display out lcd panel vs v out panel made in china
Samsung Display will stop producing LCD panels by the end of the year. The display maker currently runs two LCD production lines in South Korea and two in China, according to Reuters. Samsung tells The Verge that the decision will accelerate the company’s move towards quantum dot displays, while ZDNetreports that its future quantum dot TVs will use OLED rather than LCD panels.
The decision comes as LCD panel prices are said to be falling worldwide. Last year, Nikkei reported that Chinese competitors are ramping up production of LCD screens, even as demand for TVs weakens globally. Samsung Display isn’t the only manufacturer to have closed down LCD production lines. LG Display announced it would be ending LCD production in South Korea by the end of the 2020 as well.
Last October Samsung Display announced a five-year 13.1 trillion won (around $10.7 billion) investment in quantum dot technology for its upcoming TVs, as it shifts production away from LCDs. However, Samsung’s existing quantum dot or QLED TVs still use LCD panels behind their quantum dot layer. Samsung is also working on developing self-emissive quantum-dot diodes, which would remove the need for a separate layer.
Samsung’s investment in OLED TVs has also been reported by The Elec. The company is no stranger to OLED technology for handhelds, but it exited the large OLED panel market half a decade ago, allowing rival LG Display to dominate ever since.
Although Samsung Display says that it will be able to continue supplying its existing LCD orders through the end of the year, there are questions about what Samsung Electronics, the largest TV manufacturer in the world, will use in its LCD TVs going forward. Samsung told The Vergethat it does not expect the shutdown to affect its LCD-based QLED TV lineup. So for the near-term, nothing changes.
One alternative is that Samsung buys its LCD panels from suppliers like TCL-owned CSOT and AUO, which already supply panels for Samsung TVs. Last year The Elec reported that Samsung could close all its South Korean LCD production lines, and make up the difference with panels bought from Chinese manufacturers like CSOT, which Samsung Display has invested in.
Samsung has also been showing off its MicroLED display technology at recent trade shows, which uses self-emissive LED diodes to produce its pixels. However, in 2019 Samsung predicted that the technology was two or three years away from being viable for use in a consumer product.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
When it comes todisplay technologies such asprojectorsand panels, factors such as resolution and refresh rate are often discussed. But the underlying technology is equally, if not more, important. There are tons of different types of screens, from OLED and LED to TN, VA, and IPS. Learn about the various monitor and television types, from operation to pros and cons!
1)Film layer that polarizes light entering2)glass substrate that dictates the dark shapes when the LCD screen is on3)Liquid crystal layer4)glass substrate that lines up with the horizontal filter5)Horizontal film filter letting light through or blocking it6)Reflective surface transmitting an image to the viewer
The most common form of monitor or TV on the market is LCD or Liquid Crystal Display. As the name suggests, LCDs use liquid crystals that alter the light to generate a specific colour. So some form of backlighting is necessary. Often, it’s LED lighting. But there are multiple forms of backlighting.
LCDs have utilized CCFLs or cold cathode fluorescent lamps. An LCD panel lit with CCFL backlighting benefits from extremely uniform illumination for a pretty even level of brightness across the entire screen. However, this comes at the expense of picture quality. Unlike an LED TV, cold cathode fluorescent lamp LCD monitors lack dimming capabilities. Since the brightness level is even throughout the entire array, a darker portion of scenes might look overly lit or washed out. While that might not be as obvious in a room filled with ambient light, under ideal movie-watching conditions, or in a dark room, it’s noticeable. LED TVs have mostly replaced CCFL.
An LCD panel is transmissive rather than emissive. Composition depends on the specific form of LCD being used, but generally, pixels are made up of subpixel layers that comprise the RGB (red-green-blue) colour spectrum and control the light that passes through. A backlight is needed, and it’s usually LED for modern monitors.
While many newer TVs and monitors are marketed as LED TVs, it’s sort of the same as an LCD TV. Whereas LCD refers to a display type, LED points to the backlighting in liquid crystal display instead. As such, LED TV is a subset of LCD. Rather than CCFLs, LEDs are light-emitting diodes or semiconductor light sources which generate light when a current passes through.
LED TVs boast several different benefits. Physically, LED television tends to be slimmer than CCFL-based LCD panels, and viewing angles are generally better than on non-LED LCD monitors. So if you’re at an angle, the picture remains relatively clear nonetheless. LEDs are also extremely long-lasting as well as more energy-efficient. As such, you can expect a lengthy lifespan and low power draw. Chances are you’ll upgrade to a new telly, or an internal part will go out far before any LEDs cease functioning.
Further segmenting LED TVs down, you’ll find TN panels. A TN display or Twisted Nematic display offers a low-cost solution with low response time and low input lag. TN monitors sport high refresh rates, so 100Hz, 144Hz, or higher. Thus, many monitors marketed toward gamers feature TN technology. Unfortunately, while an affordable, fast panel may sound ideal, TN panels suffer from inferior colour reproduction and horrible viewing angles. A TN panel works so that liquid crystal molecules point at the viewer, and light polarizers are oriented at 90-degree angles.
Like TN, IPS or In-plane Switching displays are a subset of LED panels. IPS monitors tend to boast accurate colour reproduction and great viewing angles. Price is higher than on TN monitors, but in-plane switching TVs generally feature a better picture when compared with twisted nematic sets. Latency and response time can be higher on IPS monitors meaning not all are ideal for gaming.
An IPS display aligns liquid crystals in parallel for lush colours. Polarizing filters have transmission axes aligned in the same direction. Because the electrode alignment differs from TN panels, black levels, viewing angles, and colour accuracy is much better. TN liquid crystals are perpendicular.
A VA or vertical alignment monitor features excellent contrast ratios, colour reproduction, and viewing angles. It’s a type of LED monitor with crystals perpendicular to the polarizers at right angles like TN monitors. Pricing varies, but response time isn’t as high as a TN monitor.
A quantum dot LED TV or QLED is yet another form of LED television. But it’s drastically different from other LED variants. Whereas most LED panels use a white backlight, quantum dot televisions opt for blue lights. In front of these blue LEDs sits a thin layer of quantum dots. These quantum dots in a screen glow at specific wavelengths of colour, either red, green, or blue, therefore comprising the entire RGB (red-green-blue) colour spectrum required to create a colour TV image.
QLED TV sets are thus able to achieve many more local dimming zones than other LED TVs. As opposed to uniform backlighting, local dimming zones can vary backlighting into zones for adjustable lighting to show accurate light and dark scenes. Quantum Dot displays maintain an excellent, bright image with precise colour reproduction.
An OLED or organic light-emitting diode display isn’t another variation of LED. OLEDs use negatively and positively charged ions for illuminating individual pixels. By contrast, LCD/LED TVs use a backlight that can make an unwanted glow. In OLED display, there are several layers, including a substrate, anode, hole injection layer, hole transport layer, an emissive layer, blocking layer, electron transport layer, and cathode. The emissive layer comprised of an electroluminescent layer of film is nestled between an electron-injecting cathode and an electron removal layer, the anode. OLEDs benefit from darker blacks and eschew any unwanted screen glow. Because OLED panels are made up of millions of individual subpixels, the pixels themselves emit light, and it’s, therefore, an emissive display as opposed to a transmissive technology like LCD/LED panels where a backlight is required behind the pixels themselves.
Image quality is top-notch. OLED TVs feature superb local dimming capabilities. The contrast ratio is unrivalled, even by the best of QLEDs, since pixels not used may be turned off. There’s no light bleed, black levels are incredible, excellent screen uniformity, and viewing angles don’t degrade the picture. Unfortunately, this comes at a cost. OLEDs are pricey, and the image isn’t as bright overall when compared to LED panels. For viewing in a darkened room, that’s fine, but ambient lighting isn’t ideal for OLED use.
What is an OLED:Organic light-emitting diode display, non-LED. Emissive technology is where negatively and positively charged ions illuminate individual pixels in a display.
As you can see, there are tons of different types of displays, each with their advantages and disadvantages. Although many monitors and TVs are referred to by different names like LED, IPS, VA, TN, or QLED, many are variations of LCD panels. However, specific technology such as the colour of backlighting and alignment of pixels dictates the picture quality. OLED is an entirely different form of display that’s not LED. Now that you understand the various types of monitors and televisions on the market, you can select the best TV to fit your needs!
If you’re in the market to rent a video wall, you’ve probably run into all sorts of confusing info. Here’s the lowdown on LCD vs. LED video walls so you can make the right choice for your next conference, trade show, or other event.
We’re about to throw a whole lot of info at you. So let’s first take a second to remember why both LED and LCD video walls are a good investment in the first place.
The old adage, “the bigger the better,” is definitely true when it comes to AV. A video wall immediately symbolizes your company is established, and sends a subconscious message that people should take your business seriously. Video walls help you stand out, and compete with all the other businesses who are investing in splashy, eye-catching displays.
Distance – The further your video wall is from viewers, the bigger it needs to be. If you’d like a video wall on the back of your trade show booth, you’re going to need a different option than if you’d like a video wall as an entire backdrop of a general session stage. As one of your first steps, decide on distance.
Content – Do have the resources to produce custom content for your video wall? After you finalize the size of your video wall, your AV provider can tell you the exact dimensions and resolution your content needs to be. From there, a designer or video editor can create custom video wall content — which is the most important part of any great video wall.
Venue Type – An outdoor venue presents a different challenge than an indoor trade show without windows. There’s a great video wall solution for lots of different venues, but be sure your venue and the basic event details are confirmed first.
Price – A video wall system is always going to cost more than monitors, projectors, or other digital signage. Make sure you have enough room in your budget for a video wall — which can start in the ballpark of $10,000 and go upwards from there.
Once reserved for stadiums and shopping malls, LED walls have become much more accessible for corporate events in recent years. An LED wall is made of many smaller LED panels. Each panel has hundreds of tiny light sources called “light emitting diodes” that can change color to create a large, seamless image.
Technicians can add panels until the LED wall is as massive as you need it to be. Random fact: The Suzhou Sky Screen in China is the largest LED video wall in the world, measuring 1,640 feet long — about 4.5 football fields.
Meanwhile, an LCD video wall is a large surface for video or images built from many LCD screens. You’ve interacted with an LCD screen before — they’re on your laptop, TV monitor, and more. However, the LCD video wall screens are designed to run longer and have thinner edges, called bezels.
Technicians use special hardware and tools to stack the LCD screens on top of one another, and calibrate the wall so that an image shows up across every screen. Temporary LCD walls can usually only be about five screens across and five screens high.
Temporary LCD walls can be configured to be in many different sizes and shapes, both large and small, but typically don’t go larger than five screens across and five screens high.
Our most popular LCD walls are about 16’ wide by 10’ tall. Also, when measuring your ceiling height, keep in mind that most walls don’t go all the way down to the floor. So you’ll need to add that into your total height need.
People need to view LED walls from a distance to get the full picture. Think of them like a Lite Brite, or an impressionist painting — you get the full picture when you’re further away. Though made of LED panels, there are no seams.
The image on an LCD wall will be sharper than on LED walls, especially while standing nearby, since it’s made from HD panels. Will have very thin seams between each LCD screen, called bezels.
Since an LCD Wall are basically fancy computer monitors, it’s typically easier to create content. If your content looks great on a standard computer monitor with a 16:9 aspect ratio, it will look good on an LCD wall. Your AV provider will give you dimensions and resolution requirements once you decide on the size you need, and can also help you determine where the seams (or “bezels”) will be so none of your image gets cut off.
Much lower than LCD — but you’ll still need to make sure your venue has enough power capabilities. Your video wall provider can tell you how much power you’ll need.
Imagine an LCD video wall is like a tray of lasagna. Reliable, beautiful, and sturdy — but you can only increase the size of a tray of lasagna so much. Affordable, but it has a limit in size.
Meanwhile, imagine an LED wall like a limitless, footlong sub. It might not be quite as satisfying and vibrant as a steaming tray of lasagna, but you can keep adding to it until it’s as massive as you’d like.
Video walls are a great way to increase the professionalism and engagement of your event. As national video wall experts, we’d love to learn more about what you’re looking for, and how we can help make your vision come to life.
The flat-panel display market is starting to recover after a period of oversupply and lackluster growth, fueled by new technologies as well as more people working from home.
The flat-panel display market is complex. Several different technologies are at play, such as liquid-crystal displays (LCDs) for TV screens and other products, as well as organic light-emitting diodes (OLEDs) for smartphones. Cars, industrial equipment, PCs and tablets all incorporate flat-panel displays in one form or another. And for many products, the display is a big selling point for consumers.
For the flat panel market as a whole, 2019 was a tough year. Oversupply caused prices to drop, which in turn sparked some major changes in the landscape. Two South Korean suppliers — LG Display and Samsung — are retreating from the low-margin LCD business to focus on higher-end display technologies. Meanwhile, China-based suppliers have been building up a massive amount of fab capacity, with plans to dominate several sub-segments in the arena.
2020 was supposed to be another gloomy year. Then, the COVID-19 pandemic struck. A large segment of the population was (and is still) forced to work at home due to the pandemic, disrupting the world’s economies. If there is a silver lining, the work-at-home economy is fueling demand for several products, thereby jumpstarting the display market.
“In 2020, who would have thought that the three fastest growing segments on an area basis would be tablets, notebooks and monitors? Those three segments had been in decline,” said Ross Young, CEO at Display Supply Chain Consultants (DSCC), during a presentation at the recent Display Week 2020 conference. “We are now talking about double-digit growth in display revenues in 2021 with a brighter outlook post-COVID than pre-COVID.”
Not all products categories are robust. Smartphone demand is a mixed bag, while TVs are plodding along. So in total, worldwide display demand is projected to grow by 1% in 2020 over 2019, according to Omdia. Display capacity also will grow by 1%, meaning supply and demand are in balance in 2020, they said. “In the meantime, we are expecting the industry will experience a ‘V’ shape recovery for 2021. Flat-panel display area demand growth will increase by 9.5% in 2021,” said David Hsieh, an analyst at Omdia.
Capital spending for displays also appears to be a bright spot, which is welcome news for flat-panel display equipment suppliers. “(There is a) continuing investment in large panels for TVs and a recovery in investment for OLED for mobile applications,” said Toshiki Kawai, president and CEO of TEL, in a recent presentation. In terms of capital spending, the industry “is expecting approximately 15% year-over-year growth in CY2000,” Kawai said.
Apple and other smartphone OEMs continue to migrate from LCDs toward brighter OLED displays. Samsung is the leader in OLED fab production, but China is making a major push here.
The smartphone display market is dynamic. Smartphone displays based on OLED technology continues to take share away from LCDs, and the new 5G smartphones will accelerate that trend. Plus, foldable phones and tablets using OLED displays are finally shipping after several false starts.
An LCD is a mature and inexpensive technology with several parts. A backlight module is on the bottom of an LCD screen, followed by a thin-film transistor (TFT) array, liquid crystals, a color filter (red/green/blue), and a polarizer.
LCDs consist of a multitude of pixels. A pixel consists of three sub-pixels—red/green/blue (RGB). “A change in voltage applied to the liquid crystals changes the transmittance of the panel, including the two polarizing plates, and thus changes the quantity of light that passes from the backlight to the front surface of the display. This principle allows the TFT LCD to produce full-color images,” according to Japan Display.
Meanwhile, active-matrix OLEDs (AMOLEDs) use a series of thin, light-emitting films, which enable brighter displays than LCDs. OLEDs are also flexible, but they are more expensive than LCDs.
LCDs and OLEDs are manufactured in fabs using an assortment of equipment. Korea is still the OLED leader in terms of fab capacity with a 67% share, according to Omdia. But China is making a big push here, as the nation’s share of OLED fab capacity has jumped from 1% in 2014 to 31% in 2020, according to the firm.
By 2022, China is projected to have 21 small- to mid-sized display fabs, including LCD and OLED. Some 14 fabs are in production in China with 7 in the works, according to the firm. China also is building new fabs for large-screen LCDs for TVs.
“In case of the OLEDs, China is aggressively investing in new capacity. But long-term, we also see that Korean OLED capacity will dominate,” Omdia’s Hsieh said.
On the product front, meanwhile, 70% of all smartphones use traditional LCD screens today, while 30% incorporate OLEDs, according to Omdia. By 2024, OLEDs will represent about 43% of the smartphone display market, they added.
5G, a next-generation wireless standard that is faster than today’s 4G, also will propel OLEDs. “AMOLED displays will grow, along with the 5G mobile phone market, due to their superior power consumption characteristics, which is lower than that of LCD displays,” said T.T. Yang, deputy division director of corporate marketing at UMC. “In addition, TDDI is the display driver IC with the touch controller function integrated on the same silicon chip, which has become very popular within the smartphone market over the past two years. It has started to expand into other applications for growth as TDDI has recently faced strong competition from AMOLED displays for smartphones. The new applications for TDDI include tablets, automotive display and others.”
Meanwhile, Samsung, the leading supplier of OLEDs, continues to improve the technology. Samsung developed a new OLED adaptive frequency technology, which reduces the power consumption of a display. “High-definition video streaming and gaming are expanding their capabilities in line with 5G commercialization, creating a widespread need for display panel technologies that can enable greater power savings,” said Ho-Jung Lee, vice president of mobile display products at Samsung Display.
Meanwhile, Apple’s iPhone 11 line consists of three models, including two OLED-based systems and one LCD product. For the upcoming iPhone 12, Apple will incorporate OLEDs in all models. The iPhone 12 also represents Apple’s entry into 5G.
Here’s what to expect for two iPhone 12 models: “The iPhone 12 Max is expected to be 5G using sub-6GHz technology and will feature a 6.1-inch flexible OLED sourced from BOE and LG Display with an add-on touch sensor and a rumored resolution of 2540 x 1174 or 460 PPI,” according to DSCC. “(The OLED for the) iPhone 12 Pro Max is expected to be exclusively supplied by Samsung Display and will have a 6.67-inch 2785 x 1293 flexible OLED panel.”
Other OLED segments also are growing. After years of hype, smartphones/tablets using foldable OLED displays are finally shipping. Samsung is shipping the Galaxy Fold, which features a 7.3-inch AMOLED display that can be folded into a compact 4.6-inch cover display.
Others are also developing foldables. The foldable phone/tablet market is expected to grow from 700,000 units in 2019, to 3.9 million in 2020, to 10.9 million in 2021, according to Omdia.
Foldable systems, however, face some challenges, such as power consumption, component readiness, mechanical issues and cost. Samsung’s Galaxy Fold sells for a retail price of $1,980, according to Omdia.
In terms of total area, LCDs for TVs represents the biggest market in the flat-panel display business. LCD TVs are commonplace today, but so-called advanced TVs are making inroads.
Bob O’Brien, president of DSCC, defines an advanced TV as a system with an advanced display. In the advanced TV arena, consumers have a dizzying array of technology choices — 8K, dual-cell, microLED, miniLED, OLED TVs and quantum dot TVs.
The advanced TVs incorporate dazzling displays, but they are expensive and the market is still tiny. “Turning to the long-term forecast, we expect that advanced TV shipments will grow from less than 10 million in 2019 to nearly 35 million in 2025, a 24% CAGR for that time period,” O’Brien said.
LCD TVs still dominate the consumer market, simply because they provide enough features at low price points. But LCD TV prices continue to tumble, forcing LCD vendors to develop and sell products at razor thin margins.
LCD TV technology is identical to LCDs for smartphones, but it’s on a much bigger scale. All LCDs are built in giant fabs using various equipment. The LCD manufacturing process takes place on an entire sheet of glass or substrate. Some glass sizes are the size of a garage door.
Today’s mainstream LCD TV fabs are based on Gen 8.5 and 10.5 technology. The term “Gen,” or generation, denotes the glass size. Gen 8.5 fabs produce panels at sizes of 2,200 x 2,500mm, while Gen 10.5 are 2,940 x 3,370mm.
The idea behind LCD manufacturing is to reduce the cost of the panel. To drive down the cost, a giant panel is fabricated in the fab and then cut into smaller displays. For example, Gen 10.5 fabs, the world’s largest plants, are ideal for making 43-, 65- and 75-inch LCD TV panels.
Nonetheless, in 2017, China took the lead over South Korea in terms of overall LCD fab capacity. In 2020, China will have 57% of the world’s TFT LCD fab capacity, according to Omdia. Taiwan is in second place (25%), followed by Korea (13%) and Japan (6%), according to the firm.
China continues to build LCD fabs. By 2022, China is projected to have 22 large-screen LCD display fabs. Some 15 fabs are in production with 6 in the works. That also includes China-based LCD fabs from both LG and Samsung, which are on the block.
For example, LG Display is developing and selling large-screen OLED TVs with mixed results. OLED TVs have bright displays, but they are still expensive. OLED technology is similar for both TVs and smartphones.
OLED TVs continue to improve. At Display Week, LG Display presented a paper that outlined a new OLED display with a motion blur reduction technology. A key to the technology is a new gate driver IC. “The MPRT (moving picture response time) value of the 65‐inch ultrahigh‐definition OLED panels decreased by 3.4ms by using an integrated gate driver circuit,” said Hong Jae Shin, a researcher at LG.
OLEDs involve a complex manufacturing process, especially the development of the RGB sub-pixels. For this, a fine metal mask process is used to produce the sub-pixels.
Instead of the traditional methods, a company called JOLED is developing OLEDs using an inkjet printer. Using this technology, JOLED has developed 4K OLED monitors. “We have developed our own printing technology as a manufacturing method that can be developed in various sizes while maintaining high definition of over 200 ppi,” said Kazuhiro Noda, an executive officer at JOLED, in a paper at Display Week.
In another advanced TV category, Samsung and TCL are pushing quantum dot TVs. Quantum dots are inorganic semiconductor nanocrystals. When inserted into an LCD TV, quantum dots can boost the color gamut in the display.
8K TVs are also in the mix. Based on LCD technology, an 8K TV consists of a 7,680 x 4,320 screen, which equates to 33 million pixels, according to Samsung.
In displays, the big buzz revolves around two technologies — microLEDs and miniLEDs. Both are smaller versions of an older technology called light-emitting diodes (LEDs).
Traditional LEDs, which convert electrical energy into light, are used for backlights in LCD displays, billboards, consumer electronic items and lighting. LEDs come in different configurations, such as monochrome and multi-color. An RGB LED, one popular type, consists of the primary colors in the gambit. These can create a number of different colors.
The size of an LED is 200μm and above. In comparison, a miniLED ranges in size from 50μm to 200μm. Like LEDs, miniLEDs are targeted for backlights in displays.
Measuring smaller than 50μm, microLEDs are self-emissive and don’t require a backlight. In theory, a display using microLEDs provides more color and higher brightness with lower power than competitive displays.
“MiniLEDs, which are larger than microLEDs, are now being incorporated in consumer devices such as TVs,” said Subodh Kulkarni, president and CEO of CyberOptics. “But microLED is an even more exciting area of innovation that is poised for growth. The disruptive technology enables products that are brighter, thinner, lighter and more dynamic than those currently on the market, with lower power consumption than LCDs or OLEDs. Tiny microLEDs can also be placed on flexible substrates. These advantages will continue to propel this technology forward.”
Apple, Facebook and Samsung are just a few of the companies developing microLEDs. Companies are working on microLEDs for a range of applications, such as displays for AR/VR, TVs and watches.
But microLEDs are still several years away from being a mainstream technology. There are too many technical hurdles. “A major challenge is the small size and complex structure of microLED chips. For microLEDs, these dimensions are one to two orders of magnitude smaller than traditional LEDs,” said Steve Hiebert, senior director of marketing at KLA. “From a process control perspective, the transition to microLED displays creates a number of major challenges that must be overcome. In order to have economic viability, there are complicated tradeoffs between microLED size, wafer-level yield, microLED redundancy and microLED repair.”
Take an 8K TV, for example. For this, a company must make millions of microLEDs in the fab and then transfer them onto the backplane at high speeds and with good yields.
“An 8K display requires close to 100 million individual microLEDs. To ensure proper interconnection and eliminate certain image artifacts, the required placement accuracy is typically ±1µm,” said Eric Virey, an analyst at Yole. “Today’s best die bonders can’t manipulate the very small die (3 to 15µm) required to enable high-volume consumer applications. In addition, they typically have throughputs in the range of 1,000 die per hour. At this pace, it would take more than 11 years for such equipment to manufacture a single 8K TV.”
To speed up the process, companies are developing new and faster transfer methods. For example, PlayNitride is developing a high-speed pick-and-place process. In another approach, V-Technology is developing a laser lift-off system.
Meanwhile, X-Vision Lab and Visionox are developing a color conversion process. The idea is to develop a single-color microLED. Then, the microLED is color converted using phosphors or quantum dots.
There are other approaches as well. Unlike microLEDs, which are still in R&D, miniLEDs are getting traction in tablets and monitors. “MiniLED backlights with the LCD is definitely the hottest topic in the IT area,” Omdia’s Hsieh said.
Several vendors are developing the technology. For example, AU Optronics (AUO) recently unveiled a 17.3-inch miniLED full-HD gaming laptop display with a 300Hz refresh rate. AUO also introduced a 27-inch 240Hz gaming monitor display using the technology.
In 2021, Apple is expected to roll out a high-end iPad using miniLEDs as a backlight. “The size is 12.9-inch, and the resolution is a high pixel density (2732 x 2048). One of the reasons for the Apple iPad to adopt the miniLED backlight is due to the very high color gamut,” Hsieh said.
The miniLED process is similar to a microLED flow. The first step is to make tiny miniLEDs, followed by the backplane. The miniLEDs are then transferred to the backplane using various transfer processes. This is not as difficult as the microLED process, but there are still some challenges.
For a notebook PC display, a vendor must make roughly 10,000 to 20,000 miniLEDs in the fab, according to Omdia. Each miniLED is transferred onto a backplane at high speeds.
Clearly, the flat-panel display market is dynamic. Smartphones are moving towards brighter displays. TVs are also moving towards bigger screens with better quality. And the advanced TVs offer dazzling screen quality.
Despite the innovations, it’s up to the consumer to decide what sticks. The screen quality is just one factor. As before, it often comes down to the prevailing factor–price.
SEOUL, March 31 (Reuters) - South Korean panel maker Samsung Display has decided to end all of its production of liquid crystal display (LCD) panels in South Korea and China by end of this year, a spokesperson said on Tuesday.
Samsung Display, a unit of South Korean tech giant Samsung Electronics Co Ltd, said in October that it suspended one of its two LCD production lines at home amid falling demand for LCD panels and a supply glut.
“We will supply LCD orders to our customers by end of this year without any issues”, the company said in a statement. (Reporting by Heekyong Yang; Editing by Kim Coghill)
2 Min ReadFILE PHOTO: The logo of Samsung Electronics is seen at its office building in Seoul, South Korea January 7, 2019. Picture taken January 7, 2019. REUTERS/Kim Hong-Ji
SEOUL (Reuters) - South Korean panel maker Samsung Display has decided to end all of its production of liquid crystal display (LCD) panels in South Korea and China by the end of this year, a spokeswoman said on Tuesday.
Samsung Display, a unit of South Korean tech giant Samsung Electronics Co Ltd, said in October that it suspended one of its two LCD production lines at home amid falling demand for LCD panels and a supply glut.
In October, the Apple Inc supplier said it will invest 13.1 trillion won ($10.72 billion) in facilities and research to upgrade a production line, as it contends with oversupply amid weak global demand for smartphones and TVs.
The investment for the next five years will be focused on converting one of its South Korean LCD lines into a facility to mass produce more advanced “quantum dot” screens.
Samsung Display’s cross-town rival LG Display Co Ltd said earlier this year that it will halt domestic production of LCD TV panels by the end of 2020.
One of today’s modern technological wonders is the flat-panel liquid crystal display (LCD) screen, which is the key component we find inside televisions, computer monitors, smartphones, and an ever-proliferating range of gadgets that display information electronically.What most people don’t realize is how complex and sophisticated the manufacturing process is. The entire world’s supply is made within two time zones in East Asia. Unless, of course, the factory proposed by Foxconn for Wisconsin actually gets built.
Last week I had the opportunity to tour BOE Technology Group’s Gen 10.5 factory in Hefei, the capital of China’s Anhui Province.This was the third factory, or “fab” that Beijing-based BOE built in Hefei alone, and in terms of capability, it is now the most advanced in the world.BOE has a total of 12 fabs in Beijing, Chongqing, and several other major cities across China; this particular factory was named Fab 9.
Liquid crystal display (LCD) screens are manufactured by assembling a sandwich of two thin sheets of glass.On one of the sheets are transistor “cells” formed by first depositing a layer of indium tin oxide (ITO), an unusual metal alloy that you can actually see through.That’s how you can get electrical signals to the middle of a screen.Then you deposit a layer of silicon, followed by a process that builds millions of precisely shaped transistor parts.This patterning step is repeated to build up tiny little cells, one for each dot (known as a pixel) on the screen.Each step has to be precisely aligned to the previous one within a few microns.Remember, the average human hair is 40 microns in diameter.
On the other sheet of glass, you make an array of millions of red, green, and blue dots in a black matrix, called a color filter array (CFA).This is how you produce the colors when you shine light through it.Then you drop tiny amounts of liquid crystal material into the cells on the first sheet and glue the two sheets together.You have to align the two sheets so the colored dots sit right on top of the cells, and you can’t be off by more than a few microns in each direction anywhere on the sheet.The sandwich is next covered with special sheets of polarizing film, and the sheets are cut into individual “panels” – a term that is used to describe the subassembly that actually goes into a TV.
For the sake of efficiency, you would like to make as many panels on a sheet as possible, within the practical limitations of how big a sheet you can handle at a time.The first modern LCD Fabs built in the early 1990s made sheets the size of a single notebook computer screen, and the size grew over time. A Gen 5 sheet, from around 2003, is 1100 x 1300 mm, while a Gen 10.5 sheet is 2940 x 3370 mm (9.6 x 11 ft).The sheets of glass are only 0.5 - 0.7 mm thick or sometimes even thinner, so as you can imagine they are extremely fragile and can really only be handled by robots.The Hefei Gen 10.5 fab is designed to produce the panels for either eight 65 inch or six 75 inch TVs on a single mother glass.If you wanted to make 110 inch TVs, you could make two of them at a time.
The fab is enormous, 1.3 km from one end to the other, divided into three large buildings connected by bridges.LCD fabs are multi-story affairs.The main equipment floor is sandwiched between a ground floor that is filled with chemical pipelines, power distribution, and air handling equipment, and a third floor that also has a lot of air handling and other mechanical equipment.The main equipment floor has to provide a very stable environment with no vibrations, so an LCD fab typically uses far more structural steel in its construction than a typical skyscraper.I visited a Gen 5 fab in Taiwan in 2003, and the plant manager there told me they used three times as much structural steel as Taipei 101, which was the world’s tallest building from 2004- 2010.Since the equipment floor is usually one or two stories up, there are large loading docks on the outside of the building.When they bring the manufacturing equipment in, they load it onto a platform and hoist it with a crane on the outside of the building.That’s one way to recognize an LCD fab from the outside – loading docks on high floors that just open to the outdoors.
LCD fabs have to maintain strict standards of cleanliness inside.Any dust particles in the air could cause defects in the finished displays – tiny dark spots or uneven intensities on your screen.That means the air is passed through elaborate filtration systems and pushed downwards from the ceiling constantly.Workers have to wear special clean room protective clothing and scrub before entering to minimize dust particles or other contamination.People are the largest source of particles, from shedding dead skin cells, dust from cosmetic powders, or smoke particles exhaled from the lungs of workers who smoke.Clean rooms are rated by the number of particles per cubic meter of air.A class 100 cleanroom has less than 100 particles less than 0.3 microns in diameter per cubic meter of air, Class 10 has less than 10 particles, and so on. Fab 9 has hundeds of thousands of square meters of Class 100 cleanroom, and many critical areas like photolithography are Class 10.In comparison, the air in Harvard Square in Cambridge, MA is roughly Class 8,000,000, and probably gets substantially worse when an MBTA bus passes through.
Since most display manufacturing has to be done in a cleanroom and handling the glass requires such precision, the factory is heavily automated.As you watch the glass come in, it is placed into giant cassettes by robot handlers, and the cassettes are moved around throughout the factory.At each step, robots lift a piece of glass out of the cassette, and position it for the processing machines.Some of the machines, like the ones that deposit silicon or ITO, orient the glass vertically, and put them inside an enormous vacuum chamber where all the air is first pumped out before they can go to work.And then they somehow manage to deposit micrometer thin layers that are extremely uniform.It is a miracle that any of this stuff actually works.
It obviously costs a lot to equip and run such a fab.Including all of the specialized production tools, press reports say BOE spent RMB 46 billion (US$6.95 billion). Even though you don’t see a lot of people on the floor, it takes thousands of engineers to keep the place running.
The Hefei Gen 10.5 is one of the most sophisticated manufacturing plants in the world.On opening day for the fab, BOE shipped panels to Sony, Samsung Electronics, LG Electronics, Vizio, and Haier.So if you have a new 65 or 75-inch TV, there is some chance the LCD panel came from here.
Glass substrate with ITO electrodes. The shapes of these electrodes will determine the shapes that will appear when the LCD is switched ON. Vertical ridges etched on the surface are smooth.
A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directlybacklight or reflector to produce images in color or monochrome.seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.
LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in LCD projectors and portable consumer devices such as digital cameras, watches, digital clocks, calculators, and mobile telephones, including smartphones. LCD screens are also used on consumer electronics products such as DVD players, video game devices and clocks. LCD screens have replaced heavy, bulky cathode-ray tube (CRT) displays in nearly all applications. LCD screens are available in a wider range of screen sizes than CRT and plasma displays, with LCD screens available in sizes ranging from tiny digital watches to very large television receivers. LCDs are slowly being replaced by OLEDs, which can be easily made into different shapes, and have a lower response time, wider color gamut, virtually infinite color contrast and viewing angles, lower weight for a given display size and a slimmer profile (because OLEDs use a single glass or plastic panel whereas LCDs use two glass panels; the thickness of the panels increases with size but the increase is more noticeable on LCDs) and potentially lower power consumption (as the display is only "on" where needed and there is no backlight). OLEDs, however, are more expensive for a given display size due to the very expensive electroluminescent materials or phosphors that they use. Also due to the use of phosphors, OLEDs suffer from screen burn-in and there is currently no way to recycle OLED displays, whereas LCD panels can be recycled, although the technology required to recycle LCDs is not yet widespread. Attempts to maintain the competitiveness of LCDs are quantum dot displays, marketed as SUHD, QLED or Triluminos, which are displays with blue LED backlighting and a Quantum-dot enhancement film (QDEF) that converts part of the blue light into red and green, offering similar performance to an OLED display at a lower price, but the quantum dot layer that gives these displays their characteristics can not yet be recycled.
Since LCD screens do not use phosphors, they rarely suffer image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs are, however, susceptible to image persistence.battery-powered electronic equipment more efficiently than a CRT can be. By 2008, annual sales of televisions with LCD screens exceeded sales of CRT units worldwide, and the CRT became obsolete for most purposes.
Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, often made of Indium-Tin oxide (ITO) and two polarizing filters (parallel and perpendicular polarizers), the axes of transmission of which are (in most of the cases) perpendicular to each other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. Before an electric field is applied, the orientation of the liquid-crystal molecules is determined by the alignment at the surfaces of electrodes. In a twisted nematic (TN) device, the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This induces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.
The chemical formula of the liquid crystals used in LCDs may vary. Formulas may be patented.Sharp Corporation. The patent that covered that specific mixture expired.
Most color LCD systems use the same technique, with color filters used to generate red, green, and blue subpixels. The LCD color filters are made with a photolithography process on large glass sheets that are later glued with other glass sheets containing a TFT array, spacers and liquid crystal, creating several color LCDs that are then cut from one another and laminated with polarizer sheets. Red, green, blue and black photoresists (resists) are used. All resists contain a finely ground powdered pigment, with particles being just 40 nanometers across. The black resist is the first to be applied; this will create a black grid (known in the industry as a black matrix) that will separate red, green and blue subpixels from one another, increasing contrast ratios and preventing light from leaking from one subpixel onto other surrounding subpixels.Super-twisted nematic LCD, where the variable twist between tighter-spaced plates causes a varying double refraction birefringence, thus changing the hue.
LCD in a Texas Instruments calculator with top polarizer removed from device and placed on top, such that the top and bottom polarizers are perpendicular. As a result, the colors are inverted.
The optical effect of a TN device in the voltage-on state is far less dependent on variations in the device thickness than that in the voltage-off state. Because of this, TN displays with low information content and no backlighting are usually operated between crossed polarizers such that they appear bright with no voltage (the eye is much more sensitive to variations in the dark state than the bright state). As most of 2010-era LCDs are used in television sets, monitors and smartphones, they have high-resolution matrix arrays of pixels to display arbitrary images using backlighting with a dark background. When no image is displayed, different arrangements are used. For this purpose, TN LCDs are operated between parallel polarizers, whereas IPS LCDs feature crossed polarizers. In many applications IPS LCDs have replaced TN LCDs, particularly in smartphones. Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided either by applying an alternating current or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).
Displays for a small number of individual digits or fixed symbols (as in digital watches and pocket calculators) can be implemented with independent electrodes for each segment.alphanumeric or variable graphics displays are usually implemented with pixels arranged as a matrix consisting of electrically connected rows on one side of the LC layer and columns on the other side, which makes it possible to address each pixel at the intersections. The general method of matrix addressing consists of sequentially addressing one side of the matrix, for example by selecting the rows one-by-one and applying the picture information on the other side at the columns row-by-row. For details on the various matrix addressing schemes see passive-matrix and active-matrix addressed LCDs.
LCDs, along with OLED displays, are manufactured in cleanrooms borrowing techniques from semiconductor manufacturing and using large sheets of glass whose size has increased over time. Several displays are manufactured at the same time, and then cut from the sheet of glass, also known as the mother glass or LCD glass substrate. The increase in size allows more displays or larger displays to be made, just like with increasing wafer sizes in semiconductor manufacturing. The glass sizes are as follows:
Until Gen 8, manufacturers would not agree on a single mother glass size and as a result, different manufacturers would use slightly different glass sizes for the same generation. Some manufacturers have adopted Gen 8.6 mother glass sheets which are only slightly larger than Gen 8.5, allowing for more 50 and 58 inch LCDs to be made per mother glass, specially 58 inch LCDs, in which case 6 can be produced on a Gen 8.6 mother glass vs only 3 on a Gen 8.5 mother glass, significantly reducing waste.AGC Inc., Corning Inc., and Nippon Electric Glass.
The origins and the complex history of liquid-crystal displays from the perspective of an insider during the early days were described by Joseph A. Castellano in Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry.IEEE History Center.Peter J. Wild, can be found at the Engineering and Technology History Wiki.
In 1888,Friedrich Reinitzer (1858–1927) discovered the liquid crystalline nature of cholesterol extracted from carrots (that is, two melting points and generation of colors) and published his findings at a meeting of the Vienna Chemical Society on May 3, 1888 (F. Reinitzer: Beiträge zur Kenntniss des Cholesterins, Monatshefte für Chemie (Wien) 9, 421–441 (1888)).Otto Lehmann published his work "Flüssige Kristalle" (Liquid Crystals). In 1911, Charles Mauguin first experimented with liquid crystals confined between plates in thin layers.
In 1922, Georges Friedel described the structure and properties of liquid crystals and classified them in three types (nematics, smectics and cholesterics). In 1927, Vsevolod Frederiks devised the electrically switched light valve, called the Fréedericksz transition, the essential effect of all LCD technology. In 1936, the Marconi Wireless Telegraph company patented the first practical application of the technology, "The Liquid Crystal Light Valve". In 1962, the first major English language publication Molecular Structure and Properties of Liquid Crystals was published by Dr. George W. Gray.RCA found that liquid crystals had some interesting electro-optic characteristics and he realized an electro-optical effect by generating stripe-patterns in a thin layer of liquid crystal material by the application of a voltage. This effect is based on an electro-hydrodynamic instability forming what are now called "Williams domains" inside the liquid crystal.
The MOSFET (metal-oxide-semiconductor field-effect transistor) was invented by Mohamed M. Atalla and Dawon Kahng at Bell Labs in 1959, and presented in 1960.Paul K. Weimer at RCA developed the thin-film transistor (TFT) in 1962.
In 1964, George H. Heilmeier, then working at the RCA laboratories on the effect discovered by Williams achieved the switching of colors by field-induced realignment of dichroic dyes in a homeotropically oriented liquid crystal. Practical problems with this new electro-optical effect made Heilmeier continue to work on scattering effects in liquid crystals and finally the achievement of the first operational liquid-crystal display based on what he called the George H. Heilmeier was inducted in the National Inventors Hall of FameIEEE Milestone.
In the late 1960s, pioneering work on liquid crystals was undertaken by the UK"s Royal Radar Establishment at Malvern, England. The team at RRE supported ongoing work by George William Gray and his team at the University of Hull who ultimately discovered the cyanobiphenyl liquid crystals, which had correct stability and temperature properties for application in LCDs.
The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968.dynamic scattering mode (DSM) LCD that used standard discrete MOSFETs.
On December 4, 1970, the twisted nematic field effect (TN) in liquid crystals was filed for patent by Hoffmann-LaRoche in Switzerland, (Swiss patent No. 532 261) with Wolfgang Helfrich and Martin Schadt (then working for the Central Research Laboratories) listed as inventors.Brown, Boveri & Cie, its joint venture partner at that time, which produced TN displays for wristwatches and other applications during the 1970s for the international markets including the Japanese electronics industry, which soon produced the first digital quartz wristwatches with TN-LCDs and numerous other products. James Fergason, while working with Sardari Arora and Alfred Saupe at Kent State University Liquid Crystal Institute, filed an identical patent in the United States on April 22, 1971.ILIXCO (now LXD Incorporated), produced LCDs based on the TN-effect, which soon superseded the poor-quality DSM types due to improvements of lower operating voltages and lower power consumption. Tetsuro Hama and Izuhiko Nishimura of Seiko received a US patent dated February 1971, for an electronic wristwatch incorporating a TN-LCD.
In 1972, the concept of the active-matrix thin-film transistor (TFT) liquid-crystal display panel was prototyped in the United States by T. Peter Brody"s team at Westinghouse, in Pittsburgh, Pennsylvania.Westinghouse Research Laboratories demonstrated the first thin-film-transistor liquid-crystal display (TFT LCD).high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.active-matrix liquid-crystal display (AM LCD) in 1974, and then Brody coined the term "active matrix" in 1975.
In 1972 North American Rockwell Microelectronics Corp introduced the use of DSM LCDs for calculators for marketing by Lloyds Electronics Inc, though these required an internal light source for illumination.Sharp Corporation followed with DSM LCDs for pocket-sized calculators in 1973Seiko and its first 6-digit TN-LCD quartz wristwatch, and Casio"s "Casiotron". Color LCDs based on Guest-Host interaction were invented by a team at RCA in 1968.TFT LCDs similar to the prototypes developed by a Westinghouse team in 1972 were patented in 1976 by a team at Sharp consisting of Fumiaki Funada, Masataka Matsuura, and Tomio Wada,
In 1983, researchers at Brown, Boveri & Cie (BBC) Research Center, Switzerland, invented the passive matrix-addressed LCDs. H. Amstutz et al. were listed as inventors in the corresponding patent applications filed in Switzerland on July 7, 1983, and October 28, 1983. Patents were granted in Switzerland CH 665491, Europe EP 0131216,
The first color LCD televisions were developed as handheld televisions in Japan. In 1980, Hattori Seiko"s R&D group began development on color LCD pocket televisions.Seiko Epson released the first LCD television, the Epson TV Watch, a wristwatch equipped with a small active-matrix LCD television.dot matrix TN-LCD in 1983.Citizen Watch,TFT LCD.computer monitors and LCD televisions.3LCD projection technology in the 1980s, and licensed it for use in projectors in 1988.compact, full-color LCD projector.
In 1990, under different titles, inventors conceived electro optical effects as alternatives to twisted nematic field effect LCDs (TN- and STN- LCDs). One approach was to use interdigital electrodes on one glass substrate only to produce an electric field essentially parallel to the glass substrates.Germany by Guenter Baur et al. and patented in various countries.Hitachi work out various practical details of the IPS technology to interconnect the thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.
Hitachi also improved the viewing angle dependence further by optimizing the shape of the electrodes (Super IPS). NEC and Hitachi become early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and In Plane Switching subsequently remain the dominant LCD designs through 2006.South Korea and Taiwan,
In 2007 the image quality of LCD televisions surpassed the image quality of cathode-ray-tube-based (CRT) TVs.LCD TVs were projected to account 50% of the 200 million TVs to be shipped globally in 2006, according to Displaybank.Toshiba announced 2560 × 1600 pixels on a 6.1-inch (155 mm) LCD panel, suitable for use in a tablet computer,transparent and flexible, but they cannot emit light without a backlight like OLED and microLED, which are other technologies that can also be made flexible and transparent.
In 2016, Panasonic developed IPS LCDs with a contrast ratio of 1,000,000:1, rivaling OLEDs. This technology was later put into mass production as dual layer, dual panel or LMCL (Light Modulating Cell Layer) LCDs. The technology uses 2 liquid crystal layers instead of one, and may be used along with a mini-LED backlight and quantum dot sheets.
Since LCDs produce no light of their own, they require external light to produce a visible image.backlight. Active-matrix LCDs are almost always backlit.Transflective LCDs combine the features of a backlit transmissive display and a reflective display.
CCFL: The LCD panel is lit either by two cold cathode fluorescent lamps placed at opposite edges of the display or an array of parallel CCFLs behind larger displays. A diffuser (made of PMMA acrylic plastic, also known as a wave or light guide/guiding plateinverter to convert whatever DC voltage the device uses (usually 5 or 12 V) to ≈1000 V needed to light a CCFL.
EL-WLED: The LCD panel is lit by a row of white LEDs placed at one or more edges of the screen. A light diffuser (light guide plate, LGP) is then used to spread the light evenly across the whole display, similarly to edge-lit CCFL LCD backlights. The diffuser is made out of either PMMA plastic or special glass, PMMA is used in most cases because it is rugged, while special glass is used when the thickness of the LCD is of primary concern, because it doesn"t expand as much when heated or exposed to moisture, which allows LCDs to be just 5mm thick. Quantum dots may be placed on top of the diffuser as a quantum dot enhancement film (QDEF, in which case they need a layer to be protected from heat and humidity) or on the color filter of the LCD, replacing the resists that are normally used.
WLED array: The LCD panel is lit by a full array of white LEDs placed behind a diffuser behind the panel. LCDs that use this implementation will usually have the ability to dim or completely turn off the LEDs in the dark areas of the image being displayed, effectively increasing the contrast ratio of the display. The precision with which this can be done will depend on the number of dimming zones of the display. The more dimming zones, the more precise the dimming, with less obvious blooming artifacts which are visible as dark grey patches surrounded by the unlit areas of the LCD. As of 2012, this design gets most of its use from upscale, larger-screen LCD televisions.
RGB-LED array: Similar to the WLED array, except the panel is lit by a full array of RGB LEDs. While displays lit with white LEDs usually have a poorer color gamut than CCFL lit displays, panels lit with RGB LEDs have very wide color gamuts. This implementation is most popular on professional graphics editing LCDs. As of 2012, LCDs in this category usually cost more than $1000. As of 2016 the cost of this category has drastically reduced and such LCD televisions obtained same price levels as the former 28" (71 cm) CRT based categories.
Monochrome LEDs: such as red, green, yellow or blue LEDs are used in the small passive monochrome LCDs typically used in clocks, watches and small appliances.
Mini-LED: Backlighting with Mini-LEDs can support over a thousand of Full-area Local Area Dimming (FLAD) zones. This allows deeper blacks and higher contrast ratio.MicroLED.)
Today, most LCD screens are being designed with an LED backlight instead of the traditional CCFL backlight, while that backlight is dynamically controlled with the video information (dynamic backlight control). The combination with the dynamic backlight control, invented by Philips researchers Douglas Stanton, Martinus Stroomer and Adrianus de Vaan, simultaneously increases the dynamic range of the display system (also marketed as HDR, high dynamic range television or FLAD, full-area local area dimming).
The LCD backlight systems are made highly efficient by applying optical films such as prismatic structure (prism sheet) to gain the light into the desired viewer directions and reflective polarizing films that recycle the polarized light that was formerly absorbed by the first polarizer of the LCD (invented by Philips researchers Adrianus de Vaan and Paulus Schaareman),
Due to the LCD layer that generates the desired high resolution images at flashing video speeds using very low power electronics in combination with LED based backlight technologies, LCD technology has