adafruit tft display setup price
In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.
The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.
This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.
The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.
In which “Hello, World!” is the text you want to display and the (x, y) coordinate is the location where you want to start display text on the screen.
The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:
Note: some people find issues with this display when trying to read from the SD card. We don’t know why that happens. In fact, we tested a couple of times and it worked well, and then, when we were about to record to show you the final result, the display didn’t recognized the SD card anymore – we’re not sure if it’s a problem with the SD card holder that doesn’t establish a proper connection with the SD card. However, we are sure these instructions work, because we’ve tested them.
In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.
pi@rpi0w:~/fbcp-ili9341 $ cmake -DSPI_BUS_CLOCK_DIVISOR=8 -DHX8357D=ON -DADAFRUIT_HX8357D_PITFT=ON -DGPIO_TFT_DATA_CONTROL=25 -DGPIO_TFT_RESET_PIN=17 -DGPIO_TFT_BACKLIGHT=18 -DSINGLE_CORE_BOARD=ON -DARMV6Z=ON -DSTATISTICS=0 -DDISPLAY_ROTATE_180_DEGREES=ON -S .
-- Scaling source image to view. If the HDMI resolution does not match the SPI display resolution, this will produce blurriness. Match the HDMI display resolution with the SPI resolution in /boot/config.txt to get crisp pixel perfect rendering, or alternatively pass -DDISPLAY_CROPPED_INSTEAD_OF_SCALING=ON to crop instead of scale if you want to view the center of the screen pixel perfect when HDMI and SPI resolutions do not match.
-- Preserving aspect ratio when scaling source image to the SPI display, introducing letterboxing/pillarboxing if HDMI and SPI aspect ratios are different (Pass -DDISPLAY_BREAK_ASPECT_RATIO_WHEN_SCALING=ON to stretch HDMI to cover full screen if you do not care about aspect ratio)
-- SPI_BUS_CLOCK_DIVISOR set to 8. Try setting this to a higher value (must be an even number) if this causes problems. Display update speed = core_freq/divisor. (on Pi3B, by default core_freq=400). A safe starting default value may be -DSPI_BUS_CLOCK_DIVISOR=40
Source GPU display is 720x480. Output SPI display is 480x320 with a drawable area of 480x320. Applying scaling factor horiz=0.67x & vert=0.67x, xOffset: 0, yOffset: 0, scaledWidth: 480, scaledHeight: 320