super amoled advanced vs tft lcd supplier

AMOLED and TFT are two types of display technology used in smartphones. AMOLED (active-matrix organic light-emitting diode) displays are made up of tiny organic light-emitting diodes, while TFT (Thin-Film Transistor) displays use inorganic thin-film transistors.

AMOLEDs are made from organic materials that emit light when an electric current is passed through them, while TFTs use a matrix of tiny transistors to control the flow of electricity to the display.

Refresh Rate: Another key difference between AMOLED and TFT displays is the refresh rate. The refresh rate is how often the image on the screen is updated. AMOLED screens have a higher refresh rate than TFT screens, which means that they can display images more quickly and smoothly.

Response Time: The response time is how long it takes for the pixels to change from one colour to another. AMOLED screens have a shorter response time than TFT screens..

Colour Accuracy/Display Quality: AMOLED screens are more accurate when it comes to displaying colours. This is because each pixel on an AMOLED screen emits its own light, which means that the colours are more pure and true to life. TFT screens, on the other hand, use a backlight to illuminate the pixels, which can cause the colours to appear washed out or less vibrant.

Viewing Angle: The viewing angle is the angle at which you can see the screen. AMOLED screens have a wider viewing angle than TFT screens, which means that you can see the screen from more angles without the colours looking distorted.

Power Consumption: One of the main advantages of AMOLED displays is that they consume less power than TFT displays. This is because the pixels on an AMOLED screen only light up when they need to, while the pixels on a TFT screen are always illuminated by the backlight.

Production Cost: AMOLED screens are more expensive to produce than TFT screens. This is because the manufacturing process for AMOLED screens is more complex, and the materials used are more expensive.

Availability: TFT screens are more widely available than AMOLED screens and have been around for longer. They are typically used in a variety of devices, ranging from phones to TVs.

Usage: AMOLED screens are typically used in devices where power consumption is a concern, such as phones and wearable devices. TFT screens are more commonly used in devices where image quality is a higher priority, such as TVs and monitors.

AMOLED and TFT are two different types of display technology. AMOLED displays are typically brighter and more vibrant, but they are more expensive to produce. TFT displays are cheaper to produce, but they are not as bright or power efficient as AMOLED displays.

The display technology that is best for you will depend on your needs and preferences. If you need a screen that is bright and vibrant, then an AMOLED display is a good choice. If you need a screen that is cheaper to produce, then a TFT display is a good choice. However, if you’re worried about image retention, then TFT may be a better option.

super amoled advanced vs tft lcd supplier

Thanks for the display technology development, we have a lot of display choices for our smartphones, media players, TVs, laptops, tablets, digital cameras, and other such gadgets. The most display technologies we hear are LCD, TFT, OLED, LED, QLED, QNED, MicroLED, Mini LED etc. The following, we will focus on two of the most popular display technologies in the market: TFT Displays and Super AMOLED Displays.

TFT means Thin-Film Transistor. TFT is the variant of Liquid Crystal Displays (LCDs). There are several types of TFT displays: TN (Twisted Nematic) based TFT display, IPS (In-Plane Switching) displays. As the former can’t compete with Super AMOLED in display quality, we will mainly focus on using IPS TFT displays.

OLED means Organic Light-Emitting Diode. There are also several types of OLED, PMOLED (Passive Matrix Organic Light-Emitting Diode) and AMOLED (Active Matrix Organic Light-Emitting Diode). It is the same reason that PMOLED can’t compete with IPS TFT displays. We pick the best in OLED displays: Super AMOLED to compete with the LCD best: IPS TFT Display.

super amoled advanced vs tft lcd supplier

LCD is an acronym that stands for Liquid Crystal Display and it is one of the most commonly used display by OEMs on their devices. LCD displays are further categorised into two types on the basis of the technology used to make them. The two types are IPS LCD and TFT LCDs.

TFT stands Thin-film Transistor and de facto, it really isn’t a type of display. TFT is only the technology used to produce LCD display panels. TFT LCD displays use an ‘Active Matrix Technology” where the display transistor and capacitor have individual pixels attached to them. In fact, each pixel can have as many as four transistors; for switching them off and on easily. TFT displays are widely known for having high contrast ratios, resolution and image quality. They are also cheaper to produce but not as cheap as IPS LCD.

IPS stands for In-Plane Switching and it is the most popularly used type of LCD panels for a number of reasons. First, compared to TFT, the crystal/pixel orientation on IPS LCD is different. This modification allows for improved colour reproduction, better viewing angles, and reduced energy consumption. This is why IPS LCD is preferred over TFT by most gadgets manufacturers.

Generally, LCDs are known as the “backlit displays” because the pixels on the display are powered by a polarized light engineered to the screen. The light passes through the (horizontal and vertical) filters which help determine the pixel’s brightness. Although the inclusion of a backlight makes LCD displays (and phones) thicker, pixels are generally more closely packed, colours are more natural, and images — sharper.

OLED stands for “Organic light-emitting diode”. OLED is one of the latest display innovation used in many gadgets and electronics like smartphones and TVs. Unlike LCD displays, OLED panels produce their own light and do not rely on a backlight. This self-emission is achieved when an electrical current passes through two conductors with an organic carbon-based film between them.

Regarding quality, OLED are generally better at displaying blacks. They are also slimmer, dissipate less heat, and possess better contrast ratio when compared to LCDs. However, they are more expensive to produce and in turn lead to an increase in the price of smartphones they are used on. Shorter lifespan is also a downside to OLED displays.

AMOLED is an advanced type of OLED display that uses an “Active Matrix” technology. AMOLED is the acronym for Active Matrix Organic Light Emitting Diode (AMOLED). Like OLED, AMOLED pixels also emit their own light and further uses an active matrix system attached to a thin-film transistor (TFT) to exert more control over each pixels. This results to better visual experience; darker blacks, deeper brights, and higher refresh rates.

AMOLED panels are mostly used in big-sized smartphones as it supports almost any display size. One downside to AMOLED panels, though, is poor usability under sunlight.

Also called S-AMOLED, Super AMOLED is an upgrade of AMOLED panels. Unlike regular AMOLED, this upgrade uses almost the same technology but with architectural modifications that makes it better. In S-AMOLED, the touch sensor component have been integrated with the screen; both are separated in regular AMOLED.

This difference results in brighter display, reduced power consumption, reduced sunlight reflection, enhanced outdoor readability, and wider viewing angles. Super AMOLED is one the best displays out there and can be found on many flagship devices like the Samsung Galaxy A7 (2018) with three rear cameras, Samsung Galaxy Note9.

You can easily identify your smartphone’s screen type through a simple Google search of your phone specifications. You should see your device’s screen type under the display department. The image below shows the screen type (IPS LCD) of the Coolpad Note 5.

super amoled advanced vs tft lcd supplier

When we purchase a new smartphone we go through a list of specifications that includes the processor, software, cameras, display type, battery, etc. The display of the smartphone is something which has always been a concern for people. And smartphone technology has advanced so much in the past decade that you get several display technology options to choose from.

Two of the main contenders for display technologies that are widely available are AMOLED and LCD. Here in this article, we will be comprising AMOLED vs LCD and find out which one is better for you.

Starting with the AMOLED first, it is a part of the OLED display technology but with some more advanced features. To completely know about it must understand its all three components. The first one is LED, “Light Emitting Diode”. Then we have “O” which stands for organic and makes the OLED.

It actually means that organic material is placed with two conductors in each LED, which helps to produce the light. And the “AM” in AMOLED means Active Matrix, it has the capability to increase the quality of a pixel.

The AMOLED display is similar to the OLED in various factors like high brightness and sharpness, better battery life, colour reproduction, etc. AMOLED display also has a thin film transistor, “TFT” that is attached to each LED with a capacitor.

TFT helps to operate all the pixels in an AMOLED display. This display might have a lot of positives but there are a few negatives too let’s point both of them out.

Low outdoor visibility, usually the AMOLED Displays are quote not bright in direct sunlight and outdoor readability could be a problem for some devices but average screen brightness.

The LCD stands for “Liquid Crystal Display”, and this display produces colours a lot differently than AMOLED. LCD display uses a dedicated backlight for the light source rather than using individual LED components.

The LCD displays function pretty simply, a series of thin films, transparent mirrors, and some white LED lights that distributes lights across the back of the display.

As we have mentioned, an LCD display always requires a backlight and also a colour filter. The backlight must have to pass through a thin film transistor matrix and a polarizer. So, when you see it, the whole screen will be lit and only a fraction of light gets through. This is the key difference comparing AMOLED vs LCD and this is what differentiates these two display technologies.

The LCD displays are cheaper compared to the AMOLED as there is only one source of light which makes it easier to produce. Most budget smartphones also use LCD displays.

LCD displays have bright whites, the backlight emits lots of light through pixels which makes it easy to read in outdoors. It also shows the “Accurate True to Life” colours, which means it has the colours that reflect the objects of the real world more accurately than others.

LCDs also offer the best viewing angle. Although it may depend on the smartphone you have. But most high-quality LCD displays support great viewing angles without any colour distortion or colour shifting.

The LCD displays can never show the deep blacks like AMOLED. Due to the single backlight, it always has to illuminate the screen making it impossible to show the deep blacks.

The LCDs are also thicker than other displays because of the backlight as it needs more volume. So, LCD smartphones are mostly thicker than AMOLED ones.

Let’s start with the pricing. Most AMOLED display smartphones always cost more than an LCD smartphone. Although the trend is changing a bit. But still, if you want to get a good quality AMOLED display you have to go for the flagship devices.

The colors are also very sharp and vibrant with the AMOLED displays. And they look much better than any LCD display. The brightness is something where LCDs stood ahead of the AMOLED display. So using an LCD display outdoors gives much better results.

The last thing is battery consumption, and there is no one near the AMOLED displays in terms of battery. As of now, all smartphones feature a Dark Mode and most of the apps and UI are dark black with a black background. This dark UI on smartphones doesn’t require any other light, it gives the AMOLED displays a boost in battery performance.

Looking at all these factors and comparing AMOLED vs LCD displays, the AMOLED displays are certainly better than the LCDs. Also, the big display OEMs, like Samsung and LG are focusing more the OLED technologies for their future projects. So, it makes sense to look out for AMOLED displays. That being said, if we see further enhancements in the LCD technology in terms of battery efficiency and more, there is no point to cancel them at this moment.

super amoled advanced vs tft lcd supplier

AMOLED (active-matrix organic light-emitting diode, OLED display device technology. OLED describes a specific type of thin-film-display technology in which organic compounds form the electroluminescent material, and active matrix refers to the technology behind the addressing of pixels.

An AMOLED display consists of an active matrix of OLED pixels generating light (luminescence) upon electrical activation that have been deposited or integrated onto a thin-film transistor (TFT) array, which functions as a series of switches to control the current flowing to each individual pixel.

Typically, this continuous current flow is controlled by at least two TFTs at each pixel (to trigger the luminescence), with one TFT to start and stop the charging of a storage capacitor and the second to provide a voltage source at the level needed to create a constant current to the pixel, thereby eliminating the need for the very high currents required for passive-matrix OLED operation.

TFT backplane technology is crucial in the fabrication of AMOLED displays. In AMOLEDs, the two primary TFT backplane technologies, polycrystalline silicon (poly-Si) and amorphous silicon (a-Si), are currently used offering the potential for directly fabricating the active-matrix backplanes at low temperatures (below 150 °C) onto flexible plastic substrates for producing flexible AMOLED displays.

AMOLED was developed in 2006. Samsung SDI was one of the main investors in the technology, and many other display companies were also developing it. One of the earliest consumer electronics products with an AMOLED display was the BenQ-Siemens S88 mobile handsetiriver Clix 2 portable media player.Nokia N85 followed by the Samsung i7110 - both Nokia and Samsung Electronics were early adopters of this technology on their smartphones.

Manufacturers have developed in-cell touch panels, integrating the production of capacitive sensor arrays in the AMOLED module fabrication process. In-cell sensor AMOLED fabricators include AU Optronics and Samsung. Samsung has marketed its version of this technology as "Super AMOLED". Researchers at DuPont used computational fluid dynamics (CFD) software to optimize coating processes for a new solution-coated AMOLED display technology that is competitive in cost and performance with existing chemical vapor deposition (CVD) technology. Using custom modeling and analytic approaches, Samsung has developed short and long-range film-thickness control and uniformity that is commercially viable at large glass sizes.

The amount of power the display consumes varies significantly depending on the color and brightness shown. As an example, one old QVGA OLED display consumes 0.3 watts while showing white text on a black background, but more than 0.7 watts showing black text on a white background, while an LCD may consume only a constant 0.35 watts regardless of what is being shown on screen.

AMOLED displays may be difficult to view in direct sunlight compared with LCDs because of their reduced maximum brightness.Super AMOLED technology addresses this issue by reducing the size of gaps between layers of the screen.PenTile technology is often used for a higher resolution display while requiring fewer subpixels than needed otherwise, sometimes resulting in a display less sharp and more grainy than a non-PenTile display with the same resolution.

The organic materials used in AMOLED displays are very prone to degradation over a relatively short period of time, resulting in color shifts as one color fades faster than another, image persistence, or burn-in.

As of 2010, demand for AMOLED screens was high and, due to supply shortages of the Samsung-produced displays, certain models of HTC smartphones were changed to use next-generation LCD displays from the Samsung-Sony joint-venture SLCD in the future.

Flagship smartphones sold in 2020 and 2021 used either a Super AMOLED. Super AMOLED displays, such as the one on the Samsung Galaxy S21+ / S21 Ultra and Samsung Galaxy Note 20 Ultra have often been compared to IPS LCDs, found in phones such as the Xiaomi Mi 10T, Huawei Nova 5T, and Samsung Galaxy A20e.ABI Research, the AMOLED display found in the Motorola Moto X draws just 92 mA during bright conditions and 68 mA while dim.

"Super AMOLED" is a marketing term created by Samsung for an AMOLED display with an integrated touch screen digitizer: the layer that detects touch is integrated into the display, rather than overlaid on top of it and cannot be separated from the display itself. The display technology itself is not improved. According to Samsung, Super AMOLED reflects one-fifth as much sunlight as the first generation AMOLED.One Glass Solution (OGS).

Future displays exhibited from 2011 to 2013 by Samsung have shown flexible, 3D, transparent Super AMOLED Plus displays using very high resolutions and in varying sizes for phones. These unreleased prototypes use a polymer as a substrate removing the need for glass cover, a metal backing, and touch matrix, combining them into one integrated layer.

Lee, Myung Ho; Seop, Song Myoung; Kim, Jong Soo; Hwang, Jung Ho; Shin, Hye Jin; Cho, Sang Kyun; Min, Kyoung Wook; Kwak, Won Kyu; Jung, Sun I; Kim, Chang Soo; Choi, Woong Sik; Kim, Sung Cheol; Yoo, Eu Jin (2009). "Development of 31-Inch Full-HD AMOLED TV Using LTPS-TFT and RGB FMM". SID Symposium Digest of Technical Papers. 40: 802. doi:10.1889/1.3256911. S2CID 110948118.

Hamer, John W.; Arnold, Andrew D.; Boroson, Michael L.; Itoh, Masahiro; Hatwar, Tukaram K.; Helber, Margaret J.; Miwa, Koichi; Levey, Charles I.; Long, Michael; Ludwicki, John E.; Scheirer, David C.; Spindler, Jeffrey P.; Van Slyke, Steven A. (2008). "System design for a wide-color-gamut TV-sized AMOLED display". Journal of the Society for Information Display. 16: 3. doi:10.1889/1.2835033. S2CID 62669850.

Lin, Chih-Lung; Chen, Yung-Chih (2007). "A Novel LTPS-TFT Pixel Circuit Compensating for TFT Threshold-Voltage Shift and OLED Degradation for AMOLED". IEEE Electron Device Letters. 28 (2): 129. Bibcode:2007IEDL...28..129L. doi:10.1109/LED.2006.889523. S2CID 11194344.

Sarma, Kalluri R.; Chanley, Charles; Dodd, Sonia R.; Roush, Jared; Schmidt, John; Srdanov, Gordana; Stevenson, Matthew; Wessel, Ralf; Innocenzo, Jeffrey; Yu, Gang; O"Regan, Marie B.; MacDonald, W. A.; Eveson, R.; Long, Ke; Gleskova, Helena; Wagner, Sigurd; Sturm, James C. (2003). "Active-matrix OLED using 150°C a-Si TFT backplane built on flexible plastic substrate (Proceedings Paper)". SPIE Proceedings. 5080: 180. doi:10.1117/12.497638. S2CID 12958469. "Archived copy" (PDF). Archived from the original (PDF) on 28 June 2011. Retrieved 2010-09-06.link)

Reid Chesterfield, Andrew Johnson, Charlie Lang, Matthew Stainer, and Jonathan Ziebarth, "Solution-Coating Technology for AMOLED Displays Archived 16 May 2011 at the Wayback Machine", Information Display Magazine, January 2011.

"AMOLED vs LCD: differences explained". Android Authority. 8 February 2016. Archived from the original on 27 December 2016. Retrieved 6 February 2017.

Tim Carmody (10 November 2010). "How Super AMOLED displays work". Wired. Wired.com. Archived from the original on 28 September 2012. Retrieved 10 October 2012.

Ashtiani, Shahin J.; Reza Chaji, G.; Nathan, Arokia (2007). "AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation". Journal of Display Technology. 38 (1): 36. Bibcode:2007JDisT...3...36A. doi:10.1109/JDT.2006.890711. S2CID 44204246.

"AMOLED vs LCD: Which screen is best for your phone?". digitaltrends.com. 29 August 2014. Archived from the original on 29 March 2018. Retrieved 6 May 2018.

super amoled advanced vs tft lcd supplier

For instance, HTC One uses Super LCD3 tech, in its 4.7in screen which gives a resolution of 1920 x 1080 pixels, with pixel density of 469 pixels per inch (ppi). This results in super display in terms of crispness and colour reproduction. HTC says the SLCD technology gives the phone better power management, improved viewing angles and is easier to produce.

The Thin film transistor liquid crystal display (TFT LCD) technology is the most common display technology used in mobile phones. A variant of liquid crystal display (LCD), the technology uses TFT technology to enhance image quality. It offers better image quality and higher resolutions as compared to earlier generation LCD displays.

IPS LCD Stands for In Plane Switching liquid Crystal Display. This technology offers better display quality as compared to the TFT-LCD display. The good part about IPS LCD is that it offers better viewing angles and consumes less power. Due to higher costs, it is found only on high-end smartphones. Apple uses a high resolution (640x960 pixels) version of IPS LCD in its iPhone 4, which is also called Retina Display.

Organic Light Emitting Diode (OLED) display technology is much better as compared to the LCD display technology because of its excellent colour reproduction, faster response times, wider viewing angles, higher brightness and extremely light weight designs.

OLEDs are brighter than LEDs and do not require backlighting like LCDs. Since OLEDs do not require backlighting, they consume much less power than LCDs.

AMOLED stands for Active Matrix Organic Light Emitting Diode. A step ahead of OLED screens, the AMOLED screens can control each pixel individuality while maintaining the properties of an OLED panel. AMOLED screens use a different subpixel arrangement which can reduce the image quality a bit.

AMOLED screens have all the attributes of an OLED display like excellent colour reproduction, faster response times, wider viewing angles, higher brightness and extremely light weight designs.

Super AMOLED display technology is an advanced version of AMOLED display. Samsung uses this term for the AMOLED panels that they develop. Super AMOLED  screens are built with capacitive touch sensors on the display itself. Super AMOLED display is much more responsive than an AMOLED display. Samsung top-of-the-line Galaxy SII comes engineered with Super AMOLED display technology. Samsung has already took it"s SMOLED screen to next levels by developing Super AMOLED+, HD Super AMOLED+ and FHD Super AMOLED+ screens.

It is a name given by Apple to the high-resolution screen technology introduced on the iPhone 4 in June 2010. Something is a Retina Display when it offers a density of pixels above 163 pixels per inch. The company calls it the Retina display because its pixels cannot be individually identified by a human eye, thus rendering a super sharp display, more crisp text and more clear pictures.

Color boost is simply Moto"s marketing term for their new display. Although it now uses LCD displays, the company fine-tuned its panels to match the saturation of OLED displays while maintaining the higher performance of LCD. It"s somewhere in the middle ground.

super amoled advanced vs tft lcd supplier

A new form of display technology called Organic Light-Emitting Diode (OLED) is sweeping the display world today. Let’s take a look at what TFT display VS OLED display and how it stacks up to TFTs.

OLED displays naturally emit light, so using them on a display panel doesn’t require a backlight. Meanwhile, LCDs need backlights because the liquid crystals cannot create light on their own. OLED’s natural light emission also paves the way for creating lighter screen devices than those using TFT LCD display.

LCD displays are brighter than OLED. This is due to the LCD’s use of backlights that can brightly light up the entire screen. While OLEDs emit good brightness levels from their light, they can never match the brightness that LCD backlights have.

OLED wins in the black levels feature. It’s because OLEDs can perfectly turn off a pixel, causing it to become completely black. LCDs can’t create perfect black screens even with their full-array local dimming feature. LCDs are also prone to blooming, where a bright part spoils the darkness of an adjacent black area.

OLED screens have better viewing angles than LCDs display. Some LCDs improve their viewing angles by using in-plane switching panels (IPS). However, the clarity of images and videos can’t match that of OLEDs when viewed from extreme side angles. This is because LCDs inherently block light due to their filtering layers, and that creates added depth which makes LCD viewing angles limited.

LCD displays are a bit more energy-efficient than OLEDs. Energy consumption in OLED displays depends on the screen brightness. Less brightness used means lower power consumption, but this may not be ideal because the contrast ratio will suffer when brightness is reduced. This is not ideal if, for instance, you’re using an OLED smartphone under bright sunlight.

Meanwhile, the backlights form the bulk of power consumption in TFT displays. Putting the backlight to a lower setting significantly improves the energy efficiency of TFT displays. For instance, reducing the backlight brightness of an LCD TV with a LED backlight won’t affect the picture quality but will draw less power consumption than an OLED TV.

Both OLED and LCD create high-quality images with a wide color gamut on a screen. OLED display wins over TFT display regarding blackness levels and viewing angle. However, the TFT display takes the cake for brightness and energy efficiency.

AMOLED is another emerging display technology lately. It stands for Active Matrix Organic Light-Emitting Diodes. AMOLED is a type of OLED display used in several smartphones, digital cameras, televisions, and media players.

Thin film transistors (TFTs) and capacitors are attached to each pixel LED component of the panel. At least two TFTs are attached to one pixel – one to control the capacitor’s charging and another to give a voltage source.

AMOLED displays have better color accuracy than LCDs. What makes the color more accurate in AMOLED displays is largely due to the precise pixel control achieved by AMOLED panels.

Whites and blacks appear perfect in AMOLED displays. Whites produced by LCDs may carry a bluish tint due to the backlight. Blacks don’t completely appear dark in LCDs, too.

AMOLED provides a greater color gamut than LCDs. AMOLEDs (and all OLED displays in general) have additional blue and green saturation. While these hues greatly widen AMOLED’s color options, some people find the resulting colors a bit unnatural to look at.

Meanwhile, LCDs have subdued greens and quite compelling red hues. Its color gamutmay not be as wide as AMOLED’s, but many people still find it satisfying. That’s because LCD’s color range closely matches the Standard RBG color gamut profile, the one most utilized in videos and images.

LCD’s backlights help maintain the color balance of the entire screen. The backlights ensure that color balance remains consistent across the display. Meanwhile, AMOLED tends to suffer from very slight color balance drifts because of variances in the diodes’ light-emitting capacity over time.

LCDs often have a lower contrast ratio and are prone to light bleeds. That’s due to the backlights remaining open even if light has been blocked and the pixels are supposed to show black color. This is not a problem with AMOLED displays because the panel can simply switch off the pixel to create a pure black color. AMOLEDs have a better contrast ratio as exhibited by their pure black and white levels.

Since AMOLED displays do not require filtering layers and backlights, they’re more suited for use in handheld mobile devices such as smartphones and gaming consoles. LCD may be used in mobile devices as well, but the filtering layers and backlights tend to add a slight bulk to the device. Hence, many manufacturers are now switching to thinner and lighter AMOLED displays.

To sum up this part, AMOLED displays fare better than LCDs in terms of color gamut, accuracy, contrast, and mobile device suitability. However, LCDs have the potential for longer lifespans and carry a better color balance across the display device.

If you compare color LCD vs Display P3, you’ll find a significantly wider color range in Display P3 than the typical sRGB used in color LCDs. LCD monitors, especially those used in computers and laptops, are configured to accurately represent the sRGB gamut as precisely as possible. Meanwhile, Display P3 has been consistently used in Apple products since 2015, starting with the iMac desktop.

That’s all the basic information you need to know about LCD display screens. And the difference between TFT Display VS OLED Display. Now, you know How LCD Works, its possible lifespan, components, and how it compares to other display technologies.

Armed with this information, you can better appreciate and take care of your LCD display devices. And in case you’re planning to add display devices to your business, the information you’ve learned will help you make educated choices regarding the display technologies you’ll utilize.

super amoled advanced vs tft lcd supplier

In recent years, smartphone displays have developed far more acronyms than ever before with each different one featuring a different kind of technology. AMOLED, LCD, LED, IPS, TFT, PLS, LTPS, LTPO...the list continues to grow.

As if the different available technologies weren"t enough, component and smartphone manufacturers adopt more and more glorified names like "Super Retina XDR" and "Dynamic AMOLED", which end up increasing the potential for confusion among consumers. So let"s take a look at some of these terms used in smartphone specification sheets and decipher them.

There are many display types used in smartphones: LCD, OLED, AMOLED, Super AMOLED, TFT, IPS and a few others that are less frequently found on smartphones nowadays, like TFT-LCD. One of the most frequently found on mid-to-high range phones now is IPS-LCD. But what do these all mean?

LCD means Liquid Crystal Display, and its name refers to the array of liquid crystals illuminated by a backlight, and their ubiquity and relatively low cost make them a popular choice for smartphones and many other devices.

LCDs also tend to perform quite well in direct sunlight, as the entire display is illuminated from behind, but does suffer from potentially less accurate colour representation than displays that don"t require a backlight.

Within smartphones, you have both TFT and IPS displays. TFT stands for Thin Film Transistor, an advanced version of LCD that uses an active matrix (like the AM in AMOLED). Active matrix means that each pixel is attached to a transistor and capacitor individually.

The main advantage of TFT is its relatively low production cost and increased contrast when compared to traditional LCDs. The disadvantage of TFT LCDs is higher energy demands than some other LCDs, less impressive viewing angles and colour reproduction. It"s for these reasons, and falling costs of alternative options, that TFTs are not commonly used in smartphones anymore.Affiliate offer

IPS technology (In-Plane Switching) solves the problem that the first generation of LCD displays experience, which adopts the TN (Twisted Nematic) technique: where colour distortion occurs when you view the display from the side - an effect that continues to crop up on cheaper smartphones and tablets.

The PLS (Plane to Line Switching) standard uses an acronym that is very similar to that of IPS, and is it any wonder that its basic operation is also similar in nature? The technology, developed by Samsung Display, has the same characteristics as IPS displays - good colour reproduction and viewing angles, but a lower contrast level compared to OLED and LCD/VA displays.

According to Samsung Display, PLS panels have a lower production cost, higher brightness rates, and even superior viewing angles when compared to their rival, LG Display"s IPS panels. Ultimately, whether a PLS or IPS panel is used, it boils down to the choice of the component supplier.

This is a very common question after "LED" TVs were launched, with the short answer simply being LCD. The technology used in a LED display is liquid crystal, the difference being LEDs generating the backlight.

One of the highlights from TV makers at the CES 2021 tradeshow, mini-LED technology seemed far removed from mobile devices until Apple announced the 2021 iPad Pro. As the name implies, the technique is based on the miniaturization of the LEDs that form the backlight of the screen — which still uses an LCD panel.

Despite the improvement in terms of contrast (and potentially brightness) over traditional LCD/LED displays, LCD/mini-LEDs still divide the screen into brightness zones — over 2,500 in the case of the iPad and 2021 "QNED" TVs from LG — compared to dozens or hundreds of zones in previous-generation FALD (full-array local dimming) displays, on which the LEDs are behind the LCD panel instead of the edges.

AMOLED stands for Active Matrix Organic Light-Emitting Diode. While this may sound complicated it actually isn"t. We already encountered the active matrix in TFT LCD technology, and OLED is simply a term for another thin-film display technology.

OLED is an organic material that, as the name implies, emits light when a current is passed through it. As opposed to LCD panels, which are back-lit, OLED displays are "always off" unless the individual pixels are electrified.

This means that OLED displays have much purer blacks and consume less energy when black or darker colours are displayed on-screen. However, lighter-coloured themes on AMOLED screens use considerably more power than an LCD using the same theme. OLED screens are also more expensive to produce than LCDs.

Because the black pixels are "off" in an OLED display, the contrast ratios are also higher compared to LCD screens. AMOLED displays have a very fast refresh rate too, but on the downside are not quite as visible in direct sunlight as backlit LCDs. Screen burn-in and diode degradation (because they are organic) are other factors to consider.Affiliate offer

OLED stands for Organic Light Emitting Diode. An OLED display is comprised of thin sheets of electroluminescent material, the main benefit of which is they produce their own light, and so don"t require a backlight, cutting down on energy requirements. OLED displays are more commonly referred to as AMOLED displays when used on smartphones or TVs.

As we"ve already covered, the AM part of AMOLED stands for Active Matrix, which is different from a Passive Matrix OLED (P-OLED), though these are less common in smartphones.

Super AMOLED is the name given by Samsung to its displays that used to only be found in high-end models but have now trickled down to more modestly specced devices. Like IPS LCDs, Super AMOLED improves upon the basic AMOLED premise by integrating the touch response layer into the display itself, rather than as an extra layer on top.

As a result, Super AMOLED displays handle sunlight better than AMOLED displays and also require less power. As the name implies, Super AMOLED is simply a better version of AMOLED. It"s not all just marketing bluster either: Samsung"s displays are regularly reviewed as some of the best around.

The latest evolution of the technology has been christened "Dynamic AMOLED". Samsung didn"t go into detail about what the term means, but highlighted that panels with such identification include HDR10+ certification that supports a wider range of contrast and colours, as well as blue light reduction for improved visual comfort.

In the same vein, the term "Fluid AMOLED" used by OnePlus on its most advanced devices basically highlights the high refresh rates employed, which results in more fluid animations on the screen.Affiliate offer

Resolution describes the number of individual pixels (or points) displayed on the screen and is usually presented for phones by the number of horizontal pixels — vertical when referring to TVs and monitors. More pixels on the same display allow for more detailed images and clearer text.

Speaking of pixel density, this was one of Apple"s highlights back in 2010 during the launch of the iPhone 4. The company christened the LCD screen (LED, TFT, and IPS) used in the smartphone as "Retina Display", thanks to the high resolution of the panel used (960 by 640 pixels back then) in its 3.5-inch display.

With the iPhone 11 Pro, another term was introduced to the equation: "Super Retina XDR". Still using an OLED panel (that is supplied by Samsung Display or LG Display), the smartphone brings even higher specs in terms of contrast - with a 2,000,000:1 ratio and brightness level of 1,200 nits, which have been specially optimized for displaying content in HDR format.

As a kind of consolation prize for iPhone XR and iPhone 11 buyers, who continued relying on LCD panels, Apple classified the display used in the smartphones with a new term, "Liquid Retina". This was later applied also to the iPad Pro and iPad Air models, with the name defining screens that boast a high range and colour accuracy, at least based on the company"s standards.

TFT(Thin Film Transistor) - a type of LCD display that adopts a thin semiconductor layer deposited on the panel, which allows for active control of the colour intensity in each pixel, featuring a similar concept as that of active-matrix (AM) used in AMOLED displays. It is used in TN, IPS/PLS, VA/PVA/MVA panels, etc.

LTPS(Low Temperature PolySilicon) - a variation of the TFT that offers higher resolutions and lower power consumption compared to traditional TFT screens, based on a-Si (amorphous silicon) technology.

IGZO(Indium Gallium Zinc Oxide) - a semiconductor material used in TFT films, which also allows higher resolutions and lower power consumption, and sees action in different types of LCD screens (TN, IPS, VA) and OLED displays

LTPO(Low Temperature Polycrystaline Oxide) - a technology developed by Apple that can be used in both OLED and LCD displays, as it combines LTPS and IGZO techniques. The result? Lower power consumption. It has been used in the Apple Watch 4 and the Galaxy S21 Ultra.

Among televisions, the long-standing featured technology has always been miniLED - which consists of increasing the number of lighting zones in the backlight while still using an LCD panel. There are whispers going around that smartphones and smartwatches will be looking at incorporating microLED technology in their devices soon, with it being radically different from LCD/LED displays as it sports similar image characteristics to that of OLEDs.

As previously stated, OLED/AMOLED screens have the advantage of a varied contrast level, resulting from individual brightness control for the pixels. Another result of this is the more realistic reproduction of black, as well as low power consumption when the screen shows off dark images - which has also helped to popularize dark modes on smartphones.

In the case of LCD displays, the main advantage lies in the low manufacturing cost, with dozens of players in the market offering competitive pricing and a high production volume. Some brands have taken advantage of this feature to prioritize certain features - such as a higher refresh rate - instead of adopting an OLED panel, such as the Xiaomi Mi 10T.

super amoled advanced vs tft lcd supplier

TFT, which stands for thin film transistor, is an advanced offshoot of the LCD technology. These are active matrix LCDs, which immensely improve the quality of color, contrast, image clarity, and more. This is one reason why TFTs are used in displays of many electronic devices, along with capacitors. The 3.9-inch bar type color TFT LCD display comes with such amazing quality and features in terms of the resolution, size, interface, and so on. This display finds applications in many industrial equipment, marine equipment, point of sale (POS) terminals, automobiles, advertising displays, server systems, and so on. There are many 3.9-inch TFT LCD module manufacturers making this display although features may slightly differ based on the manufacturer. There are some who customize it based on your requirement. This makes it essential to source these displays from a reliable manufacturer and supplier. Microtips Technology, one of the leading 3.9-inch bar type color TFT LCD module manufacturers, offer this TFT display with all the advanced features and at the best price. This post enlists some the common features, working, and benefits of using this 3.9-inch color TFT LCD display provided by Microtips.

As mentioned before, TFT is a subset of the LCD technology. It is an active matrix display which produces high-quality and responsive images. They enable a wide viewing angle compared to passive matrix displays, which use a grid of horizontal and vertical wires to display an image. In this case, the charge of two wires is altered to change a pixel at intersection. The response time of producing an image with active matrix technology is way faster than passive active matrix, and the image quality is better as well. Standard TFT displays use a bright white light for image generation. The active matrix of a TFT display is constantly refreshed because of the input signals from the controlling device. This happens because several wavelengths of light pass through the liquid crystals. This occurs as TFTs use an electrical charge, which changes the molecular structure of the liquid crystals. Then, there are various filters applied, which determine the amount of light that passes through, and thus the colors formed, which is ultimately viewed on a screen. The color matrix density and the TFT layout determine the number of pixels.

Resolution: This indicates the number of pixels per unit or the pixel density. The more the number of pixels, the greater detail you can view by zooming in. The 3.9-inch sized TFT display has a resolution of 480 X 128.

Interface: This works as a mediator between the machine and humans who view the display, which allows users to monitor and control parameters such as color, brightness, and so on. TFT displays have an RGB interface and LCD display type.

Response Time: Being an active matrix display, this TFT display has a fast response time of up to 15ms. Response time implies the time you receive the output or response from the time you gave an input command. Now with touchscreens, it is even faster.

Suited for Advanced Applications: These displays are suitable in applications that are exposed to harsh environments such as industrial units, and marine environments.

Microtips Technology has the required experience and expertise in LCD technology and offer local sales support in many regions across the globe. They provide a gamut of display modules with different technologies such as LCD, TFT, LED, OLED, and so on, and offer turnkey solutions for product design and development. They are totally focused on the product quality and have ISO9001 and ISO14001 certifications.

super amoled advanced vs tft lcd supplier

S-AMOLED (super-active-matrix organic light-emitting diode) is a marketing term that refers to a display technology used in a variety of electronic devices. The "super" in its name distinguishes it from its older, less advanced versions (OLED and AMOLED).

S-AMOLED might also go by the name super amorphous organic light-emitting diode, or super amorphous OLED because it uses amorphous silicon technology.

Displays using organic light-emitting diodes (OLED) incorporate organic materials that light up when in contact with electricity. The active-matrix aspect of AMOLED sets it apart from OLED. AMOLED, then, is a kind of screen technology that includes not only a way to display light but also a method to detect touch (the "active-matrix" part). While it"s true that this method is a part of AMOLED displays as well, super-AMOLEDs are slightly different.

These displays are known for being able to render a deep black color when needed, a huge plus on any display and something you"ll notice right away when comparing with your standard IPS​ (in-plane switching) LCD. The benefit is obvious when watching a movie or viewing a picture that"s supposed to contain "true" black.

AMOLED technology includes a layer behind the OLED panel that gives light to each pixel instead of using a backlight as LCDs do. Because each pixel can be colored on an as-needed basis, pixels can be dimmed or turned off to make a true black instead of the pixels being blocked from receiving light (as with LCD).

This also means that AMOLED screens are great for displaying a huge range of color; the contrast against whites is infinite (because blacks are absolute black). On the other hand, this amazing ability makes it easier for images to be too vibrant or over saturated.

AMOLED is similar to Super-AMOLED in not only name, but also in function. In reality, Super-AMOLED is identical to AMOLED in all ways but one, but that"s what makes all the difference.

The two technologies are the same in that devices using them can incorporate light and touch sensors so the screen can be read and manipulated. The layer that detects touch (the digitizer, or capacitive touchscreen layer), however, is embedded directly into the screen in Super-AMOLED displays, while it"s an entirely separate layer on top of the screen in AMOLED displays.

This might not seem like a major difference, but Super-AMOLED displays carry many benefits over AMOLED displays because of the way these layers are designed:

Less power needs to be supplied to a Super-AMOLED screen because it doesn"t generate as much heat as older screen technologies. This is due, in part, to the fact that pixels are actually turned off and therefore not emitting light/using power when displaying black.

Manufacturing the technology behind Super-AMOLED displays is more expensive, however. Like most technology, this is likely to change as more manufacturers incorporate AMOLED into their TVs, smartphones, and other devices.

Organic materials eventually die, so AMOLED displays degrade faster than LED and LCD. Even worse, the materials used to create the individual colors have varying life spans, causing a noticeable difference in overall uniformity as the colors fade (e.g., blue OLED films don"t last as long as red or green).

Screen burn-in is a risk with AMOLED because of the non-uniform use of pixels. This effect is compounded as blue colors die out and leave red and green colors to take up the slack, leaving an imprint over time. That said, this issue doesn"t affect displays with high numbers of pixels per inch.

For example, HD Super-AMOLED is Samsung"s description of Super-AMOLED with a high-definition resolution of 1280x720 or greater. Motorola"s Super-AMOLED Advanced refers to displays that are brighter and of a higher resolution than Super-AMOLED screens. These displays use a technology called PenTile to sharpen the pixels. Others include Super-AMOLED Plus, HD Super-AMOLED Plus, Full HD Super-AMOLED, and Quad HD Super-AMOLED.

Dynamic-AMOLED displays are Super-AMOLED displays that also support HDR10+, which provides cinema-quality color and contrast. Dynamic-AMOLED displays are also certified for eye comfort by TUV Rheinland, so they emit less blue light than OLED displays.

Unlike Super-AMOLED displays that use LED, Retina displays use LCD. This screen type allows for higher resolution video than traditional AMOLEDs, but AMOLED displays offer superior contrast.

It"s a matter of personal preferences. When comparing Super-AMOLED and Super LCD (IPS-LCD), the former can display a wider range of colors. Super LCD, on the other hand, offers sharper images and is better for outdoor viewing.

super amoled advanced vs tft lcd supplier

Super AMOLED (S-AMOLED) and Super LCD (IPS-LCD) are two display types used in different kinds of electronics. The former is an improvement on OLED, while Super LCD is an advanced form of LCD.

All things considered, Super AMOLED is probably the better choice over Super LCD, assuming you have a choice, but it"s not quite as simple as that in every situation. Keep reading for more on how these display technologies differ and how to decide which is best for you.

S-AMOLED, a shortened version of Super AMOLED, stands for super active-matrix organic light-emitting diode. It"s a display type that uses organic materials to produce light for each pixel.

One component of Super AMOLED displays is that the layer that detects touch is embedded directly into the screen instead of existing as an entirely separate layer. This is what makes S-AMOLED different from AMOLED.

Super LCD is the same as IPS LCD, which stands forin-plane switching liquid crystal display. It"s the name given to an LCD screen that utilizes in-plane switching (IPS) panels. LCD screens use a backlight to produce light for all the pixels, and each pixel shutter can be turned off to affect its brightness.

There isn"t an easy answer as to which display is better when comparing Super AMOLED and IPS LCD. The two are similar in some ways but different in others, and it often comes down to opinion as to how one performs over the other in real-world scenarios.

For example, one quick consideration is that you should choose S-AMOLED if you prefer deeper blacks and brighter colors because those areas are what makes AMOLED screens stand out. However, you might instead opt for Super LCD if you want sharper images and like to use your device outdoors.

S-AMOLED displays are much better at revealing dark black because each pixel that needs to be black can be true black since the light can be shut off for each pixel. This isn"t true with Super LCD screens since the backlight is still on even if some pixels need to be black, and this can affect the darkness of those areas of the screen.

What"s more is that since blacks can be truly black on Super AMOLED screens, the other colors are much more vibrant. When the pixels can be turned off completely to create black, the contrast ratio goes through the roof because that ratio is the brightest whites the screen can produce against its darkest blacks.

However, since LCD screens have backlights, it sometimes appears as though the pixels are closer together, producing an overall sharper and more natural effect. AMOLED screens, when compared to LCD, might look over-saturated or unrealistic, and the whites might appear slightly yellow.

When using the screen outdoors in bright light, Super LCD is sometimes said to be easier to use, but S-AMOLED screens have fewer layers of glass and so reflect less light, so there isn"t really a clear-cut answer to how they compare in direct light.

Another consideration is that the AMOLED display slowly loses its vibrant color and saturation as the organic compounds break down, although this usually takes a very long time and even then might not be noticeable.

Without backlight hardware, and with the added bonus of only one screen carrying the touch and display components, the overall size of an S-AMOLED screen tends to be smaller than that of an IPS LCD screen.

This is one advantage that S-AMOLED displays have when it comes to smartphones in particular, since this technology can make them thinner than those that use IPS LCD.

Since IPS-LCD displays have a backlight that requires more power than a traditional LCD screen, devices that utilize those screens need more power than those that use S-AMOLED, which doesn"t need a backlight.

That said, since each pixel of a Super AMOLED display can be fine-tuned for each color requirement, power consumption can, in some situations, be higher than with Super LCD.

For example, playing a video with lots of black areas on an S-AMOLED display will save power compared to an IPS LCD screen since the pixels can be effectively shut off and then no light needs to be produced. On the other hand, displaying lots of color all day would most likely affect the Super AMOLED battery more than it would the device using the Super LCD screen.

An IPS LCD screen includes a backlight while S-AMOLED screens don"t, but they also have an additional layer that supports touch, whereas Super AMOLED displays have that built right into the screen.

For these reasons and others (like color quality and battery performance), it"s probably safe to say that S-AMOLED screens are more expensive to build, and so devices that use them are also more expensive than their LCD counterparts.

super amoled advanced vs tft lcd supplier

The two existing mainstream technologies for smartphone displays are LCD and OLED. Their advanced iterations in those gizmos are IPS-LCD, as found in Apple’s iPhone 4, and Super AMOLED, as present in the Samsung Galaxy S. Therefore, after a brief overview of the technology behind them, we will compare the two flagship smartphones displaywise, try to pierce through the marketing fluff, and come up with a conclusion, more suited for real-life decision making. Bear in mind that these two technologies are future-proof, and will be utilized in smartphones for the next few years as well.

Liquid Crystal Display (LCD), has been around for a while. We won’t go as far back as 1888, when an Austrian botanist discovers liquid crystals, but rather mark 1972 and 1973 when the first LCD watch and calculator were introduced. Then rapid advancements followed, adding colors, and improving the viewing angles, brightness and efficiency of the then power-hungry technology, which requires backlighting. Most major display companies make LCDs, the technology is very mature, without much production and supply issues.

Organic Light-Emitting Diodes (OLED) is a much newer development than LCD. Luminescence of organic materials when electric current is applied to them, was first observed in the 1950s by French researchers. Cambridge scientists reached the stage of efficient light emission from a green organic polymer in 1990, and the first commercial OLED devices came in the early 2000s, three decades after LCD ones. Below is a funny setup to explain the process of organic light emission, demonstrated on a pickle by Vladimir Bulovic from MIT:

A lot of the companies that were producing OLED screens, such as Sony, or Toshiba, have currently shelved their R&D and production plans due to cost-cutting. Thus Samsung is becoming the OLED industry juggernaut. The Koreans hold 98% of the world’s Active Matrix OLED (AMOLED) market in 2010.

Simpler construction – the thin layer of organic polymers emits light itself, when electric current is applied, so no additional backlighting is needed. On top of that, production methods can incorporate all the elements needed close to one another, and OLEDs can even be printed on an industrial printer, if some of the ongoing research makes it up to commercial scale. Thus OLED displays can be extremely thin, even bendable. Illustrated below are the elements, constructing a typical LCD, and a typical AMOLED screen:

Higher contrast ratio – black color from OLED screens is indeed black, due to the simple fact that the pixel is off at that time, whereas the LCD backlighting is still on, producing greyish black. The contrast ratio of AMOLED displays is extremely high;

Faster response times – the organic diodes fire up and emit light immediately when current is applied, whereas with LCDs, some motion blur might be present with fast moving objects;

Wider viewing angles – LCD suffers from picture deterioration when viewed from certain angles, due to the nature of the direction in which light travels through the liquid crystals, while OLED screens’ brightness and color gamut are left intact up to almost 180 degrees of viewing;

super amoled advanced vs tft lcd supplier

The vendors are racing to sign up the most eye-catching touchscreen technologies for their 2012 smartphones and tablets, prompting a shake-up among the key suppliers of small screen displays. Samsung remains the leader, in volumes and technological innovation, but the strength of the Korean duo is under pressure from lower cost Chinese manufacturers and from new alliances between the Japanese suppliers, as many of those come down from large screens to the biggest volume driving segment, handsets. Epitomizing that is the reported shift of Apple’s favors, as the firm adds Japan’s Sharp to its inner circle alongside Samsung and LG. And there will be rich rewards for companies which can design new approaches to small touchscreen displays ‘ some, like Samsung’s upcoming ultra-high resolution update to Super AMOLED Plus, will emerge from the majors; others will come from start-ups or from entrants from other sectors, such as Qualcomm, which is starting volume manufacture of its innovative Mirasol display.

However, lawsuits aside, Samsung is a less attractive supplier for a market maker like Apple than it used to be, because of its recent practice of keeping its display unit’s best innovations to itself, for its handset division, for a period of time. This puts pressure on Apple to turn to partners which do not have significant handset interests of their own ‘ Sharp is a major phonemaker in Japan, and has tried to attract international attention with early moves into 3D screens and other tactics, but it remains a tiny player outside its homeland, and would certainly not jeopardize a major screen deal with Apple by keeping its technologies to itself. Indeed, the deepened alliance with Apple may enable the iPhone maker to move into screen technologies which the Koreans have virtually controlled, notably Super AMOLED.

Apple bravely claims the iPhone’s RetinaDisplay high resolution screen, which is mainly made by LG, is superior to AMOLED technologies, but that claim may sound hollow when Samsung’s new generation appears in devices next spring. And the LCD-based RetinaDisplay has not yet found its way into larger sizes or the iPad, which has stuck with more conventional LCD displays from Samsung and LG so far. Apple will look for a triple whammy from a strong relationship with Sharp -Retina-class screens for the ‘iPad 3’; future options to adopt AMOLED or other key technologies like 3D; and a blow to Samsung.

At first the Sharp products for Apple will be LCDs, but Misek also believes that Sharp and Apple will co-develop AMOLED displays within 1-2 years, which would hit at Samsung’s strongest area of leadership in small screens.

And even in LCD, Sharp is innovating hard. Its screens use an oxide material unveiled by Sharp earlier in the year, called IGZO (iridium, gallium and zinc oxide), which promises to enable brighter, clearer, thinner and more energy efficient LCDs which can still use standard mass market manufacturing processes. This is understood to be a key reason for Apple’s interest in closer ties to the Japanese supplier, since it will not only enhance RetinaDisplay and other LCDs, but also help overcome supply shortages seen in the some of the more advanced screen technologies, such as Samsung’s own Super AMOLED Plus.

Sharp is building up its power elsewhere too. It is also expected to become more critical to Apple’s manufacturer, Foxconn, because that ODM’s alliance with Hitachi has been weakened by the creation of an partnership between Hitachi, Toshiba and Sony for small LCDs. Greater dependence on Sharp at Apple and Foxconn will stimulate the Japanese company’s investment in small screens, where it has been less prominent than Samsung. It is also likely to create a joint venture with Foxconn’s Chimei Innolux (CMI) LCD subsidiary, which has also won new business with Apple this year. That would enable it to ramp up its production of small displays at lower cost by using CMI facilities.

Not that the Koreans will stand still of course. LG recently showed off a new 4.5-inch display boasting the resolution of an HD television set. The True HD IPS screen uses similar technology to Samsung’s upcoming successor for Super AMOLED Plus, which is likely to be an exclusive for the larger Korean firm’s handset arm in the first wave and appear in commercial devices in the spring.

In May, Samsung shifted the mobile display goalposts again when it showed off an ultra-high resolution LCD screen for 10-inch tablets as well as HDTVs. The AMOLED HD platform uses the PenTile technology from Samsung’s affiliate Nouvoyance, and promises the highest resolution and pixel density available on the market for 10.1-inch devices. It supports 2560 x 1600 pixels ‘ a maximum resolution usually associated with very large displays. It also achieves 300dpi density while using 65% fewer sub-pixels to improve the visual effect. Samsung says the technology delivers twice the full HD performance at 40% less power, compared to current ‘RGB Stripe’ LCD screens.

LG’s struggling smartphone outfit may also get the first benefit from its stablemate’s innovation, though LG Display tends to be more focused on the open market. Its new screen has resolution of 1280×720 (720p) and includes LG’s Mobile HD Graphics Engine, which the vendor claims ‘offers advanced resolution, brightness and clarity and shows colors in their most natural tones’. The specs are ahead of Apple’s RetinaDisplay, with a resolution of 960×640 in a 3.5-inch size. One of the disappointments, to many, of the recently announced iPhone 4S was that the screen size and resolution did not change to meet the increasingly long line of Android superphones with true HD and dimensions over 4-inches. With IPS, LG can match the intensity of RetinaDisplay on a larger surface area. The first handset to use the True HD screen will be LG Mobile’s Optimus LTE, which made its debut in Korea last month.

Tablets, because of their larger size, have not yet featured new technologies such as Super AMOLED though DisplaySearch expects to see model