lcd screen suction cup free sample

A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen.waveforms (oscilloscope), pictures (television set, computer monitor), radar targets, or other phenomena. A CRT on a television set is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer. The term

A CRT is a glass envelope which is deep (i.e., long from front screen face to rear end), heavy, and fragile. The interior is evacuated to 0.01 pascals (1×10−7 atm)×10−12 atm) or less,implosion that can hurl glass at great velocity. The face is typically made of thick lead glass or special barium-strontium glass to be shatter-resistant and to block most X-ray emissions. CRTs make up most of the weight of CRT TVs and computer monitors.

Since the mid-late 2000"s, CRTs have been superseded by flat-panel display technologies such as LCD, plasma display, and OLED displays which are cheaper to manufacture and run, as well as significantly lighter and less bulky. Flat-panel displays can also be made in very large sizes whereas 40 in (100 cm) to 45 in (110 cm)

Cathode rays were discovered by Julius Plücker and Johann Wilhelm Hittorf.cathode (negative electrode) which could cast shadows on the glowing wall of the tube, indicating the rays were traveling in straight lines. In 1890, Arthur Schuster demonstrated cathode rays could be deflected by electric fields, and William Crookes showed they could be deflected by magnetic fields. In 1897, J. J. Thomson succeeded in measuring the charge-mass-ratio of cathode rays, showing that they consisted of negatively charged particles smaller than atoms, the first "subatomic particles", which had already been named George Johnstone Stoney in 1891. The earliest version of the CRT was known as the "Braun tube", invented by the German physicist Ferdinand Braun in 1897.cold-cathode diode, a modification of the Crookes tube with a phosphor-coated screen. Braun was the first to conceive the use of a CRT as a display device.

In 1947, the cathode-ray tube amusement device, the earliest known interactive electronic game as well as the first to incorporate a cathode-ray tube screen, was created.

1968 marks the release of Sony Trinitron brand with the model KV-1310, which was based on Aperture Grille technology. It was acclaimed to have improved the output brightness. The Trinitron screen was identical with its upright cylindrical shape due to its unique triple cathode single gun construction.

In 1987, flat-screen CRTs were developed by Zenith for computer monitors, reducing reflections and helping increase image contrast and brightness.float glass.

In the mid-2000s, Canon and Sony presented the surface-conduction electron-emitter display and field-emission displays, respectively. They both were flat-panel displays that had one (SED) or several (FED) electron emitters per subpixel in place of electron guns. The electron emitters were placed on a sheet of glass and the electrons were accelerated to a nearby sheet of glass with phosphors using an anode voltage. The electrons were not focused, making each subpixel essentially a flood beam CRT. They were never put into mass production as LCD technology was significantly cheaper, eliminating the market for such displays.

Beginning in the late 90s to the early 2000s, CRTs began to be replaced with LCDs, starting first with computer monitors smaller than 15 inches in size,Hitachi in 2001,Flat-panel displays dropped in price and started significantly displacing cathode-ray tubes in the 2000s. LCD monitor sales began exceeding those of CRTs in 2003–2004

Despite being a mainstay of display technology for decades, CRT-based computer monitors and televisions are now virtually a dead technology. Demand for CRT screens dropped in the late 2000s.].

The size of the screen of a CRT is measured in two ways: the size of the screen or the face diagonal, and the viewable image size/area or viewable screen diagonal, which is the part of the screen with phosphor. The size of the screen is the viewable image size plus its black edges which are not coated with phosphor.

Most of the weight of a CRT comes from the thick glass screen, which comprises 65% of the total weight of a CRT. The funnel and neck glass comprise the remaining 30% and 5% respectively. The glass in the funnel is thinner than on the screen.

The anode is used to accelerate the electrons towards the screen and also collects the secondary electrons that are emitted by the phosphor particles in the vacuum of the CRT.

The electron gun emits the electrons that ultimately hit the phosphors on the screen of the CRT. The electron gun contains a heater, which heats a cathode, which generates electrons that, using grids, are focused and ultimately accelerated into the screen of the CRT. The acceleration occurs in conjunction with the inner aluminum or aquadag coating of the CRT. The electron gun is positioned so that it aims at the center of the screen.

There are several shortcircuits that can occur in a CRT electron gun. One is a heater-to-cathode short, that causes the cathode to permanently emit electrons which may cause an image with a bright red, green or blue tint with retrace lines, depending on the cathode (s) affected. Alternatively, the cathode may short to the control grid, possibly causing similar effects, or, the control grid and screen grid (G2)sputtering.

The second (screen) grid of the gun (G2) accelerates the electrons towards the screen using several hundred DC volts. A negative currentWehnelt cylinder.

There is a voltage called cutoff voltage which is the voltage that creates black on the screen since it causes the image on the screen created by the electron beam to disappear, the voltage is applied to G1. In a color CRT with three guns, the guns have different cutoff voltages. Many CRTs share grid G1 and G2 across all three guns, increasing image brightness and simplifying adjustment since on such CRTs there is a single cutoff voltage for all three guns (since G1 is shared across all guns).

Some electron guns have a quadrupole lens with dynamic focus to alter the shape and adjust the focus of the electron beam, varying the focus voltage depending on the position of the electron beam to maintain image sharpness across the entire screen, specially at the corners.

Mostly used in oscilloscopes. Deflection is carried out by applying a voltage across two pairs of plates, one for horizontal, and the other for vertical deflection. The electron beam is steered by varying the voltage difference across plates in a pair; For example, applying a voltage to the upper plate of the vertical deflection pair, while keeping the voltage in the bottom plate at 0 volts, will cause the electron beam to be deflected towards the upper part of the screen; increasing the voltage in the upper plate while keeping the bottom plate at 0 will cause the electron beam to be deflected to a higher point in the screen (will cause the beam to be deflected at a higher deflection angle). The same applies with the horizontal deflection plates. Increasing the length and proximity between plates in a pair can also increase the deflection angle.

Burn-in is when images are physically "burned" into the screen of the CRT; this occurs due to degradation of the phosphors due to prolonged electron bombardment of the phosphors, and happens when a fixed image or logo is left for too long on the screen, causing it to appear as a "ghost" image or, in severe cases, also when the CRT is off. To counter this, screensavers were used in computers to minimize burn-in.

Various phosphors are available depending upon the needs of the measurement or display application. The brightness, color, and persistence of the illumination depends upon the type of phosphor used on the CRT screen. Phosphors are available with persistences ranging from less than one microsecond to several seconds.

Aperture grille screens are brighter since they allow more electrons through, but they require support wires. They are also more resistant to warping.

On CRTs, refresh rate depends on resolution, both of which are ultimately limited by the maximum horizontal scanning frequency of the CRT. Motion blur also depends on the decay time of the phosphors. Phosphors that decay too slowly for a given refresh rate may cause smearing or motion blur on the image. In practice, CRTs are limited to a refresh rate of 160 Hz.quantum dot LCDs (QLEDs) are available in high refresh rates (up to 144 Hz)

CRT monitors can still outperform LCD and OLED monitors in input lag, as there is no signal processing between the CRT and the display connector of the monitor, since CRT monitors often use VGA which provides an analog signal that can be fed to a CRT directly. Video cards designed for use with CRTs may have a RAMDAC to generate the analog signals needed by the CRT.multisyncing.

Picture tube CRTs have overscan, meaning the actual edges of the image are not shown; this is deliberate to allow for adjustment variations between CRT TVs, preventing the ragged edges (due to blooming) of the image from being shown on screen. The shadow mask may have grooves that reflect away the electrons that do not hit the screen due to overscan.

If the CRT is a black and white (B&W or monochrome) CRT, there is a single electron gun in the neck and the funnel is coated on the inside with aluminum that has been applied by evaporation; the aluminum is evaporated in a vacuum and allowed to condense on the inside of the CRT.ion traps, necessary to prevent ion burn on the phosphor, while also reflecting light generated by the phosphor towards the screen, managing heat and absorbing electrons providing a return path for them; previously funnels were coated on the inside with aquadag, used because it can be applied like paint;

The screen, funnel and neck are fused together into a single envelope, possibly using lead enamel seals, a hole is made in the funnel onto which the anode cap is installed and the phosphor, aquadag and aluminum are applied afterwards.

The interior aquadag or aluminum coating was the anode and served to accelerate the electrons towards the screen, collect them after hitting the screen while serving as a capacitor together with the outer aquadag coating. The screen has a single uniform phosphor coating and no shadow mask, technically having no resolution limit.

Trinitron CRTs were different from other color CRTs in that they had a single electron gun with three cathodes, an aperture grille which lets more electrons through, increasing image brightness (since the aperture grille does not block as many electrons), and a vertically cylindrical screen, rather than a curved screen.

The three electron guns are in the neck (except for Trinitrons) and the red, green and blue phosphors on the screen may be separated by a black grid or matrix (called black stripe by Toshiba).

Several methods were used to create the black matrix. One method coated the screen in photoresist such as dichromate-sensitized polyvinyl alcohol photoresist which was then dried and exposed; the unexposed areas were removed and the entire screen was coated in colloidal graphite to create a carbon film, and then hydrogen peroxide was used to remove the remaining photoresist alongside the carbon that was on top of it, creating holes that in turn created the black matrix. The photoresist had to be of the correct thickness to ensure sufficient adhesion to the screen, while the exposure step had to be controlled to avoid holes that were too small or large with ragged edges caused by light diffraction, ultimately limiting the maximum resolution of large color CRTs.

After the screen is coated with phosphor and aluminum and the shadow mask installed onto it the screen is bonded to the funnel using a glass frit that may contain 65 to 88% of lead oxide by weight. The lead oxide is necessary for the glass frit to have a low melting temperature. Boron oxide (III) may also present to stabilize the frit, with alumina powder as filler powder to control the thermal expansion of the frit.amyl acetate or in a polymer with an alkyl methacrylate monomer together with an organic solvent to dissolve the polymer and monomer.

Color convergence and color purity are two aspects of this single problem. Firstly, for correct color rendering it is necessary that regardless of where the beams are deflected on the screen, all three hit the same spot (and nominally pass through the same hole or slot) on the shadow mask.intaglio printed with poor registration. Poor purity causes objects on the screen to appear off-color while their edges remain sharp. Purity and convergence problems can occur at the same time, in the same or different areas of the screen or both over the whole screen, and either uniformly or to greater or lesser degrees over different parts of the screen.

On some CRTs, additional fixed adjustable magnets are added for dynamic convergence or dynamic purity at specific points on the screen, typically near the corners or edges. Further adjustment of dynamic convergence and purity typically cannot be done passively, but requires active compensation circuits, one to correct convergence horizontally and another to correct it vertically. The deflection yoke contains convergence coils, a set of two per color, wound on the same core, to which the convergence signals are applied. That means 6 convergence coils in groups of 3, with 2 coils per group, with one coil for horizontal convergence correction and another for vertical convergence correction, with each group sharing a core. The groups are separated 120° from one another. Dynamic convergence is necessary because the front of the CRT and the shadow mask aren"t spherical, compensating for electron beam defocusing and astigmatism. The fact that the CRT screen isn"t spherical

The convergence signal may instead be a sawtooth signal with a slight sine wave appearance, the sine wave part is created using a capacitor in series with each deflection coil. In this case, the convergence signal is used to drive the deflection coils. The sine wave part of the signal causes the electron beam to move more slowly near the edges of the screen. The capacitors used to create the convergence signal are known as the s-capacitors. This type of convergence is necessary due to the high deflection angles and flat screens of many CRT computer monitors. The value of the s-capacitors must be chosen based on the scan rate of the CRT, so multi-syncing monitors must have different sets of s-capacitors, one for each refresh rate.

If the shadow mask or aperture grille becomes magnetized, its magnetic field alters the paths of the electron beams. This causes errors of "color purity" as the electrons no longer follow only their intended paths, and some will hit some phosphors of colors other than the one intended. For example, some electrons from the red beam may hit blue or green phosphors, imposing a magenta or yellow tint to parts of the image that are supposed to be pure red. (This effect is localized to a specific area of the screen if the magnetization is localized.) Therefore, it is important that the shadow mask or aperture grille not be magnetized. The earth"s magnetic field may have an effect on the color purity of the CRT.

Flat CRTs are those with a flat screen. Despite having a flat screen, they may not be completely flat, especially on the inside, instead having a greatly increased curvature. A notable exception is the LG Flatron (made by LG.Philips Displays, later LP Displays) which is truly flat on the outside and inside, but has a bonded glass pane on the screen with a tensioned rim band to provide implosion protection. Such completely flat CRTs were first introduced by Zenith in 1986, and used

flat tensioned shadow masks, where the shadow mask is held under tension, providing increased resistance to blooming.TV80, and in many Sony Watchmans were flat in that they were not deep and their front screens were flat, but their electron guns were put to a side of the screen.

Radar CRTs such as the 7JP4 had a circular screen and scanned the beam from the center outwards. The screen often had two colors, often a bright short persistence color that only appeared as the beam scanned the display and a long persistence phosphor afterglow. When the beam strikes the phosphor, the phosphor brightly illuminates, and when the beam leaves, the dimmer long persistence afterglow would remain lit where the beam struck the phosphor, alongside the radar targets that were "written" by the beam, until the beam re-struck the phosphor.

When displaying fast one-shot events, the electron beam must deflect very quickly, with few electrons impinging on the screen, leading to a faint or invisible image on the display. Oscilloscope CRTs designed for very fast signals can give a brighter display by passing the electron beam through a micro-channel plate just before it reaches the screen. Through the phenomenon of secondary emission, this plate multiplies the number of electrons reaching the phosphor screen, giving a significant improvement in writing rate (brightness) and improved sensitivity and spot size as well.

Where a single brief event is monitored by an oscilloscope, such an event will be displayed by a conventional tube only while it actually occurs. The use of a long persistence phosphor may allow the image to be observed after the event, but only for a few seconds at best. This limitation can be overcome by the use of a direct view storage cathode-ray tube (storage tube). A storage tube will continue to display the event after it has occurred until such time as it is erased. A storage tube is similar to a conventional tube except that it is equipped with a metal grid coated with a dielectric layer located immediately behind the phosphor screen. An externally applied voltage to the mesh initially ensures that the whole mesh is at a constant potential. This mesh is constantly exposed to a low velocity electron beam from a "flood gun" which operates independently of the main gun. This flood gun is not deflected like the main gun but constantly "illuminates" the whole of the storage mesh. The initial charge on the storage mesh is such as to repel the electrons from the flood gun which are prevented from striking the phosphor screen.

When the main electron gun writes an image to the screen, the energy in the main beam is sufficient to create a "potential relief" on the storage mesh. The areas where this relief is created no longer repel the electrons from the flood gun which now pass through the mesh and illuminate the phosphor screen. Consequently, the image that was briefly traced out by the main gun continues to be displayed after it has occurred. The image can be "erased" by resupplying the external voltage to the mesh restoring its constant potential. The time for which the image can be displayed was limited because, in practice, the flood gun slowly neutralises the charge on the storage mesh. One way of allowing the image to be retained for longer is temporarily to turn off the flood gun. It is then possible for the image to be retained for several days. The majority of storage tubes allow for a lower voltage to be applied to the storage mesh which slowly restores the initial charge state. By varying this voltage a variable persistence is obtained. Turning off the flood gun and the voltage supply to the storage mesh allows such a tube to operate as a conventional oscilloscope tube.

The Williams tube or Williams-Kilburn tube was a cathode-ray tube used to electronically store binary data. It was used in computers of the 1940s as a random-access digital storage device. In contrast to other CRTs in this article, the Williams tube was not a display device, and in fact could not be viewed since a metal plate covered its screen.

Some displays for early computers (those that needed to display more text than was practical using vectors, or that required high speed for photographic output) used Charactron CRTs. These incorporate a perforated metal character mask (stencil), which shapes a wide electron beam to form a character on the screen. The system selects a character on the mask using one set of deflection circuits, but that causes the extruded beam to be aimed off-axis, so a second set of deflection plates has to re-aim the beam so it is headed toward the center of the screen. A third set of plates places the character wherever required. The beam is unblanked (turned on) briefly to draw the character at that position. Graphics could be drawn by selecting the position on the mask corresponding to the code for a space (in practice, they were simply not drawn), which had a small round hole in the center; this effectively disabled the character mask, and the system reverted to regular vector behavior. Charactrons had exceptionally long necks, because of the need for three deflection systems.

Flood-beam CRTs are small tubes that are arranged as pixels for large video walls like Jumbotrons. The first screen using this technology (called Diamond Vision by Mitsubishi Electric) was introduced by Mitsubishi Electric for the 1980 Major League Baseball All-Star Game. It differs from a normal CRT in that the electron gun within does not produce a focused controllable beam. Instead, electrons are sprayed in a wide cone across the entire front of the phosphor screen, basically making each unit act as a single light bulb.light-emitting diode displays. Unfocused and undeflected CRTs were used as grid-controlled stroboscope lamps since 1958.Electron-stimulated luminescence (ESL) lamps, which use the same operating principle, were released in 2011.

The density of the x-rays that would be generated by a CRT is low because the raster scan of a typical CRT distributes the energy of the electron beam across the entire screen. Voltages above 15,000 volts are enough to generate "soft" x-rays. However, since CRTs may stay on for several hours at a time, the amount of x-rays generated by the CRT may become significant, hence the importance of using materials to shield against x-rays, such as the thick leaded glass and barium-strontium glass used in CRTs.

Concerns about x-rays emitted by CRTs began in 1967 when it was found that TV sets made by General Electric were emitting "X-radiation in excess of desirable levels". It was later found that TV sets from all manufacturers were also emitting radiation. This caused television industry representatives to be brought before a U.S. congressional committee, which later proposed a federal radiation regulation bill, which became the 1968 Radiation Control for Health and Safety Act. It was recommended to TV set owners to always be at a distance of at least 6 feet from the screen of the TV set, and to avoid "prolonged exposure" at the sides, rear or underneath a TV set. It was discovered that most of the radiation was directed downwards. Owners were also told to not modify their set"s internals to avoid exposure to radiation. Headlines about "radioactive" TV sets continued until the end of the 1960s. There once was a proposal by two New York congressmen that would have forced TV set manufacturers to "go into homes to test all of the nation"s 15 million color sets and to install radiation devices in them". The FDA eventually began regulating radiation emissions from all electronic products in the US.

US 3440080, Tamura, Michio & Nakamura, Mitsuyoshi, "Cathode ray tube color screen and method of producing same", published 1969-04-22, assigned to Sony Corp.

Taylor, Alan (19 October 2011). "50 Years Ago: The World in 1961". www.theatlantic.com. The Atlantic Monthly Group. Retrieved 11 November 2021. 24:TV viewers of the 1970s will see their programs on sets quite different from today"s, if designs now being worked out are developed. At the Home Furnishings Market in Chicago, Illinois, on June 21, 1961, a thin TV screen is a feature of this design model. Another feature is an automatic timing device which would record TV programs during the viewers" absence to be played back later. The 32x22-inch color screen is four inches thick.

Warren, Rich (30 September 1991). "TV makers tuning in to flat screens to help round out sales". chicagotribune.com. Chicago Tribune. Retrieved 11 November 2021.

Ozawa, Lyuji (15 January 2002). "Electron flow route at phosphor screens in CRTs". Materials Chemistry and Physics. 73 (2): 144–150. doi:10.1016/s0254-0584(01)00360-1.

FR 2691577A1, "Cathode assembly for CRT electron gun - has protective screen around cathode emitter between emitter and hole in insulator support of cylindrical grid electrode"

Dudding, R.W. (1951). "Aluminium backed screens for cathode ray tubes". Journal of the British Institution of Radio Engineers. 11 (10): 455–462. doi:10.1049/jbire.1951.0057.

lcd screen suction cup free sample

A cracked Samsung phone screen can be devastating, especially if you rely on your phone for business, school and your social life. Screen replacement options include cell phone repair services, insurance claims and DIY repair. Here’s a breakdown of each plus associated costs to help you decide which option is best – plus whether it’s worth fixing your phone or if you’re better off selling it broken.

Option 1: Cell phone repair services – $199 to $329 Local repair shops can often replace your Samsung screen in under an hour, so you can get your phone fixed over your lunch break. Online mail-in repair services take longer, but they can be good options if you do not have a qualified local repair shop.

Expect to pay between $199 and $329 for Samsung screen replacement, depending on your model. Some repair shops offer warranties that offer free or discounted parts and labor if your screen fails within the warranty period.

If you have it, phone insurance might be your cheapest option. You can even get same-day screen replacement if an authorized or mobile repair center is nearby. Otherwise, you’ll need to mail your phone in for repair.

Some carrier plans allow you to request a replacement device instead of getting your phone repaired, but that option typically costs more. For example, Verizon insurance charges $29 for screen repairs but up to $249 for replacement.

Option 3: Do-it-yourself (DIY) cracked Samsung phone screen replacement – $92 to $240 You can purchase a replacement screen for your Samsung phone from several phone parts suppliers, including Repairs Universe, Injured Gadgets and FixEZ. Some stores sell screen replacement kits that come complete with tools; otherwise, you’ll need to buy tools separately. Toolkits start at $5.

Expect to pay between $92 and $240 for a replacement screen, depending on your Samsung model, whether your buy new or refurbished and whether you buy the screen with or without the frame (the frame adds around $20 and can make installation easier). Keep in mind that quality varies, and you’ll typically spend more for a high-quality screen. Pricing can also vary by color.

Note that some parts suppliers sell OEM (original equipment manufacturer) parts while other sell aftermarket parts. Some offer both. Here are some example replacement Samsung screen prices (with the frame).Galaxy S20New: $240

How to replace your Samsung screen WARNING: Screen replacement can be a difficult repair, especially if you aren’t experienced. Before you attempt to replace your own Samsung screen, be aware that you risk causing additional damage and you could void any warranties and insurance policies.

You can find detailed step-by-step instructions on sites like iFixit and YouTube. Here are screen replacement videos for the Samsung Galaxy S20, S10 and S9.

Should you fix your Galaxy screen or sell it broken? You might want to base your decision on how much your phone is worth broken versus repaired, especially if you plan to upgrade soon.

lcd screen suction cup free sample

Even if your tablet is in a case, there’s always a risk it could end up with a broken screen one day. Whether you drop it, sit on it, or expose it to extreme heat, it’s not that hard to crack the glass digitizer or the LCD below it.

If that happens to you, is there any chance you can actually replace your tablet screen with a new one? The answer is yes, but how easily depends not only on your own skills but what model of tablet you have.

Doing your research beforehand will enable you to see how difficult it is to replace the screen---if it’s possible at all. You might decide it’s not worth the expense or that it’s best left to a professional.

To find a new screen, just Google the name or model number of your tablet, followed by “replacement screen”. There are numerous specialist sellers who stock replacement parts for tablets. Make sure to read customer reviews to help you find a reliable seller.

Another good source of spare parts for tablets is eBay. Again, be sure to search for the exact model of tablet you want to fix, because even different iterations of the same device can have different screens. For example, the 2017 Amazon Fire HD 10 will have a different screen to the 2019 edition.

You may see digitizers being sold separately from LCDs. While it"s possible to replace these separately, they"re normally glued together, making it extremely difficult to separate them. In most instances, you should buy a combined digitizer and LCD unit.

For most tablets, you’re also going to need a heat gun to get the screen and the back casing off. It’s common for them to be glued in place, and warming that glue makes it possible to unstick it.

When you’ve gained access to the insides of your tablet, you will probably have to remove most, if not all, of the components before you can safely take the screen off. That usually means the battery, the motherboard, cameras, various other cables, the power switch, and the display itself.

If, like most tablets these days, yours has a glued-on screen, you’re going to need your heat gun again. One section at a time, carefully warm up the edge of the screen with your heat gun, but don’t linger in one place too long---you don’t want to melt any plastic parts below the glass.

Next, try to push a plectrum or credit card between the glass and the body of the tablet. It should go in with a little force, but if it doesn’t try warming up the screen some more. Once you get the plectrum in, try to slide it around under the screen, further breaking the glue.

Alternate between heating the screen and prying it away. Ideally, you won’t break the glass in the process, but it’s not a problem if you do. After all, the screen is already broken.

After removing the old display, put your new screen in place, and replace the motherboard and battery. Reconnect all the cables and cameras. Attach the cable for the new display then replace the screws.

Assuming all is okay, return the back casing to how it was originally. Then glue the screen on, and use clothes pegs to hold it in place while it dries.

While it’s usually possible to replace a broken tablet screen, it’s not always easy. Whether it’s worth it depends largely on how much a replacement display will cost you, compared to the price of just buying a new tablet.

lcd screen suction cup free sample

In Union Repair store, we grade our iPhone screen into 5 different types of quality on the basis of different material assembled. The following is the full details of each condition.

It is with widely accept major complaint replacements for original parts, which keeps a right balance between price and quality. It has sustainable supplying chain in China, and all the components of the screen are copy quality. Typically, the LCD screen is from several different factories, the most popular 4 on China market are JK,AUO, LongTeng, and ShenChao. By comparing the brightness and sharpness of the LCD, we found JK is the best quality among them and the second best is AUO. No doubt, the other components on the screen are all copy.

It is better than After Market Basic cause it comes with original laminated flexes and the LCD panel. Other components like touch panel, frame(hot pressed), backlight, polarize lens, and OCA is all copy from different factories.

The core components (like LCD and flexes) is 100% original pulled from used iPhone while the frame and touch panel is copy. The touch panel and frame come together with cold pressed glue and assembled together with the LCD by the capable third-party factory which keeps its excellent quality.

No doubt, it is tear down from used iPhone with all the parts 100% original and working perfectly just like an original new screen, it has whatever the original new screen has. The only complaint about this quality is that some of the displays are with 1 or 2 scratches but still be welcome by our critical customers who are requiring good quality.

It is 100% original from Apple-authorized factories like Toshiba, Sharp, and LG. We get this kind of screen from the first level dealer. The touch panel of the screen is oleophobic coated which prevents from fingerprints when using your iPhone. And starting with iPhone 7g, the backlight from different authorized factories comes with a different code. Backlight from Sharp has the code begins with DKH/CON, from Toshiba begins with C11/F7C/FZQ, from LG begins with DTP/C3F.

lcd screen suction cup free sample

The company pays attention to quality, adheres to the principle of honesty and customer-oriented, based on the long-term Powerfully Disassemble Universal Sucker LCD Screen Removal Suction Cupindustry, with unique strategic vision and innovative marketing thinking, to build a well-known brand with technology as the center. We create excellent value for our customers with high quality products and services. We sincerely hope to cooperate with all businesses and develop together. Once the goal is determined, it is necessary to clarify with the team the role each person needs to play in the process of achieving the goal.

lcd screen suction cup free sample

See every detail clearly when applying makeup, shaving, tweezing, or putting in contacts! The 20x Extreme Magnification Suction Cup Spot Mirror from Zadro is the perfect aid to assist in personal care and an especially valuable tool for those with low vision.

Its distortion-free glass provides a crystal-clear, true reflection enhanced with powerful 20x magnification. It mounts firmly to any smooth surface such as a medicine cabinet or vanity mirror using three built-in suction cups. With a compact 3" diameter, it fits neatly in your travel bag or purse, so you can take it anywhere. 90-Day Manufacturer"s Limited Warranty.