comparison of led and lcd monitors factory

LED-vs-LCD? Lately, choosing a TV has become like walking into a candy store. There are so many TV technology options to choose from, and each of them seems just as good.
Then there are the technical terms to deal with, such as LED TV, LCD TV, QLED TV, UHD TV, OLED TV, and more. You might feel like you need to be a tech pro just to watch your favourite TV show in the evening or enjoy a game with your friend.
Here at Dynamo LED, we offer both LED and LCD TVs, and we appreciate the benefits of both TVs. Be sure to check out our buying an LED Display guide for more info.
First, an important thing to understand is that the LED (Light Emitting Diode) monitor is an improvised version of the LCD (Liquid Crystal Display). This is why all LED monitor is LCD in nature, but not all LCDs are LED monitors.
LCD technology revolutionized monitors by using cold cathode fluorescent lamps for backlighting to create the picture displayed on the screen. A cold cathode fluorescent lamp (CCFL) is a tiny fluorescent bulb. In the context of this article, LCDs refer to this traditional type of CCFL LCD TVs.
LED monitors took the old technology a step further by replacing the fluorescent bulbs with LED backlight technology. And OLED (organic light-emitting diode) technology improves it even further by eliminating the need for backlighting.
This turns a single monitor into a modular assortment of countless light-emitting diodes. Additionally, this expands how big the monitor can be without blowing up the cost exponentially.
The quality of direct-view LED screens is measured by pixel pitch. The pixel pitch is the distance between two adjacent LEDs on the display. The smaller the pixel pitch, the better the quality of the image.
Since LEDs replace fluorescent bulbs with light-emitting diodes, LED TVs are more energy-efficient than LCDs. A 32-inch LED TV screen consumes 10 watts less power than the same size LCD screen. The difference in power consumption increases as the size of the display increases.
Light-emitting diodes are considerably smaller than fluorescent lamps used in LCD monitors. Fluorescent lamps have a considerable thickness, but the thickness of diodes is next to none. Moreover, countless diodes are assembled in the same plane, so the thickness of the array isn’t increased no matter how many diodes are present.
Edge-lit LEDs have a slight drawback in viewing angle compared to LCDs, because of the position of the light source. However, direct-view LEDs offer a better angle for viewing than LCDs as the light source is evenly spread on the screen.
This is the time it takes to shift from one colour to another. Response times are generally measured in milliseconds (ms). The shorter the time to respond, the better the quality of the images produced.
Since LED displays use full-array LED backlighting rather than one big backlight, LED TVs offer significantly better contrast than LCDs. LCD backlighting technology only shows white and black, but LED backlighting can emit the entire RGB spectrum, thereby providing a deeper RGB contrast.
If you wonder which display will last longer, this debate is also won by LED displays. LED televisions have a longer lifespan of 100,000 hours on average, compared to 50,000 hours provided by LCD televisions.
An LED display provides the option to dim the backlight, along with other eye comfort features. Not only that, it provides a wider viewing angle without harming image quality. Therefore, an LED display is far better for your eyes than an LCD.
In an LED display, a lot of smaller diodes are used and if a diode is damaged, it can be replaced. In an LCD, you will need to replace the entire bulb in case of damage. Therefore, an LED display is easier and cheaper to maintain than an LCD.
Since LEDs are a better and newer technology, the price of an LED display is higher than an LCD. However, this is only when we are considering the purchase cost.
The picture quality of an LED display is far better than an LCD. Due to modular light-emitting diodes, an LED screen produces better control over the contrast, rendering a clear picture. Also, LED provides RGB contrast, which can show truer blacks and truer whites.
Not to forget, they provide a shorter response time as well. Both of these factors result inLED displays having a better picture quality compared to LCD displays.
Since LED displays are considerably thinner than LCDs, they weigh considerably less. On average, an LED screen weighs about half of an LCD screen of the same size.
As you might have noticed by now, LED wins the battle with LCD without any doubt. This is because LED displays have an advantage in all the factors that matter when considering a purchase, except price.
Even when you consider the price, you will find that while LED technology is costlier, it provides better value for money in the long run. This is because of the longer lifespan and easier maintenance of LED screens.
They are more attractive too. With the increasing shortage of space in new residential complexes, what better solution than an ultra-thin LED display giving a cinematic experience in the comfort of your home.
LED screens are the first choice among the public today, across generations. All are opting to switch to LED from LCD to make their lives more enjoyable and better.

Please try again in a few minutes. If the issue persist, please contact the site owner for further assistance. Reference ID IP Address Date and Time c17927ead67795b862f0f908b963d9b3 63.210.148.230 02/27/2023 05:06 AM UTC

Sometimes the distance between good and great seems like hardly any distance at all — such as liquid crystal displays (LCDs) versus light-emitting diode (LED) displays. Both are suitable for retail window signage, campus wayfinding or large video walls. But LCD and LED have significant differences, and their specific benefits are worth understanding so you can choose the best displays for your business needs.
LCD is the broader category; LED is a subset. In other words, all LED displays are LCDs, but not all LCDs are LED. LCDs are made up of hundreds of thousands — even millions — of individual pixels built from liquid crystals. Each pixel is capable of displaying a color when it receives an electrical charge. Like a mosaic, the displayed image is built from tiny elements that combine to form the overall picture.
But the liquid crystals don’t produce any light of their own, so in order for the image to be illuminated, the liquid crystals need to be backlit. LCDs are illuminated by cold cathode fluorescent lamps (CCFLs), evenly positioned behind the pixels so that, at least in theory, every part of the screen is evenly lit and at consistent brightness.
Up to a point, LED displays are much the same. An LED screen also uses liquid crystals to generate color — or pure black (no color), by not charging a specific pixel. So LED displays have the same need for backlighting. But rather than CCFL, tiny individual lights (light-emitting diodes) illuminate the liquid crystals.
The individual LEDs can be arranged one of two ways: full-array or edge-lit. For edge lighting, the LEDs are arranged around the edges of the back of the screen. Full-array, on the other hand, calls for many LEDs to be lined up evenly across the back of the screen, where they can be arranged into zones (usually called “dimming zones” or “local dimming”).
Is LED just plain better than LCD? Well, for a while, LCD screens represented the cutting edge of digital signage. But now, about the only meaningful advantage of LCD over LED is price point. As LCD is becoming outdated, it tends to be less of an upfront investment. In every other respect, though, LED displays have the advantage.
No matter the arrangement of the backlighting, LED has a greater nit value than LCD, which means it’s brighter (“nit” comes from the Latin “nitere,” meaning “to shine”). The average nit value for LCDs is between 500 and 700 nits, while LEDs are typically between 1,200 and 2,400 nits. With greater brightness comes greater contrast, and all-day visibility on outdoor displays.
Despite the energy output, higher brightness doesn’t necessarily mean a shorter lifespan. In fact, LED displays have an average lifespan of 10 years — double the average five-year lifespan of LCDs. Factoring longevity into the cost of your signage, LED’s longer lifespan can make it cheaper than LCD in the long run.
Even with edge lighting, LED produces more vividly lifelike images than CCFL-backlit LCDs — and with sleeker hardware, thanks to their minimalist design. And while LCD bezels have drastically reduced over time, they’re still greater than zero. LED has no bezels at all.
Full-array backlighting requires a little more depth to the screen, but with discrete dimming zones, LEDs can be illuminated far more precisely — which, in turn, means more accurate and engaging visuals.
LED isn’t the first technology to realize miniaturization is the way forward. Even as screens get bigger, the next big step is made of smaller parts: microLEDs.
Up to 40 times smaller than regular LEDs, microLEDs allow backlighting to be even more precisely targeted, with many times more diodes. This, in turn, delivers a more accurate picture, with greater contrast and highly focused areas of brightness. Samsung’s The Wall is a spectacular example of what microLED is capable of.
Whether you need your digital signage to entertain, inform or simply impress, understanding the differences between LCD and LED will allow you to make a better-informed decision.
With best-in-class picture quality and exceptional durability,Samsung LED displayscan help your business deliver content that engages, informs and entertains.Samsung’s trade-in program makes it easy for businesses to upgrade their video wall with LED technology. Once you’ve chosen your displays, learn how you can configure and tailor their real-time messaging using an integrated CMSin this free guide.

In the world of digital signage, there are two prominent display technologies: LCD and LED. There’s also a considerable amount of misconception about these technologies and how they relate to each other or work together. The blame for much of this confusion can be attributed to the advent of LCD TVs with LED-backlighting technology, so let’s clear that difference up before we move on.
With any digital display, you must have a well working light source so that you can see the picture brightly. Until very recently, TVs have always been backlit—that is, illuminated from behind the display monitor. For a long period of time after television sets were invented, this was done by firing electrons through a “gun” to the screen (tube and projector TVs). In the early 2000s, LCD TVs were backlit by fluorescent bulbs. More recently, however, TV manufacturers began using LED technology as the light source for flat-screen LCD TVs, as this method provided more versatility and uniform picture lighting, therein lies some of the confusion.
As picture displays, there are many differences between LED display features and LCDs. Given advances in LED display technology—and drastically lower cost—both display types can be viable options for a variety of interior spaces. And of course, each has benefits, and each has limitations. To determine the best display for a digital signage project, it’s critical to understand exactly how each display type will perform and why one is better than the other in a given situation. It’s important to compare, not only cost, but also factors such as brightness, durability, size, resolution, vibrancy, and many more features that are on the market.
LED stands for light-emitting diode. By definition, LEDs provide their own light. Once reserved for large-scale, exterior digital displays, direct-view LED signage has emerged as a greatly improved, widely applicable medium, now suitable for virtually all display installations, both indoor or outdoor. In the digital signage industry, direct-view LED displays have now become the norm and work well together.
LCD stands for liquid crystal display. This type of display uses light-modulating properties of liquid crystals. As referenced above, liquid crystals don’t produce light directly; instead, they use a backlight to produce images on the screen. LCDs are used most often in interior applications, where users are in proximity to the screen. With this display technology, ambient light is usually limited and controlled.
Typically, LED displays have a higher up-front cost than LCDs; however, unlike LCDs, LED displays are rugged and durable, even in the most inhospitable environments. Additionally, they can be upgraded and retrofitted relatively easily. For total cost of ownership and longevity, the better option is the LED.
Brightness is typically measured in NITs. One NIT is equivalent to one candela per square meter. The brightness for LED displays ranges from hundreds to thousands of NITs. LCDs have a much lower brightness range feature. LED displays are able to compete in well-lit areas, both inside and outside. In contrast, competing light will severely impact an LCD; many times, this renders the picture unviewable.
While LED and LCD displays can both render most types of content, there are some drawbacks to LCDs. They can sometimes hold the “memory” of an image, and leave behind a residual imprint referred to as “image persistence.” It’s caused when a still image remains on the screen for too long. The colors become “stuck” in place. When the display tries to shift to another color, the crystals don’t want to budge. The result is a color that is slightly skewed from the intended one. LED displays do not encounter this issue.
Video walls are one of the most popular ways to use digital displays in interior spaces. From entertainment venues to other various retail spaces on the market, video walls have wide appeal. This makes the setup more complex than single screens, so it’s essential to have the right screens. LEDs are typically the preferred display for video walls. They are seamless, tiling together with no bezels. In a well-installed application, video walls have excellent uniformity and the widest viewing angles. LCDs can be tiled, but their bezels cause gaps and visual barriers. While there are LCDs with narrow bezels, small seams are still visible, unfortunately.
An LED display can be any size. There are no inherent limitations. They can also be curved, concave, or convex. They can even wrap completely around a pillar for a 360-degree effect. LCDs are typically only available in the standard sizing set by the manufacturer.
SNA Displays is a global manufacturing leader in LED video displays. We offer fully customizable LED products, thereby providing you with the most impact on your messaging. To learn more about how LED signage can power your digital display project, view our portfolio.

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

LCDs can be tiled, but their bezels cause gaps and visual barriers. While there are LCDs with narrow bezels, small seams are still visible. Thus it is not an ideal choice given such a condition.
An LED display can be any size. There are various creative LED displays including ball LED display, curved LED display, flexible LED display, foldable LED display and so on to meet the requirements for creative display, but LCDs are typically only available in the standard sizing set by the manufacture.
The possible higher initial price point: as the more complex production process, more durable quality and is released later than LCD panels, the initial price point of LEDs can be higher. But there is one thing that deserves to be noticed, the lifespan is longer and the future maintenance fee can be lower with high adaptability to different application scenarios. So in the long term, choosing a LED display may save you more money.
LCD stands for liquid crystal display. As what has been mentioned above, LCD doesn’t produce light directly, it has a backlight to help to produce images. LCD displays are usually used in the indoor environment and the ambient light is often limited and controlled.
Due to LCD has been in widespread use since the early ’70s where it first appeared in digital watches, the cost has been reduced so the price can be lower.
LCD monitors tend to have better viewing angles and anti-glare than edge-lit LEDs as if you like to kick back in your chairs or view the screen from different angles, because the edge-lit LED may lose visibility as you move away from the center viewing angle (please notice the full-array LED monitors don’t have such issue so it is the best choice for gaming).
1.Thicker and heavier structurebecause of the different backlight. There are two methods of LED backlight: direct and edge. The main advantage of edge lighting is that it can be used to make LED screens incredibly thin cause the LEDs are at the side and not behind the screen.
2.Many monitors can not support 4K. Nowadays, 4K videos are one of a trend, however, many LCD displays can not load such video sources so there are more limitations on the content.
3.More energy consumption. As compared with LED display of the same size, LCD may consume 20% to 50% electricity more than that of LED display screens.
4.Lower contrast results in a less clear image. As what we have discussed above, LED display has special lighting methods that can increase the contrast to display pictures more clearly.
This article introduces the differences between LED and LCD, and the advantages and disadvantages of both.When you try to make the best choice for your project, consider these different features carefully.
Generally speaking, an LED display holds advantages due to many functions it has, such as longer working life, lower consumption, easier maintenance, better display performance and so on.
These qualities contribute to the higher initial price point, while in the long run, the investment may be more cost-effective. But if you are looking for something cheaper just without many requirements, that may have you considering the LCD.

One of the most common questions we’re asked when assisting businesses establish their digital signage systems is whether an LED or an LCD display is best for their business. The answer is always contextual to the clients’ needs. It starts by clarifying what the difference between the two actually is.
When we’re talking aboutconsumer products such as computer monitors and televisions the first thing to know is that an LED screenis an LCD screen, but an LCD screen is not always an LED screen. An LED monitor or television is just a specific type of LCD screen, which uses a liquid crystal display (LCD) panel to control where light is displayed on your screen.
For the display to be considered an LED screen, it means it is utilising ‘Light Emitting Diodes’ to generate the light behind the liquid crystals to form an image. A non-LED LCD screen has backlights (called fluorescent lamps) behind the screen that emit white light which cannot pass through the liquid crystals until an electric current is applied to the liquid crystals which then straighten out and allow light to pass through.
This is where it can get easy to divert away from giving clear advice on whether as LED or LCD display is best for your business, because consumer displays differ from commercial displays. We are not trying to give the reader direction on which monitor is best for their gaming set-up, but which screen type is ideal for communicating your business’ messages.
Commercial LED displays are typically referred to as Direct View LED. This is because they use LEDs as the individual pixels that make up the image itself. Using a surface array of LEDs removes any need for a liquid crystal display panel, which carries noticeable benefits for particular uses.
While LCD flat panels are available in resolutions of 1080P and 4K UHD, Direct View LED displays are measured by pixel pitch. Pixel pitch is the distance from the centre of one pixel cluster to the centre of the next pixel cluster in an LED screen. The smaller the pitch, the closer viewers can get to the display before they see the pixels themselves. Outdoor configurations may have a pitch of 10mm to 40mm, as they are viewed at longer distances.
For use indoors, where viewers would be closer to the display, a pitch of 10mm or less would be required, some have even sub-1mm pixel pitch. When considering Direct View LED displays, it is important to know the minimum viewing distance required. Multiplying the pixel pitch by 1,000 gives you a good rule of thumb for the minimum viewing distance.
Direct view LED displays can either use discrete oval LEDs which are basically one single self-contained diode, or Surface Mounted Device (SMD) LEDs. SMD LEDs contain 3 individual light-emitting diodes bunched together. Either way, it’s the light-emitting diodes that create the images you see on screen. This is explained in the image below, courtesy of LG Electronics
Commercial LCD screens are more closely related to their consumer counterparts like TVs but there are still differences to be aware of. It is not advised to simply purchase an LCD TV from your local electronics retailer and install it in a public setting and expect it to function as desired.
Both have been designed to be used differently. Commercial display manufacturers understand that their displays are going to be exposed to far different conditions than a living room television will be. The componentry in a commercial display is optimised to allow for the display to be on 24 hours a day, all year around. They take into account diverse environments such as hot kitchens, high foot traffic, and bad weather,ensuring the product won’t fail in such exposures. The addition of more durable and resistant technology means commercial LCD displays will typically be priced higher than their consumer cousins.
Brightness: When deployed in areas with strong ambient lighting, even the best LCDs can appear washed out and difficult to view, especially when from an angle. Direct view LEDs for outdoor applications can reach 9,000 nits, making them a brighter and better choice for most outdoor applications.
Contrast: Direct View LEDs can turn off pixels that aren’t being used which allows for a higher contrast and therefore a richer image in varied lighting conditions.
Size and shape: Direct view LED-based walls can be flat, curved, wrapped around pillars and more. With no size limit or set aspect ratio they can be used more flexibly than LCDs. Plus, panels have no bezels which means you can piece together Direct view LEDs to create large and uniquely shaped displays with no visible interruptions between units.
Lifespan and servicing: Most direct view LEDs are rated to last 10 years, compared to a typical 5 years for LCDs. Further, they can be easily replaced on-site, reducing maintenance costs.
Tougher: If you’re using an LCD for any outdoor application or one where the unit has to be protected from extreme temperatures or humidity, you’re going to need to include an enclosure and have an understanding of how to properly seal and vent the unit. Outdoor Direct view LEDs, on the other hand, are purpose-built to withstand harsh environments.
Price: The higher upfront cost of Direct LEDs could be the biggest sticking point when it comes to pitching a video wall. While prices have been steadily dropping, Direct view LEDs are still more expensive than LCD alternatives. However, make sure you consider the lifetime cost of the solution and other benefits mentioned above before you discount direct view LEDs.
Functionality: LCD screens can offer a wider range of functionality when it comes to set-up, display settings, and day-to-day control. There is also the addition of touch screen options for LCD displays which are a fairly sought-after feature these days.
Resolution: Whilst the fine pixel pitches available in direct view LEDs today make for impressively resolute images, LCD screens still boast are more uninterrupted image when viewed up close, particularly with the modern 4k displays. This makes them a better option for smaller retail stores, quick service restaurants or office meeting rooms.
Screen brightness is impressive in a variety of locations and from any viewing angle, resolution is extremely clear from a viewing distance of 5ft and above.
As earlier stated, intended use for the display will determine which format you invest in. In outdoor environments or areas with high ambient lighting, brightness is the key concern. For indoor environments, the key concern is image quality and contrast. It’s also imperative to consider the usage environment and what the screen may be exposed to with regards to weather, temperature, humidity, direct contact and other factors. If you have a good understanding of your requirements for content, application, perception and budget then your first move should be to contact a supplier, like Black Lab Design, and we will be able to assist you with designing, building and installing the perfect digital display solution for your business.

LCD and LED are popular technologies used to display texts and images. Both LCD and LED are extensively used in display screens in various electronic devices such TVs, computers, laptops, smartphones, etc. There are many differences between LCD and LED displays, where one of the major difference is that LCD uses the liquid crystal and cold cathode fluorescent lamp for the formation of image on the screen, whereas the LED uses a PN junction diode which emits light when the current passes through it that is used as backlight in the display.
In this article, we will explain the various differences between LED and LCD. Also, we have added a brief description of LED and LCD for your reference.
LCD stands for Liquid Crystal Display. The LCD is a combination of solid state and liquid state of matter which is used to produce display effect. It uses the liquid crystals for the formation of a visible image. The LCDs are super-thin technology displays which are commonly used in screens of TVs, laptop, smartphones and computer, etc. The LCD consumes less electricity and includes millions of colors.
LED stands for Light Emitting Diode. The LED is a specially designed PN junction diode which is capable for emitting light when electric current passes through it. This emitted light is then used in display technologies as backlight.
The LED is constructed by joining a P-type semiconductor with an N-type semiconductor. Basically, the LED is a heavily doped PN junction diode. When an electric current is passed through the LED, the recombination of holes and electrons takes place at the PN junction and light is emitted in this process.
The color of emitted light by an LED depends upon the semiconductor material used and the amount of doping. The LEDs have very long life and requires less maintenance. However, they are costlier than LCD. In the display technology the LED is used as the backlight and such a display is known as LED display.
Both LED and LCD are types of display technologies used for showing the texts and images. However, there are several differences between LCD and LED displays, which are highlighted in the following table −Basis of DifferenceLCDLED DisplayFull formLCD stands for Liquid Crystal Display.LED stands for Light Emitting Diode.
DefinitionThe ‘LCD’ is a combination of solid and liquid states of matter which is used to display the information in the form of texts and images.The ‘LED’ is a PN junction diode which emits visible light when the electric current flows through it. This light is then used as the backlight for displaying the information in the form of texts and images.
Response timeLCD has high response time, hence their switching speed is less.The response time of LED is less than LCD, thus the LED is better than LCD in terms of response time.
MaterialThe liquid crystals and glass electrodes are used for manufacturing of LCD.In case of LED, the gallium arsenide phosphide is used for manufacturing
The most significant difference between LCD and LED display is that the Liquid Crystal Display uses Cold Cathode Fluorescent Lamp to provide backlight while the LED Display uses Light Emitting Diode to provide the backlight for displaying the information.

Light Emitting Diode (LED): LED is a type of LCD that actually accompanies the advancement of technology. This replaces the fluorescent tube with backlight technology, which produces a clearer picture than the LCD. LED have wider viewing angle than the LCD. It have better black level and contrast in comparison to LCD LCD display. LED delivers better color accuracy in comparison to the LCD. Advantage:LED have very long life.
Liquid Crystal Display (LCD): An LCD is a passive device, which means that it does not deliver any light to display characters, animations, videos, etc. LCD uses fluorescent tubes to lighten the picture, but can’t provide a clearer picture as LED delivers. It delivers good color accuracy, but we can notice the difference if we compare LED and LCD color accuracy. In LCD, the wide-angle decreases with 30 degrees from the center in the image then the contrast ratio.
6.LED delivers better color accuracy in comparison to the LCD.While it also delivers good color accuracy, we can notice the difference if we compare these two.
7.LED has a wider viewing angle than the LCD.While in LCD, the wide-angle decreases with 30 degrees from the center in the image then the contrast ratio.

Differences between LCD and LEDare important to understand as they are both very co-related and it is possible to get confused between one and the other. LCD is the abbreviation for liquid crystal display while LED is the abbreviation for light-emitting diodes. They differ from one another in the fact that LCDs usually use fluorescent lights while lights use light-emitting diodes.
The structure of both LCD and LED is quite the same as the technology behind these screens is the same. The differing television types have two different layers of polarized glass and through this glass, the liquid crystals get blocked as well as pass the light. Thus, this is one of the key differences and similarities between LCD and LED.
If you liked this article and would like to read more articles related to education, download BYJU’S – The Learning app today! You may also want to check out more information aboutLight Emitting Diodes

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

Are LED monitors better than their LCD predecessors? How are the two technologies different in terms of functionality and performance? All these questions will be answered by the LED vs. LCD comparison presented in here.
The age of CRT (cathode ray tube) displays is over and LCD displays are already being replaced with LED screens. Technology is evolving at an exponential pace, pushing existing technologies into obsolescence. Just when we thought LCD screens will be the default choice for some time to come, they were supplanted by LED monitors, with their superior power efficiency and rich picture quality.
Considering that we spend a major amount of our lifetime in front of screens these days and eyes are not a replaceable commodity, a discerning consumer must opt for technology that is soft on the eyes, while providing a rich visual experience.
There seems to be a lot of confusion about differences between LED (Light Emitting Diode) and LCD (Liquid Crystal Display) monitors that needs clarification. Here’s a succinct analysis of the similarities and differences between the two models.
LED and LCD monitors are based on the same basic technology for image display, but differ in the kind of backlighting used. While LCD monitors use CCFL (cold cathode fluorescent lamps) for backlighting, the latter use light emitting diodes. This is the prime difference between the two display technologies. So LED monitors are in actuality, a type of LCD monitors or an improvement over them.
Unlike CRT monitors that generate their own light through cathode ray incidence on fluorescent materials, LCD displays have to rely on external lighting, as their display is created through manipulation of light, passing through polarized liquid crystals. The backlighting affects picture quality substantially and light shed by LEDs offers superior picture quality compared to LCDs.
This is because LEDs offer much more gradation in intensity and a larger light wavelength spectrum, providing a truer color quality. These types of monitors offer a better dynamic contrast ratio as well. So if you compare LED and LCD monitors from a gaming perspective and for use in intensive graphic applications, LED monitors are surely better choices. They provide vivid and more lifelike colors, with better gradation.
WLED: In this type of a monitor, the white LEDs are placed along the edge of screen, taking up less space overall, making the entire monitor slimmer, as well as cheaper. This is the most common type of LED screen available in the market.
RGB LED: These comparatively expensive variants have Red-Green-Blue LEDs placed throughout the panel, providing a richer range of colors in the process.
LED monitors cure one of the basic problems with LCD TVs, which is the inability to display true black colors. They can produce true black hues, by switching off LEDs entirely, increasing the blackness quotient of the screen, providing better contrast in the process.
LED monitors are a very recently introduced technology and they are preferred over LCD monitors because of the amazingly rich picture quality and viewing comfort. One more advantage that LED monitors have over LCD ones is the power consumption factor. LED monitors require a lot less power to operate than cold cathode fluorescent lamps. This property can be attributed to the inherently low energy required by an LED to function. Their power consumption is as much as 40% lesser than conventional LCD monitors.
LED monitors are also a lot softer on the eyes than LCD monitors, making them popular choices for people who work for long hours on their desktop computers. They are also a lot more eco-friendly, because mercury is not used in their production. LEDs last longer than cold cathode fluorescent lamps, with little reduction in their power output over time, which makes these monitors long-lasting.
To conclude this LCD vs. LED monitor comparison, let us compare the price ranges. One major factor that has been holding back LED technology from reaching the masses is the high price factor. The manufacturing of these devices is a bit costlier currently, compared to LCD displays which have raised their overall price. However, the cost gap is slowly lowering with time, as the demand for superior LED back-lit displays is on the rise all over the world. Even laptop computers and now smartphones come equipped with LED displays. While some of the best LCD monitors are available for a price around $100, the best LED monitors fall in the $150 to $200+ range.
Without doubt, LED is the better technology in terms of color richness, contrast and power consumption, which makes them worth the higher initial investment cost.
Some of the best LED monitors currently are the Dell UltraSharp U2312HM ($209.19), HP DreamColor LP2480zx ($2,719.99), HP 2310e ($499.00), the Samsung PX2370 ($311.93) or any monitor from the Samsung Syncmaster series. So if you are planning to upgrade your PC monitor or television set, LED is the way to go.

In market, LCD means passive matrix LCDs which increase TN (Twisted Nematic), STN (Super Twisted Nematic), or FSTN (Film Compensated STN) LCD Displays. It is a kind of earliest and lowest cost display technology.
LCD screens are still found in the market of low cost watches, calculators, clocks, utility meters etc. because of its advantages of low cost, fast response time (speed), wide temperature range, low power consumption, sunlight readable with transflective or reflective polarizers etc. Most of them are monochrome LCD display and belong to passive-matrix LCDs.
TFT LCDs have capacitors and transistors. These are the two elements that play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy without running out of operation.
Normally, we say TFT LCD panels or TFT screens, we mean they are TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology. TFT is active-matrix LCDs, it is a kind of LCD technologies.
TFT has wider viewing angles, better contrast ratio than TN displays. TFT display technologies have been widely used for computer monitors, laptops, medical monitors, industrial monitors, ATM, point of sales etc.
Actually, IPS technology is a kind of TFT display with thin film transistors for individual pixels. But IPS displays have superior high contrast, wide viewing angle, color reproduction, image quality etc. IPS screens have been found in high-end applications, like Apple iPhones, iPads, Samsung mobile phones, more expensive LCD monitors etc.
Both TFT LCD displays and IPS LCD displays are active matrix displays, neither of them can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to make LCD showing colors. If you use a magnifier to see your monitor, you will see RGB color. With switch on/off and different level of brightness RGB, we can get many colors.
Neither of them can’t release color themselves, they have relied on extra light source in order to display. LED backlights are usually be together with them in the display modules as the light sources. Besides, both TFT screens and IPS screens are transmissive, it will need more power or more expensive than passive matrix LCD screens to be seen under sunlight. IPS screens transmittance is lower than TFT screens, more power is needed for IPS LCD display.

On home appliances, it is often necessary to display numbers and words to convey information, such as the current time displayed on the clock, the current temperature information on the kettle… etc. The two most commonly used displays are LED displays and LCD displays, this article will compare the advantages and disadvantages of LED displays and LCD displays, and provide a two-step quick way to quickly determine whether this product is an LCD or LED display.
LCD displays are the most common displays in daily life, from your mobile phone screen to home appliances, you can use LCD displays, but whether it is a color or black and white LCD display, in fact, the principle is the same. There are two main components within the LCD display:Backlight module
Black-and-white LCD displays are widely used in a variety of low-cost products, and the picture above is a black-and-white LCD display used in science calculator.
Advantages of monochrome LCD displays:Can show very compact information.Each display point of the calculator as shown below is very close to each other, and high-resolution text can be displayed
Power savingBlack and white LCD displays can operated without a lot of power compared to full-color LCD, when products that do not require full-color demand and need to control power consumption are often used.
CheapIf you just want to display a set of numbers or a few ICONs, the price of using a black-and-white LCD display is much cheaper than that of a full-color LCD, and it is often used in a large number of consumer products.
Disadvantages of monochrome LCD displays:Small viewing angle, not easy to use for outdoor application.Usually black and white liquid crystal display in the front view, the display is the clearest, but due to the LCD panel characteristics, as long as the side view, the clarity will be declined, outdoor will be affected by strong light, the viewing angle is not large, the clarity is not enough, LED display due to the word luminescence characteristics, there is no viewing angle problem.
Can only be used in monochromeIf you need multi-color applications, you can only upgrade to a full-color LCD display that is many times more expensive, and the LED display can simply add different colors to the LED display without significantly increasing the cost
The structure and basic introduction of the display in this article this article, compared with LCD displays, self-illumination characteristics, so that LED displays in the outdoor visibility is high, high brightness, but also no viewing angle problem. LED displays are the same as black and white LCD liquid crystals, and the display information must be designed in advance and cannot be arbitrarily transformed. The price of LED displays is between full-color LCDs and monochrome LCDs, and if properly designed, they can save the cost of achieving display performance.
This article briefly introduces the basic principles and advantages and disadvantages of two common LCD displays, and provides two steps to quickly determine whether the display in hand is an LED display, and product designers can follow these two steps to understand which display the product is used when observing the product.

Many customers will ask about the full-color LED display, because the LED full-color display has good flatness, seamless splicing, high resolution and fine image quality, which is suitable for meeting rooms, lecture halls, monitoring centers, halls and hotels. There are many models of full-color LED display screen
Many customers will ask about the full-color LED display, because the LED full-color display has good flatness, seamless splicing, high resolution and fine image quality, which is suitable for meeting rooms, lecture halls, monitoring centers, halls and hotels. There are many models of full-color LED displays. Many people don’t know whether P2 or P3 is better when choosing. The following technologies share the differences between P2 and P3 of full-color LED displays?
P2 full color LED display device indicates that the distance between the center points of the lamp beads is 2mm. P here represents the distance between each dot. The unit of dot spacing of LED screen is mm
The point spacing of P3 is 3 mm, and that of P2 is 2 mm, so under the same screen area and model, the point spacing of P2 is smaller, so the displayed image will be more detailed and clearer. At the same time, the smaller the point spacing is, the higher the price will be.
1. P2 has 250000 pixels per unit area and P3 has 110000 pixels per unit area. P2 uses 1515 beads, P3 uses 2121 beads. The display effect of P2 is better than that of P3.
2. It is not to say that the smaller the distance between points, the better. It should also be determined according to the actual application. For example, the outdoor full-color LED display large screen, because of the visual display distance, usually uses the display device with large spacing, and for the security monitoring and other users who need detailed display screen, the full-color small spacing LED display screen will be more suitable.
1. P1.5, 1.6, p1.8, p1.9 and P2 belong to indoor small space LED display models, which are commonly used in government, institutions and indoor places (such as video conference, monitoring center, command center, studio, etc.) with clear requirements for close-up viewing. These three models have high pixels and relatively high cost.
2. P2.5, P3 and P4 belong to indoor high-definition LED display models, which are commonly used in conference rooms, lecture halls, exhibition halls, projection, corridors and corridors, etc. It is suitable for viewing distance of 3 meters and area of more than 4 square meters.
3. P4, P5 are often used in hotel banquet hall, hotel stage background LED large screen, can be used for temporary stage construction, performance activities with LED stage large screen, in order to facilitate carrying, transportation, free disassembly, make a box, according to the site environment, can be assembled according to any size. Generally, there are iron boxes, aluminum boxes, and air boxes for packaging and transportation.
Ms.Josey
Ms.Josey