN) display that only produced 6-bit color, to an 8-bit color display with the IPS technology

Variations to help with user’s viewing requirements or desires – there are several different forms of IPS technology: Super-IPS, (S-IPS) Advanced Super IPS, Advanced S-IPS, where the liquid crystal molecules stay parallel to the front and back panels, instead of perpendicular when a voltage is applied

TFT display technologies have developed over the years and have become quite popular in tech circles. The features offered with this advancing technology are:Superior color display – for technology that requires it or for consumers that desire color screens

Variety of displays, which can be interfaced through a variety of bus types, including 18 and 24 bit for red/green/blue, LVDS, and 8 bit and 16 bit for a CPU – many controllers allow for two or more different types of interfaces on the same TFT screen

Let me explain. As you can see, both have excellent color display and clarity; however, IPS screens offer greater color reproduction and viewing angles because of the way crystal orientation and polarizers are arranged. In a TFT screen, the structure of the crystals results in angular retardation in the light. The IPS screens thus offer less distortion properties. Other differences include power consumption and cost. With IPS screens, it takes more power (up to 15% more) than with a TFT screen. If you’re on a monitor, such as a computer screen that’s bigger than 7 inches, it will drain your battery faster than if you’re on a 3.5” screen. Regarding cost, IPS panels are more expensive to produce than TFT panels.

Here’s why:IPS screens are popular and in high demand with professionals including surgeons and photographers or pretty much any profession that requires color reproduction, therefore, because the demand is high, the price goes up. (way to love economics) Also, less manufactures are building IPS at this time.

The color channels increase from 6 bits (TN displays) to 8 bits (IPS displays) to ensure the precision of shades per color channel, thus increasing manufacturing costs

If you want the benefits of having a Smartphone without a huge price tag, then TFT devices are your best bet. Another difference is that IPS screens have longer response times than TFT screens, so the lag output is greater. A few other key differences to be aware of are that with IPS panels, you get a bigger variety of panels, as was discussed above, with their super, advanced, and so forth developments, giving the consumer options, and IPS screens that can display 24-bit TrueColor; they also stay color-accurate and remain stable.

Because of their superior color and clarity of images, devices using an IPS screens are easy to install on walls, due to their compact form and low-depth. The Super IPS screens offer a higher angle of 170˚ for better clarity and wider viewing, particularly at night. Images remain stable and clear and not sparkly, shiny, like other screens; they also have a longer battery life and screen life, (on smaller screens of course) because of the lower electrical output. The release of heat is lower, again because of the reduced electrical consumption. The colors are also more vibrant and clear, not pixelated like other lower quality-type devices. As mentioned earlier, there are also many variations of IPS technology to suit your needs and desires.

Now we will go over the downside of IPS screens, which we briefly touched on above, which includes a major disadvantage: cost. If you’re just looking for an average Smartphone or don’t need all the fancy coloring and clarity for LCD displays, then cost may not be a big factor; however, this is the main reason why IPS technology is beginning to come down. As with every new invention, discovery or technology, demand is everything. Another disadvantage is that colors may not always transcribe correctly or accurately, which may or may not be a deterrent. Also, high resolutions are not always readily available for personal applications. In certain circumstances, the brightness may not be enough, especially in darkness.

Steve Jobs said it best: “Design is not just what it looks like and feels like. Design is how it works.” I tend to agree with him. With TFT display technologies, less energy consumption is a big deal, especially when dealing with bigger screens, and of course less electricity means lower cost, overall. The visibility is sharper, meaning no geometric distortion, which is great for these tired, old eyes. The response time and physical design of the screens are also appealing. TFT displays can also save space and be placed virtually anywhere in an office or home, because of the brightly lit feature and crisp clear images.

Some cons of TFT screens deal with the viewing angle, which create distortion, resulting in a less-than-perfect image. Static resolution, meaning the resolution can’t be changed, may also cause a problem, but newer models seem to have tackled that issue. The accuracy of the display of colors is not perfect, specifically strong blacks and bright whites, so when printing an image, it may not display the spectrum of colors.

And there you have it. In the future, even this superb technology will change and new, more exciting technology will take its place. But until then, IPS & TFT screens are forging ahead with their own advances and improvements, so stayed tune. You don’t want to miss it.

Focus Display Solutions (www.FocusLCDs.com) offers off-the-shelf Color TFT display technologies in both TN and IPS. Many of the color modules contain built in touch panels.

tft lcd vs ips lcd brands

In-Plane Switching (IPS) is a technology that overcomes the viewing limitations of conventional TFT-LCDs. It is also known as Super TFT.IPS derives its name from the fact that the liquid-crystal molecules are aligned in parallel with the glass plates, whereas the TN principle adopted in conventional TFT displays is based on perpendicular alignment of the molecules.

Users of industrial display devices are wanting the same experience they have come to expect from a consumer device. Switching to an IPS display has become very cost effective as production increases and unit prices decrease. Benefits include:

With more and more consumer products such as smart phones and tablets using IPS displays, the production yield and cost has come down significantly in recent years. This is great news for manufacturers wanting to upgrade their design.

Pricing for small size IPS displays, particularly2.4 and 2.8", is comparable, if not favourable to TN-TFTs, meaning that you can upgrade from a monochrome display to a superior colour display without breaking the budget..

Our IPS-TFT displays are available from 1" to 23" and ideal for outdoor applications. To further enhance the displays where environmental challenges including sunlight, extreme temperatures, water or salt, or vandalism, can be an issue we have a number of

tft lcd vs ips lcd brands

The new line of 3.5” TFT displays with IPS technology is now available! Three touchscreen options are available: capacitive, resistive, or without a touchscreen.

tft lcd vs ips lcd brands

Many TVs use LCD (Liquid Crystal Display) panels that are lit by LED backlights. There are two popular types of LCD panels: In-Plane Switching (IPS) and Vertical Alignment (VA), and there are two main differences between each type. A VA panel usually has a high contrast ratio and narrow viewing angles. However, an IPS panel has low contrast and wide viewing angles. These are the main differences between each, and for the most part, panel type doesn"t affect other aspects of picture quality, like peak brightness, color gamut, or color accuracy.

For the purposes of this article, we"re going to compare two LED-backlit LCD TVs: the Sony X800H, which has an IPS panel, and the Hisense H9G, which has a VA panel. Due to their different panel types, there are three noticeable differences in picture quality: viewing angles, contrast, and black uniformity, so we"re going to look at each one.

Viewing angle refers to the angle at which you can watch the TV without seeing a noticeable drop in picture quality. IPS TVs are the clear winner here, as the image remains accurate when viewing from the side - you can see the differences in the videos above. This is their main advantage over VA panels. Most VA panel TVs have a noticeable loss in image accuracy when viewing from the side. The narrow viewing angle of VA-type TVs is also problematic when the TV is used as a PC monitor from up close since the edges of the display look washed out.

VA panels are far superior to IPS panels when it comes to this, so if you tend to watch movies in the dark, you likely want to get a TV with a VA panel. Most TVs use VA panels due to this main advantage, and high-end models may have a local dimming feature that further enhances black levels. On the other hand, IPS panels normally have low contrast, so blacks look closer to gray, but you may not notice the difference in contrast in bright environments.

Our black uniformity tests determine how well a TV displays a dark scene with a bright image in the center. Ideally, you want to see a completely black screen with the center cross being the only part that"s lit up, and this is important for people watching movies. No LED TV has perfect uniformity, and unlike viewing angles and contrast, the panel type doesn"t completely determine its black uniformity. However, most VA panels that we"ve tested have good black uniformity, while most IPS panels have sub-par black uniformity. This doesn"t mean that every VA panel TV has good uniformity, as this can change between units, and you can also improve uniformity using the local dimming feature.

LCDs function by having liquid crystals in little groups to form the pixels. These crystals react and change position when charged with electricity and, depending on their position, they allow a certain color of light to pass through.

IPS displays have their crystals aligned horizontally at all times. When charged, they turn to allow light through. VA displays have their crystals aligned vertically. When charged, they move to a horizontal position, allowing light through. When current isn"t sent through them, however, their vertical alignment blocks light far more efficiently, creating better blacks and giving better contrast.

There"s also another type of IPS panel, called Plane-to-Line Switching (PLS), which can be seen with the Sony X800H. This panel type was designed by Samsung and technically performs the same as an IPS panel. When you compare the pixels visually, IPS panels look like chevrons, VA looks like very straight rectangles, and PLS looks like round-edged capsules. You can learn more about pixels here.

The way the pixels are laid out can also affect text clarity. Many IPS panels, like the ones on the Sony X800H or the LG SK9000, use RGB sub-pixel layouts, while many VA panels have a BGR layout, like on the Hisense H9G. The sub-pixel layout doesn"t directly affect picture quality unless you"re using it as a PC monitor. Some applications may expect an RGB layout, so if you have a BGR sub-pixel layout, text may not look clear. You may need to increase the text scaling to read it properly, but this issue isn"t common with an RGB layout. You can learn more about it here.

TV manufacturers have come up with ways to improve LED TVs to increase picture quality. There are competing technologies, like OLED, which also present their own unique characteristics.

Unlike LED TVs, OLEDs don"t use a backlight and instead have self-emitting pixels. This allows the pixels to individually turn on and off, resulting in perfect blacks. This means that they also have perfect black uniformity as there"s no blooming around bright objects like on some LED TVs. They also have wide viewing angles, sometimes even wider than some IPS panels, so OLEDs are a good choice for wide seating arrangements.

However, the one major downside to OLEDs compared to LEDs is their risk of permanent burn-in. This could be problematic if you constantly watch content with static elements, like the news, or if you use it as a PC monitor. We don"t expect it to be an issue for people who watch varied content, but if you"re truly worried about it, LED TVs appear to be immune to burn-in.

Samsung released quantum dot TVs in 2015, which they later labeled as QLED in 2017. These TVs include a quantum dot layer between the LED backlights and the LCD panel to achieve a wider color gamut. Other companies like Vizio and TCL also use this quantum dot technology on their TVs. Adding this extra quantum dot layer doesn"t change the characteristics of the panel type; the VA panel on the TCL 6 Series/S635 2020 QLED still has a high contrast ratio and narrow viewing angles. Although most QLED TVs use VA panels, you can easily use an IPS panel as well.

Manufacturers have tried different techniques to improve the viewing angles on VA panels over the years, aiming to produce a perfect LCD panel with both wide viewing angles and high contrast. While they have yet to achieve that goal, a few TVs have hit the market that try to combine the best of both panel types. The first TVs with this viewing angle technology came out in 2018, and only a few high-end models like the Samsung Q90/Q90T QLED and the Sony X950H had this technology in 2020. These TVs are a bit unique, delivering noticeably better viewing angles than their pure VA counterparts, but still worse than true IPS panels. This comes at the expense of a lower contrast ratio, as these TVs have worse native contrast than most VA panels, but they"re still better than IPS panels. Combined with their local dimming features, they still produce deep blacks.

Between IPS and VA panels, neither technology is inherently superior to the other as they both serve different purposes. In general, IPS TVs have wide viewing angles suitable for when you want to watch the big game or your favorite show in a large seating arrangement. They"re also beneficial for use as a PC monitor since the edges remain accurate if you sit up close. However, VA panels are a better choice for watching content in dark rooms, as their improved contrast allows them to display deep blacks. Choosing between the two is a series of trade-offs and qualities, so choosing the best TV for your needs depends on your usage.

tft lcd vs ips lcd brands

Technology can be confusing because it evolves quickly, and there are complex acronyms for almost everything. If you are thinking ofbuildinga monitor or want to learn about the technology, you will encounter the term TFT Monitor at some point.

A lot goes on behind the glass surface, and we will look at this in comparison to other technologies to paint a clear picture of what TFT is and how it evolved.

TFT is an acronym for Thin Film Transistor, and it is a technology used in Liquid Crystal Display screens. It came about as an improvement to passive-matrix LCDs because it introduced a tiny, separate transistor for each pixel. The result? Such displays could keep up with quick-moving images, which passive-matrix LCDs could not do.

Also, because the transistors are tiny, they have a low power consumption and require a small charge to control each one. Therefore, it is easy to maintain a high refresh rate, resulting in quick image repainting, making a TFT screen the ideal gaming monitor.

The technology improved on the TN (Twisted Nematic) LCD monitor because the shifting pattern of the parallel, horizontal liquid crystals gives wide viewing angles. Therefore, IPS delivers color accuracy and consistency when viewed at different angles.

Both TFT and IPS monitors are active-matrix displays and utilize liquid crystals to paint the images. Technically, the two are intertwined because IPS is a type of TFT LCD. IPS is an improvement of the old TFT model (Twisted Nematic) and was a product of Hitachi displays, which introduced the technology in 1990.

The monitors can create several colors using the different brightness levels and on/off switches. But unlike OLED, both TFT and IPS do not emit light, so most have bright fluorescent lamps or LED backlights to illuminate the picture. Also, neither of them can produce color, so they have an RGB color filter layer.

Easy to Integrate and Update: By combining large-scale semiconductor IC and light source technology, TFTs have the potential for easy integration and updating/development.

Wide Application Range: TFTs are suitable for mobile, desktop screens, and large-screen TVs. Additionally, the technology can operate at a temperature range of -20°C to +50°C, while the temperature-hardened design can remain functional at temperatures not exceeding -80°C.

Impressive Display Effect: TFT displays use flat glass plates that create an effect of flat right angles. Combine this with the ability of LCDs to achieve high resolutions on small screen types, and you get a refreshing display quality.

Good Environmental Protection: The raw materials used to make TFT displays produce zero radiation and scintillation. Thus, the technology does not harm the user or the environment.

Mature Manufacturing Technology: TFT technology came into existence in the 60s. Over time, its manufacturing technology has matured to have a high degree of automation, leading to cheaper, large-scale industrial production.

Wide View Angle: One of the main advantages of IPS screens is their wide viewing angle due to the horizontal liquid crystals. They do not create halo effects, grayscale, or blurriness, but these are common flaws with TFTs.

Better Color Reproduction and Representation: The pixels in TFTs function perpendicularly after activation with the help of electrodes. However, IPS technology makes the pixels function while parallel horizontally. Thus, they reflect light better and create a more original and pristine image color.

Faster Frequency Transmittance: Compared to TFT, IPS screens transmit frequencies at about 25ms, which is 25x faster. This high speed is necessary to achieve wide viewing angles.

Liquid Crystal Display (LCD) is a front panel display that utilizes liquid crystals held between two layers of polarized glass to adjust the amount of blocked light. The technology does not produce light on its own, so it needs fluorescent lamps or white LEDs.

As explained earlier, TFT improved on the passive-matrix LCD design because it introduces a thin film transistor for each pixel. The technology reducescrosstalkbetween the pixels because each one is independent and does not affect the adjacent pixels.

LED screens are like the new kids on the block in the display market, and they operate very differently from LCDs. Instead of blocking light, LEDs emit light and are thinner, provide a faster response rate, and are more energy-efficient.

Since IPS is a type of TFT, when comparing the two, we are essentially looking at the old Thin-Film Transistor technology (Twisted Nematic) vs. the new (IPS). Even though TN is relatively old, this digital display type has its advantages, a vital one being the fast refresh rate. This feature makes such screens the preferred option by competitive gamers. If you have any inquiries about the technology,contact usfor more information.

tft lcd vs ips lcd brands

IPS (In-Plane Switching) Displays was designed to solve the main limitation with conventional TN TFTs of restricted viewing angles & greyscale inversion when viewed away from the preferred viewing direction. This technology arranges & switches the alignment of the crystal molecules between the glass substrates, reducing the amount of light scattered in the matrix.