pc less display screens free sample

During the day, computer screens look good—they"re designed to look like the sun. But, at 9PM, 10PM, or 3AM, you probably shouldn"t be looking at the sun.

pc less display screens free sample

When your app runs on a device, the system uses an algorithm to normalize the way UI elements display on the screen. This scaling algorithm takes into account viewing distance and screen density (pixels per inch) to optimize for perceived size (rather than physical size). The scaling algorithm ensures that a 24 px font on Surface Hub 10 feet away is just as legible to the user as a 24 px font on 5" phone that"s a few inches away.

pc less display screens free sample

Take a full-page, scrolling screenshot. Snagit makes it simple to grab vertical and horizontal scrolls, infinitely scrolling webpages, long chat messages, and everything in between.

Annotate screen grabs with professional markup tools. Add personality and professionalism to your screenshots with a variety of pre-made styles. Or you can create your own.

Snagit recognizes the text in your screenshots for quick editing. Change the words, font, colors, and size of the text in your screenshots without having to redesign the entire image.

pc less display screens free sample

Bezel-less usually refers to less bezel rather than a total lack of bezel. You still need a frame around the screen. It isn"t only for structural integrity, which is important; the bezel houses electronics, such as the front-facing camera on smartphones and tablets.

For example, the iPhone X is only slightly bigger than the iPhone 8, but it has a screen size that is larger than the iPhone 8 Plus. Reducing the size of the bezel allows manufacturers such as Apple and Samsung to pack in bigger screens and reduce the overall size of the phone, making it more comfortable to hold in your hand.

However, more screen space doesn"t always mean easier to use. Usually, when you jump up in screen size, the screen is both wider and higher, which translates to more space for your fingers to tap the on-screen buttons. The emergence of bezel-less smartphones tends to add more height but only a little width, which doesn"t add quite the same ease of use.

When it comes to tablets and televisions, a bezel-less design can be significant. These devices had huge bezels compared to what we see on our smartphones, so making the most of the space can add to the screen size while keeping the dimensions the same size or smaller.

A bezel-less design plays out differently when it comes to smartphones, especially those that have gone to almost no bezel on the sides such as the Samsung Galaxy S8+. One of the most essential accessories for smartphones is a case, and when you install a case on a phone like the Galaxy S8+, you lose part of the appeal of that wraparound edge.

The bezel-less design also leaves less room for your fingers to hold the device, which can lead to accidentally tapping a button or scrolling down a web page when you change your grip. This problem is usually overcome once you get used to the new design, but it can detract from the initial experience.

In many ways, bezel-less televisions and monitors make a lot more sense than bezel-less smartphones. HDTVs and computer monitors don"t have the same requirements as a smartphone display. For example, there is no need for a front-facing camera on your television, and you only use the buttons on the TV itself when you lose the remote, so manufacturers can hide those buttons on the side or bottom of the TV.

You can argue that a bezel helps a TV picture by framing it, but we"ve had completely bezel-less televisions for a while now; they are called projectors. Part of the reason why the absence of a bezel works well on a television is that the wall behind the television acts as a visual frame.

Outside of projectors, which are genuinely bezel-less, products aren"t bezel-less. Manufacturers may advertise bezel-less displays, but they are really less-bezel displays with a thin frame around the screen.

On a laptop, bezels are the borders around the screen. As laptops get thinner and lighter overall, chunkier borders around the screen are getting rarer, and bezel-less displays are becoming more common.

pc less display screens free sample

Flicker-free monitors are specially designed to produce a single continuous light source. A typical monitor adjusts its brightness through flickering, introducing periods of low light between higher brightness. While a user may not be aware of the flicker, it can cause a number of issues, including eye strain. However, many monitors now use flicker-free technology to put less strain on monitor users’ eyes.

Research shows that the average American worker uses a computer for up to 7 hours a day for work, recreation, or both. Most of us have never realized the degree to which we’re regularly exposed to digital displays. That exposure takes a toll on the health of your eyes, as well as your overall health, over prolonged periods.

However, the path to saving your eyes from long-term damage starts with the computer monitor you choose.  Choosing a flicker-free monitor – a display that maintains a steady stream of light – is one of the healthiest choices you can make to protect your eyes.

Before we talk about how the right computer monitor can protect your eyes, we need to first understand how digital displays can potentially degrade your vision over time.

The light emanating from a digital display is different from other kinds of light you’re regularly exposed to, like sunlight or incandescent lights you use when lighting your house.

Most computers on the market today are designed with LED backlighting, which enhances the computer screen’s clarity, brilliance, contrast, definition, and graphics. LED backlighting emits blue light waves that radiate at a brighter intensity than that of natural light or other light waves on the light spectrum. The light from a digital display is composed of what is known as HEV light (high-energy visible light). HEV light occurs in the violet/blue part of the visible spectrum.

Computer companies are beginning to address the concerns and dangers that digital displays pose to your eye health. When certain features are integrated into digital displays and computer monitors, your eyes can be successfully protected from digital eye strain.

Start by setting your display to peak brightness. Turn on your mobile phone camera and point it at your computer screen. Now, with your phone’s camera focused on the screen, adjust the brightness to 50% and then eventually down to 0%.  As you lower the screen’s brightness, any flicker will become increasingly noticeable if it’s a non-flicker free monitor.

To remedy the constant exposure you receive to digital displays in everyday life, it’s critical that you take breaks to give your eyes time to recover, reducing the effects of eye strain. Follow the 20-20-20 rule: every 20 minutes, you should focus your eyes on a point 20 feet away from the computer screen for a total of 20 seconds.

Screens are everywhere today. If you work in an office, you use one to edit documents and create spreadsheets; if you work in a store or a restaurant, you use a digital point-of-sale system. When you’re off the clock, you use your devices to watch movies, text friends, and shop for clothes. Even when you’re driving, you’re looking at the GPS or passing by digital billboards.

pc less display screens free sample

The monitor is the window to your PC’s soul. Without the right display, everything you do on your system will seem lackluster, whether gaming, viewing/editing photos and video or just reading text on your favorite websites.

Hardware vendors understand how the experience changes with different display specs and features and have flooded the market with a plethora of options. But which features and specs are most valuable for how you use your monitor? For example, should you get 4K, 1440p, 1080p or just plain HD resolution—and what"s the difference anyway? How much do refresh rates and response times matter? Are things like flicker-free, low blue light mode, G-Sync and FreeSync crucial? And how should your priorities change if your focus is gaming versus professional applications versus general use?

Before we get started, if you"re looking for recommendations, see our Best Computer Monitors page or gaming-specific Best Gaming Monitors list. We also have high-res picks on our Best 4K Gaming Monitors and Best Budget 4K Monitors pages and break down HDR displays in our How to Choose the Best HDR Monitor article.

Why you can trust Tom"s HardwareOur expert reviewers spend hours testing and comparing products and services so you can choose the best for you. Find out more about how we test.Determine your monitor’s main purpose: gaming, professional or general use. Generally, gamers should prioritize fast refresh rates and low response times, professionals should prioritize color accuracy and general use users have less specific needs but will often opt for a monitor with a high-contrast VA panel.The higher the resolution, the better the picture. A monitor’s resolution tells you how many pixels a monitor has in width x height format. 1920 x 1080 (also known as 1080p, Full HD (FHD) and HD) is the minimum you need. But you"ll get sharper images with QHD and even sharper with 4K.Size matters too.Pixel density has a big impact on monitor quality, and our sweet spot is 109 pixels per inch (ppi). A larger monitor will have low pixel density if it"s a lower resolution. For viewing from typical desktop distances, 32 inches is plenty ‘big." It’s not hard to find a 32-inch gaming or general use monitor at 4K resolution for under $1,000.Refresh rates: bigger is better. This tells you the number of times your monitor updates with new information per second and is measured in hertz (Hz). Bigger numbers equal better, smoother, less choppy images. Refresh rate is especially important for gamers, who"ll want a monitor with at least 75 Hz (most monitors designed for gaming offer at least 120 Hz), combined with the lowest response time you can find. If you’re not gaming, a 60 Hz refresh rate should do.Response times: Shorter is better, but it"s not a big priority unless you’re gaming. Response time tells you how long a monitor takes to change individual pixels from black to white or, if its GTG response time, from one shade of gray to another. Longer response times can mean motion blur when gaming or watching fast-paced videos. For gaming monitors, the highest response time you’ll likely see is 5ms, while the fastest gaming monitors can have a 0.5ms response time.Panel tech: For image quality, TN < IPS < VA. TN monitors are the fastest but cheapest, due to poorer image quality when viewing from a side angle. IPS monitors have slightly faster response times and show color better than VA panels, but VA monitors have the best contrast out of all three panel types. For more on the difference between panel types, see the dedicated section below.Consider a curved monitor.Curved monitors are supposed to make your experience more immersive with a large field of view(opens in new tab) and are said to be less eye-straining. However, they can be prone to glare when viewing from certain angles (light sources are coming from various angles instead of one). Effective curved monitors are usually ultrawide and at least 30 inches, which both point to higher costs.

If you do buy a curved monitor, understand curvature specs. An 1800R curvature has a curved radius of 1800mm and a suggested best max viewing distance of 1.8 meters -- and so on. The lower the curvature (as low as 1000R), the more curved the display is.

The first is your PC"s graphics card(opens in new tab). The more pixels you have, the more processing power your graphics card needs to alter those pixels in a timely fashion. Images on 4K monitors look stunning, but if your system isn’t up to the task of driving 8.3 million pixels per frame, your overall experience will suffer and that extra resolution will actually become a hindrance, particularly if you"re gaming.

4K gamers should find the fastest card they can afford. The GeForce RTX 3070 might be sufficient for lighter games or if you turn down some settings, but the GeForce RTX 3080/3090 or the Radeon RX 6800 XT or Radeon RX 6900 XT would do you better. For more tips on picking a graphics card, see our Graphics Card Buying Guide(opens in new tab), Best Graphics Cards(opens in new tab) and GPU Benchmarks(opens in new tab) Hierarchy pages. For help choosing a 4K gaming display, see our Best 4K Gaming Monitors(opens in new tab) page.

There are three major LCD technologies used in today’s PC monitors: twisted nematic (TN(opens in new tab)), vertical alignment (VA(opens in new tab)) and in-plane switching (IPS)(opens in new tab). Each has several variations that offer different advantages. We won’t get into the intricacies of how these differing panels work. Instead, the chart below explains how each impacts image quality and the best use cases for each panel.

DisplayWorst viewing angles;Worst colorViewing angles typically better than TN, worse than IPS; Good color; Best contrast;Best image depthBest viewing angles; Best color

While that graph should be enough to make a quick decision on panel type, if you want to dive deeper, consider the following:Contrast is the most important factor in image quality and reliability (5,000:1 is better than 1,000:1). As such, we consider VA panels to offer the best image quality among VA, IPS and TN.We’ve reviewed plenty of TN screens that can hold their own in the color department with more expensive IPS and VA displays. While the general perception is that TN offers less accurate color and contrast than VA and IPS panels, there’s a chance you won’t notice the difference. Many gaming monitors use TN panels for their speed. We’ve found that color quality differs by price more than it does by panel tech.

However, there are some worthy 60 Hz gaming monitors, and many 4K ones are limited to 60 Hz. If you opt for a 60 Hz display and plan to game, G-Sync or FreeSync is a must (more on that below).

Lower resolution + good graphics card = faster refresh rates. Look at the on-screen display (OSD) above from the Acer Predator Z35(opens in new tab) curved ultrawide. Its resolution is low enough where a fast graphics card can hit a 200 Hz refresh rate with G-Sync enabled. If you’re buying a monitor for the long-term, remember that the graphics card your PC uses 1-3 years from now may be able to hit these speeds with ease.

Worried about input lag? Input lag is how long it takes your monitor to recognize output from your graphics card or when you’ve pushed a button on your keyboard or mouse and is something gamers should avoid. High refresh rates generally point to lower input lag, but input lag isn’t usually listed in specs, so check our monitor reviews(opens in new tab) for insight. Sites like DisplayLag(opens in new tab) also offer unbiased breakdowns of many monitors’ input lag.

Gaming monitors usually have Nvidia G-Sync (for PCs with Nvidia graphics cards) and/or AMD FreeSync (for running with PCs using AMD graphics cards). Both features reduce screen tearing and stuttering and add to the price tag; although, G-Sync monitors usually cost more than FreeSync ones.

Another thing to keep in mind is that G-Sync relies on DisplayPort, while FreeSync works with both HDMI and DisplayPort. For more on which port is best for gaming, see our DisplayPort vs. HDMI(opens in new tab)analysis. And for more on the two popular Adaptive-Sync flavors, see our G-Sync(opens in new tab) and FreeSync(opens in new tab) pages in the Tom"s Hardware Glossary(opens in new tab).

Regardless, if your budget only has room for a low to mid-speed graphics card, you’ll certainly want a monitor with either G-Sync or FreeSync that works at a low minimum refresh rate.

So, should you opt for G-Sync or FreeSync? Here’s what to consider:Which hardware do you already have? If you’ve already nabbed a shiny new RTX 3080, for example, the choice is clear.Team Nvidia or Team AMD? If you"re not tied to either, remember that G-Sync and FreeSync offer comparable performance for the typical user. We learned this when we tested both against each other in ourNvidia G-Sync vs. AMD FreeSync(opens in new tab) faceoff.What"s the Adaptive-Sync"s lowest supported refresh rate? G-Sync monitors operate from a 30 Hz refresh rate up to the monitor’s maximum, but not all FreeSync ones do.FreeSync monitors usually support Adaptive-Sync up to a monitor’s maximum refresh rate, but it’s the lower limit you must note. We’ve reviewed screens that bottom out at as high as 55 Hz. This can be problematic if your graphics card can’t keep frame rates above that level. Low frame rate compensation (LFC), which G-Sync kicks in at below 30 Hz, is a viable solution but will only work if the max refresh is at least 2.5 times the minimum (example: if the maximum refresh rate is 100 Hz, the minimum must be 40 Hz for LFC to help).Many FreeSync monitors can run G-Sync.Nvidia has tested and certified some of these as G-Sync Compatible. Many non-certified monitors can also run G-Sync too, but performance is not guaranteed. See our article on how to run on G-Sync on a FreeSync monitor for more.

If you plan on doing a lot of competitive gaming with HDR content, consider getting a G-Sync Ultimate or FreeSync Premium Pro display. Both features are certified for lower input latency and include additional benefits for HDR titles.

You can also tell if you’re getting a good sales discount on a name-brand monitor with the following guidelines:144 Hz at 1080p (27 inches or more): $200 or less

Finally, we love PCPartPicker.com(opens in new tab) and, for Amazon listings, CamelCamelCamel(opens in new tab)for tracking the price history of specific monitors.

Both gaming and professional monitors are more than qualified to serve as general use displays. But if you want to avoid spending extra money on a specialized monitor, you need something that works well for every kind of computing, entertainment and productivity. Here’s how to decide what’s best for you:Contrast is king, so VA panels are too. We consider contrast the first measure of image quality, followed by color saturation, accuracy and resolution. When a display has a large dynamic range, the picture is more realistic and 3D-like. VA panels typically offer 3-5 times the contrast of IPS or TN screens. If you place a VA and IPS monitor next to each other with matched brightness levels and calibration standards, the VA screen will easily win in terms of image quality.Consider flicker-free if you"ll be staring at the screen for over 8 hours. They won’t flicker at any brightness level, so even those particularly sensitive to flickering will be pleased.Low blue light isn’t a buying point. Most operating systems, including Windows 10(opens in new tab), have modes for reducing blue light, based on the theory that blue light interferes with sleep. But although many monitors offer this feature, it"s not necessary. Low blue light can make a computer image less straining on your eyes, but so can accurate calibration. And since reducing blue brightness also affects all other colors, you may experience an unnatural look in graphics and photos. This is especially distracting in games and videos. There"s no need to prioritize low blue light, but it’s becoming harder to find monitors without it.

Professional users have special needs. If you’re a photographer, print proofer, web designer, special effects artist, game designer or someone that needs precise color control, this section’s for you. Here’s what to know:Monitors vendor-certified as color accurate cost more but are worth it. If you want a monitor that’s accurate out of the box, this is your best choice. It’s especially important for monitors without calibration capabilities. Professional monitors should come ready for work with no adjustment required. A DeltaE (dE)(opens in new tab) value of 2 or lower is a good sign. A dE under 3 is typically considered invisible to the human eye.You want calibration options. There are two ways to accomplish this: the on-screen display (OSD) and software. Check our reviews for monitor-specific calibration recommendations.Calibration options should include choices for different color gamuts, color temperatures and gamma curves. At minimum there should be sRGBand Adobe RGB standards, color temperatures ranging from 5,000 to 7,500K and gamma presets from 1.8 to 2.4. Monitors used for TV or movie production should also support the BT.1886 gamma standard.Flicker-free goes a long way if you’re spending eight hours or more in front of a computer screen. Many pro monitors today offer this.

What bit-depth do I need?Higher is better, and professionals need at least 10-bits. An 8-bit panel won’t cut it for most professional graphics work. If possible, opt for 12-bit. For more, see our article on the difference between 10 and 12-bit(opens in new tab).A deep color monitor won’t do you any good if your graphics card can’t output a 10- or 12-bit signal. Yes, the monitor will fill in the extra information, but only by interpolation. Just as with pixel scaling, a display can’t add information that isn’t there in the first place; it can only approximate. Many consumer-grade graphics cards are limited to 8-bit output.

No matter what PC you have, your monitor choice has a dramatic effect on everything you do. That makes buying a new monitor a worthy investment and one that can benefit you immediately, whether your playing games or doing work, with the right selection. Just make sure you don"t waste money on a screen with excess features or without the specs you need to help your PC shine.

pc less display screens free sample

The Asus ProArt PA248CNV blends a sharp 1080p display with features such as 90-watt USB-C charging, a USB hub, and a sturdy stand for less than $300. The monitor also impressed us with its grayscale accuracy, as its shades of white and gray weren’t noticeably tinged with red, green, or blue.

We previously recommended an older version of this display, the Asus ProArt PA247CV, as a top pick in this guide. Both monitors are fantastic, but the newer PA248CNV offers a larger, more accurate display and a higher charging wattage for only around $40 more, an extra expense that we think is worth paying. If the PA248CNV is out of stock or has jumped in price when you’re shopping, or if you don’t have a high-powered laptop that requires 90 W charging, we recommend getting the PA247CV instead.

That said, the PA248CNV is an especially good monitor for a wide swath of laptop owners. It has a USB-C port with 90 W of charging output, which can charge most laptops at a normal rate, even some higher-powered laptops like the Dell XPS 15 and MacBook Pro. The PA248CNV also has a USB hub with four USB 3.2 Gen 1 ports, perfect for connecting more devices to a laptop over the USB-C connection. (We like these ports for adding accessories such as webcams and wireless mouse dongles.)

Like all of our picks in this guide, the PA248CNV is a 24-inch IPS display. We measured a contrast ratio of 1017:1, which makes images with variation between light and dark look realistic and vibrant. The monitor can reach 300 nits of brightness, about the threshold for getting a good-looking picture in a typical office with some sunlight.

This monitor has accurate-enough color for most uses, especially for those writing documents, making presentations, and doing other office work. This is where the grayscale accuracy factors in—when you’re staring at a blank page wondering how to start that paragraph, at least you won’t be noticing a strange red tint that sends you down a Google rabbit hole and further delays that project you were supposed to turn in last week. Luckily, this display is exceptionally color-accurate, even better than our previous Asus ProArt pick. It even rivals our upgrade pick in some areas, though the Dell monitor still wins out for creatives because it offers more adjustability in calibrating the display in professional settings. The table below outlines the color accuracy of this monitor in comparison with our other picks.

The ProArt PA248CNV also has a few extra features that are nice, such as a 75 Hz display with FreeSync. This makes the monitor marginally better for casual gaming, as movement and animations seem smoother than on a typical 60 Hz display. If you’re gaming online or playing more competitively, you should choose a display with at least 144 Hz.

For those who are considering a multi-monitor setup, the ProArt PA248CNV also supports daisy-chaining up to four displays. One DisplayPort cable connects your desktop to your first monitor, and then you can run a cable directly out of that monitor to the next one. You can link up to four PA248CNV units together this way (though you can’t mix in other monitor models). This flexibility is great if your desktop has only one DisplayPort, and it can reduce the nest of cables coming from your PC.

Asus covers the PA248CNV with its Zero Bright Dot policy: The company will swap out your monitor if any stuck bright pixels appear on the display during the three-year warranty period. One of the best warranties in the industry, this policy helps guard against one of the most annoying monitor defects.

If you’ve been reading our other monitor guides lately, you might notice that this is the 24-inch version of the top pick in our guide to the best 27-inch monitors. Although many home-use displays under $500 have fallen short of their advertised color accuracy, contrast, and brightness in our tests, we’ve found that the ProArt line often lives up to its claims (or at least gets much closer than the competition). It also prioritizes features that are essential, such as USB-C charging for laptop owners and sturdy, adjustable stands.

We generally like this monitor and haven’t found issues with it. However, as we mention in our How we picked and tested section, if you’re planning on using this monitor as your main work display, you might want to consider a higher-resolution 27-inch monitor. (Our top pick in our guide to the best 27-inch monitors is just a larger, higher-resolution version of this same monitor.) On that kind of monitor, you have more screen space, and text is a bit sharper and easier to read. But if you’re already working on a 1080p laptop screen or monitor and satisfied with the image quality, that’s great! The Asus ProArt PA248CNV will be a quality replacement or upgrade.

pc less display screens free sample

The media type is optional unless you are using the not or only logical operators. If the media type is omitted then the media query will target all devices.

pc less display screens free sample

The same image will look different on a laptop and mobile device because the resolution is different on both devices. The visual dimensions of the display vary depending on the size of the screen.

The best way to fix the color display on your screen is to calibrate your monitor, which is the process of matching the color output from your monitor to a specific RGB color space.

pc less display screens free sample

ASUS Eye Care technology is designed to reduce the risk of Computer Vision Syndrome (CVS) symptoms caused by spending prolonged periods in front of a display.

Blue light emissions, display flicker and glare are some of the factors that cause CVS. ASUS monitors featuring ASUS Eye Care Technology ensure comfortable viewing, while caring your eyes at the same time.

The blue light emitted from monitors can cause eye strain, headaches and even sleep disorders. Children are more susceptible to eye damage because the crystalline lens in their eye is less effective in filtering blue light, raising the risk of age-related macular degeneration.

Onscreen flicker is caused by the rapid on/off cycle of an LED backlight as it tries to maintain the brightness of the display. It is more noticeable when the display is set to dimmer settings.

An integrated TÜV Rheinland-certified ASUS Blue Light Filter protects eyes from harmful blue light. Settings can be quickly accessed via the onscreen display (OSD) menu, and an intuitive slider makes it easy to adjust filter levels to suit any scenario or user preference.

All ASUS Low Blue Light Monitors feature an easily accessible onscreen display (OSD) menu that allows you to access four different Blue Light Filter settings onscreen.

pc less display screens free sample

A touchscreen or touch screen is the assembly of both an input ("touch panel") and output ("display") device. The touch panel is normally layered on the top of an electronic visual display of an electronic device.

The touchscreen enables the user to interact directly with what is displayed, rather than using a mouse, touchpad, or other such devices (other than a stylus, which is optional for most modern touchscreens).

Touchscreens are common in devices such as smartphones, handheld game consoles, personal computers, electronic voting machines, automated teller machines and point-of-sale (POS) systems. They can also be attached to computers or, as terminals, to networks. They play a prominent role in the design of digital appliances such as personal digital assistants (PDAs) and some e-readers. Touchscreens are also important in educational settings such as classrooms or on college campuses.

The popularity of smartphones, tablets, and many types of information appliances is driving the demand and acceptance of common touchscreens for portable and functional electronics. Touchscreens are found in the medical field, heavy industry, automated teller machines (ATMs), and kiosks such as museum displays or room automation, where keyboard and mouse systems do not allow a suitably intuitive, rapid, or accurate interaction by the user with the display"s content.

Historically, the touchscreen sensor and its accompanying controller-based firmware have been made available by a wide array of after-market system integrators, and not by display, chip, or motherboard manufacturers. Display manufacturers and chip manufacturers have acknowledged the trend toward acceptance of touchscreens as a user interface component and have begun to integrate touchscreens into the fundamental design of their products.

One predecessor of the modern touch screen includes stylus based systems. In 1946, a patent was filed by Philco Company for a stylus designed for sports telecasting which, when placed against an intermediate cathode ray tube display (CRT) would amplify and add to the original signal. Effectively, this was used for temporarily drawing arrows or circles onto a live television broadcast, as described in US 2487641A, Denk, William E, "Electronic pointer for television images", issued 1949-11-08. Later inventions built upon this system to free telewriting styli from their mechanical bindings. By transcribing what a user draws onto a computer, it could be saved for future use. See US 3089918A, Graham, Robert E, "Telewriting apparatus", issued 1963-05-14.

The first version of a touchscreen which operated independently of the light produced from the screen was patented by AT&T Corporation US 3016421A, Harmon, Leon D, "Electrographic transmitter", issued 1962-01-09. This touchscreen utilized a matrix of collimated lights shining orthogonally across the touch surface. When a beam is interrupted by a stylus, the photodetectors which no longer are receiving a signal can be used to determine where the interruption is. Later iterations of matrix based touchscreens built upon this by adding more emitters and detectors to improve resolution, pulsing emitters to improve optical signal to noise ratio, and a nonorthogonal matrix to remove shadow readings when using multi-touch.

The first finger driven touch screen was developed by Eric Johnson, of the Royal Radar Establishment located in Malvern, England, who described his work on capacitive touchscreens in a short article published in 1965Frank Beck and Bent Stumpe, engineers from CERN (European Organization for Nuclear Research), developed a transparent touchscreen in the early 1970s,In the mid-1960s, another precursor of touchscreens, an ultrasonic-curtain-based pointing device in front of a terminal display, had been developed by a team around Rainer Mallebrein[de] at Telefunken Konstanz for an air traffic control system.Einrichtung" ("touch input facility") for the SIG 50 terminal utilizing a conductively coated glass screen in front of the display.

In 1972, a group at the University of Illinois filed for a patent on an optical touchscreenMagnavox Plato IV Student Terminal and thousands were built for this purpose. These touchscreens had a crossed array of 16×16 infrared position sensors, each composed of an LED on one edge of the screen and a matched phototransistor on the other edge, all mounted in front of a monochrome plasma display panel. This arrangement could sense any fingertip-sized opaque object in close proximity to the screen. A similar touchscreen was used on the HP-150 starting in 1983. The HP 150 was one of the world"s earliest commercial touchscreen computers.infrared transmitters and receivers around the bezel of a 9-inch Sony cathode ray tube (CRT).

Touch-sensitive control-display units (CDUs) were evaluated for commercial aircraft flight decks in the early 1980s. Initial research showed that a touch interface would reduce pilot workload as the crew could then select waypoints, functions and actions, rather than be "head down" typing latitudes, longitudes, and waypoint codes on a keyboard. An effective integration of this technology was aimed at helping flight crews maintain a high level of situational awareness of all major aspects of the vehicle operations including the flight path, the functioning of various aircraft systems, and moment-to-moment human interactions.

In the early 1980s, General Motors tasked its Delco Electronics division with a project aimed at replacing an automobile"s non-essential functions (i.e. other than throttle, transmission, braking, and steering) from mechanical or electro-mechanical systems with solid state alternatives wherever possible. The finished device was dubbed the ECC for "Electronic Control Center", a digital computer and software control system hardwired to various peripheral sensors, servos, solenoids, antenna and a monochrome CRT touchscreen that functioned both as display and sole method of input.stereo, fan, heater and air conditioner controls and displays, and was capable of providing very detailed and specific information about the vehicle"s cumulative and current operating status in real time. The ECC was standard equipment on the 1985–1989 Buick Riviera and later the 1988–1989 Buick Reatta, but was unpopular with consumers—partly due to the technophobia of some traditional Buick customers, but mostly because of costly technical problems suffered by the ECC"s touchscreen which would render climate control or stereo operation impossible.

Touchscreens had a bad reputation of being imprecise until 1988. Most user-interface books would state that touchscreen selections were limited to targets larger than the average finger. At the time, selections were done in such a way that a target was selected as soon as the finger came over it, and the corresponding action was performed immediately. Errors were common, due to parallax or calibration problems, leading to user frustration. "Lift-off strategy"University of Maryland Human–Computer Interaction Lab (HCIL). As users touch the screen, feedback is provided as to what will be selected: users can adjust the position of the finger, and the action takes place only when the finger is lifted off the screen. This allowed the selection of small targets, down to a single pixel on a 640×480 Video Graphics Array (VGA) screen (a standard of that time).

Touchscreens would not be popularly used for video games until the release of the Nintendo DS in 2004.Apple Watch being released with a force-sensitive display in April 2015.

In 2007, 93% of touchscreens shipped were resistive and only 4% were projected capacitance. In 2013, 3% of touchscreens shipped were resistive and 90% were projected capacitance.

Resistive touch is used in restaurants, factories and hospitals due to its high tolerance for liquids and contaminants. A major benefit of resistive-touch technology is its low cost. Additionally, as only sufficient pressure is necessary for the touch to be sensed, they may be used with gloves on, or by using anything rigid as a finger substitute. Disadvantages include the need to press down, and a risk of damage by sharp objects. Resistive touchscreens also suffer from poorer contrast, due to having additional reflections (i.e. glare) from the layers of material placed over the screen.3DS family, and the Wii U GamePad.

A capacitive touchscreen panel consists of an insulator, such as glass, coated with a transparent conductor, such as indium tin oxide (ITO).electrostatic field, measurable as a change in capacitance. Different technologies may be used to determine the location of the touch. The location is then sent to the controller for processing. Touchscreens that use silver instead of ITO exist, as ITO causes several environmental problems due to the use of indium.complementary metal–oxide–semiconductor (CMOS) application-specific integrated circuit (ASIC) chip, which in turn usually sends the signals to a CMOS digital signal processor (DSP) for processing.

Unlike a resistive touchscreen, some capacitive touchscreens cannot be used to detect a finger through electrically insulating material, such as gloves. This disadvantage especially affects usability in consumer electronics, such as touch tablet PCs and capacitive smartphones in cold weather when people may be wearing gloves. It can be overcome with a special capacitive stylus, or a special-application glove with an embroidered patch of conductive thread allowing electrical contact with the user"s fingertip.

A low-quality switching-mode power supply unit with an accordingly unstable, noisy voltage may temporarily interfere with the precision, accuracy and sensitivity of capacitive touch screens.

Some capacitive display manufacturers continue to develop thinner and more accurate touchscreens. Those for mobile devices are now being produced with "in-cell" technology, such as in Samsung"s Super AMOLED screens, that eliminates a layer by building the capacitors inside the display itself. This type of touchscreen reduces the visible distance between the user"s finger and what the user is touching on the screen, reducing the thickness and weight of the display, which is desirable in smartphones.

Projected capacitive touch (PCT; also PCAP) technology is a variant of capacitive touch technology but where sensitivity to touch, accuracy, resolution and speed of touch have been greatly improved by the use of a simple form of

Some modern PCT touch screens are composed of thousands of discrete keys,etching a single conductive layer to form a grid pattern of electrodes, by etching two separate, perpendicular layers of conductive material with parallel lines or tracks to form a grid, or by forming an x/y grid of fine, insulation coated wires in a single layer . The number of fingers that can be detected simultaneously is determined by the number of cross-over points (x * y) . However, the number of cross-over points can be almost doubled by using a diagonal lattice layout, where, instead of x elements only ever crossing y elements, each conductive element crosses every other element .

In some designs, voltage applied to this grid creates a uniform electrostatic field, which can be measured. When a conductive object, such as a finger, comes into contact with a PCT panel, it distorts the local electrostatic field at that point. This is measurable as a change in capacitance. If a finger bridges the gap between two of the "tracks", the charge field is further interrupted and detected by the controller. The capacitance can be changed and measured at every individual point on the grid. This system is able to accurately track touches.

Unlike traditional capacitive touch technology, it is possible for a PCT system to sense a passive stylus or gloved finger. However, moisture on the surface of the panel, high humidity, or collected dust can interfere with performance.

These environmental factors, however, are not a problem with "fine wire" based touchscreens due to the fact that wire based touchscreens have a much lower "parasitic" capacitance, and there is greater distance between neighbouring conductors.

This is a common PCT approach, which makes use of the fact that most conductive objects are able to hold a charge if they are very close together. In mutual capacitive sensors, a capacitor is inherently formed by the row trace and column trace at each intersection of the grid. A 16×14 array, for example, would have 224 independent capacitors. A voltage is applied to the rows or columns. Bringing a finger or conductive stylus close to the surface of the sensor changes the local electrostatic field, which in turn reduces the mutual capacitance. The capacitance change at every individual point on the grid can be measured to accurately determine the touch location by measuring the voltage in the other axis. Mutual capacitance allows multi-touch operation where multiple fingers, palms or styli can be accurately tracked at the same time.

Capacitive touchscreens do not necessarily need to be operated by a finger, but until recently the special styli required could be quite expensive to purchase. The cost of this technology has fallen greatly in recent years and capacitive styli are now widely available for a nominal charge, and often given away free with mobile accessories. These consist of an electrically conductive shaft with a soft conductive rubber tip, thereby resistively connecting the fingers to the tip of the stylus.

Infrared sensors mounted around the display watch for a user"s touchscreen input on this PLATO V terminal in 1981. The monochromatic plasma display"s characteristic orange glow is illustrated.

An infrared touchscreen uses an array of X-Y infrared LED and photodetector pairs around the edges of the screen to detect a disruption in the pattern of LED beams. These LED beams cross each other in vertical and horizontal patterns. This helps the sensors pick up the exact location of the touch. A major benefit of such a system is that it can detect essentially any opaque object including a finger, gloved finger, stylus or pen. It is generally used in outdoor applications and POS systems that cannot rely on a conductor (such as a bare finger) to activate the touchscreen. Unlike capacitive touchscreens, infrared touchscreens do not require any patterning on the glass which increases durability and optical clarity of the overall system. Infrared touchscreens are sensitive to dirt and dust that can interfere with the infrared beams, and suffer from parallax in curved surfaces and accidental press when the user hovers a finger over the screen while searching for the item to be selected.

A translucent acrylic sheet is used as a rear-projection screen to display information. The edges of the acrylic sheet are illuminated by infrared LEDs, and infrared cameras are focused on the back of the sheet. Objects placed on the sheet are detectable by the cameras. When the sheet is touched by the user, frustrated total internal reflection results in leakage of infrared light which peaks at the points of maximum pressure, indicating the user"s touch location. Microsoft"s PixelSense tablets use this technology.

Optical touchscreens are a relatively modern development in touchscreen technology, in which two or more image sensors (such as CMOS sensors) are placed around the edges (mostly the corners) of the screen. Infrared backlights are placed in the sensor"s field of view on the opposite side of the screen. A touch blocks some lights from the sensors, and the location and size of the touching object can be calculated (see visual hull). This technology is growing in popularity due to its scalability, versatility, and affordability for larger touchscreens.

The key to this technology is that a touch at any one position on the surface generates a sound wave in the substrate which then produces a unique combined signal as measured by three or more tiny transducers attached to the edges of the touchscreen. The digitized signal is compared to a list corresponding to every position on the surface, determining the touch location. A moving touch is tracked by rapid repetition of this process. Extraneous and ambient sounds are ignored since they do not match any stored sound profile. The technology differs from other sound-based technologies by using a simple look-up method rather than expensive signal-processing hardware. As with the dispersive signal technology system, a motionless finger cannot be detected after the initial touch. However, for the same reason, the touch recognition is not disrupted by any resting objects. The technology was created by SoundTouch Ltd in the early 2000s, as described by the patent family EP1852772, and introduced to the market by Tyco International"s Elo division in 2006 as Acoustic Pulse Recognition.

There are several principal ways to build a touchscreen. The key goals are to recognize one or more fingers touching a display, to interpret the command that this represents, and to communicate the command to the appropriate application.

There are two infrared-based approaches. In one, an array of sensors detects a finger touching or almost touching the display, thereby interrupting infrared light beams projected over the screen. In the other, bottom-mounted infrared cameras record heat from screen touches.

The development of multi-touch screens facilitated the tracking of more than one finger on the screen; thus, operations that require more than one finger are possible. These devices also allow multiple users to interact with the touchscreen simultaneously.

With the growing use of touchscreens, the cost of touchscreen technology is routinely absorbed into the products that incorporate it and is nearly eliminated. Touchscreen technology has demonstrated reliability and is found in airplanes, automobiles, gaming consoles, machine control systems, appliances, and handheld display devices including cellphones; the touchscreen market for mobile devices was projected to produce US$5 billion by 2009.

TapSense, announced in October 2011, allows touchscreens to distinguish what part of the hand was used for input, such as the fingertip, knuckle and fingernail. This could be used in a variety of ways, for example, to copy and paste, to capitalize letters, to activate different drawing modes, etc.

A real practical integration between television-images and the functions of a normal modern PC could be an innovation in the near future: for example "all-live-information" on the internet about a film or the actors on video, a list of other music during a normal video clip of a song or news about a person.

For touchscreens to be effective input devices, users must be able to accurately select targets and avoid accidental selection of adjacent targets. The design of touchscreen interfaces should reflect technical capabilities of the system, ergonomics, cognitive psychology and human physiology.

Guidelines for touchscreen designs were first developed in the 2000s, based on early research and actual use of older systems, typically using infrared grids—which were highly dependent on the size of the user"s fingers. These guidelines are less relevant for the bulk of modern touch devices which use capacitive or resistive touch technology.

Much more important is the accuracy humans have in selecting targets with their finger or a pen stylus. The accuracy of user selection varies by position on the screen: users are most accurate at the center, less so at the left and right edges, and least accurate at the top edge and especially the bottom edge. The R95 accuracy (required radius for 95% target accuracy) varies from 7 mm (0.28 in) in the center to 12 mm (0.47 in) in the lower corners.

Touchscreens are often used with haptic response systems. A common example of this technology is the vibratory feedback provided when a button on the touchscreen is tapped. Haptics are used to improve the user"s experience with touchscreens by providing simulated tactile feedback, and can be designed to react immediately, partly countering on-screen response latency. Research from the University of Glasgow (Brewster, Chohan, and Brown, 2007; and more recently Hogan) demonstrates that touchscreen users reduce input errors (by 20%), increase input speed (by 20%), and lower their cognitive load (by 40%) when touchscreens are combined with haptics or tactile feedback. On top of this, a study conducted in 2013 by Boston College explored the effects that touchscreens haptic stimulation had on triggering psychological ownership of a product. Their research concluded that a touchscreens ability to incorporate high amounts of haptic involvement resulted in customers feeling more endowment to the products they were designing or buying. The study also reported that consumers using a touchscreen were willing to accept a higher price point for the items they were purchasing.

Unsupported touchscreens are still fairly common in applications such as ATMs and data kiosks, but are not an issue as the typical user only engages for brief and widely spaced periods.

Touchscreens can suffer from the problem of fingerprints on the display. This can be mitigated by the use of materials with optical coatings designed to reduce the visible effects of fingerprint oils. Most modern smartphones have oleophobic coatings, which lessen the amount of oil residue. Another option is to install a matte-finish anti-glare screen protector, which creates a slightly roughened surface that does not easily retain smudges.

Touchscreens do not work most of the time when the user wears gloves. The thickness of the glove and the material they are made of play a significant role on that and the ability of a touchscreen to pick up a touch.

Walker, Geoff (August 2012). "A review of technologies for sensing contact location on the surface of a display: Review of touch technologies". Journal of the Society for Information Display. 20 (8): 413–440. doi:10.1002/jsid.100. S2CID 40545665.

"The first capacitative touch screens at CERN". CERN Courrier. 31 March 2010. Archived from the original on 4 September 2010. Retrieved 2010-05-25. Cite journal requires |journal= (help)

Johnson, E.A. (1965). "Touch Display - A novel input/output device for computers". Electronics Letters. 1 (8): 219–220. Bibcode:1965ElL.....1..219J. doi:10.1049/el:19650200.

Biferno, M. A., Stanley, D. L. (1983). The Touch-Sensitive Control/Display Unit: A Promising Computer Interface. Technical Paper 831532, Aerospace Congress & Exposition, Long Beach, CA: Society of Automotive Engineers.

Potter, R.; Weldon, L.; Shneiderman, B. (1988). "Improving the accuracy of touch screens: an experimental evaluation of three strategies". Proceedings of the SIGCHI conference on Human factors in computing systems - CHI "88. Proc. of the Conference on Human Factors in Computing Systems, CHI "88. Washington, DC. pp. 27–32. doi:10.1145/57167.57171. ISBN 0201142376. Archived from the original on 2015-12-08.

Sears, Andrew; Plaisant, Catherine; Shneiderman, Ben (June 1990). "A new era for high-precision touchscreens". In Hartson, R.; Hix, D. (eds.). Advances in Human-Computer Interaction. Vol. 3. Ablex (1992). ISBN 978-0-89391-751-7. Archived from the original on October 9, 2014.

Ganapati, Priya (5 March 2010). "Finger Fail: Why Most Touchscreens Miss the Point". Archived from the original on 2014-05-11. Retrieved 9 November 2019.

"Acoustic Pulse Recognition Touchscreens" (PDF). Elo Touch Systems. 2006: 3. Archived (PDF) from the original on 2011-09-05. Retrieved 2011-09-27. Cite journal requires |journal= (help)

"Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs)–Part 9: Requirements for Non-keyboard Input Devices". International Organization for Standardization. Geneva, Switzerland. 2000.

Hoober, Steven (2014-09-02). "Insights on Switching, Centering, and Gestures for Touchscreens". UXmatters. Archived from the original on 2014-09-06. Retrieved 2014-08-24.

Brasel, S. Adam; Gips, James (2014). "Tablets, touchscreens, and touchpads: How varying touch interfaces trigger psychological ownership and endowment". Journal of Consumer Psychology. 24 (2): 226–233. doi:10.1016/j.jcps.2013.10.003. S2CID 145501566.

Zhu, Ying; Meyer, Jeffrey (September 2017). "Getting in touch with your thinking style: How touchscreens influence purchase". Journal of Retailing and Consumer Services. 38: 51–58. doi:10.1016/j.jretconser.2017.05.006.

Sears, A.; Plaisant, C. & Shneiderman, B. (1992). "A new era for high precision touchscreens". In Hartson, R. & Hix, D. (eds.). Advances in Human-Computer Interaction. Vol. 3. Ablex, NJ. pp. 1–33.

Sears, Andrew; Shneiderman, Ben (April 1991). "High precision touchscreens: design strategies and comparisons with a mouse". International Journal of Man-Machine Studies. 34 (4): 593–613. doi:10.1016/0020-7373(91)90037-8. hdl:

pc less display screens free sample

This article is about the general concept of a personal computer ("PC"). For the specific architecture often meant by "PC" in industry jargon, see IBM PC compatible.

An artist"s depiction of a 2000s-era desktop-style personal computer, which includes a metal case with the computing components, a display monitor and a keyboard (mouse not shown)

A personal computer (PC) is a multi-purpose microcomputer whose size, capabilities, and price make it feasible for individual use.end user, rather than by a computer expert or technician. Unlike large, costly minicomputers and mainframes, time-sharing by many people at the same time is not used with personal computers. Primarily in the late 1970s and 1980s, the term home computer was also used.

The term "PC" is an initialism for "personal computer". While the IBM Personal Computer incorporated the designation in its model name, the term originally described personal computers of any brand. In some contexts, "PC" is used to contrast with "Mac", an Apple Macintosh computer.

Since none of these Apple products were mainframes or time-sharing systems, they were all "personal computers" and not "PC" (brand) computers. In 1995, a CBS segment on the growing popularity of PC reported: "For many newcomers PC stands for Pain and Confusion."

Early personal computers‍—‌generally called microcomputers‍—‌were often sold in a kit form and in limited volumes, and were of interest mostly to hobbyists and technicians. Minimal programming was done with toggle switches to enter instructions, and output was provided by front panel lamps. Practical use required adding peripherals such as keyboards, computer displays, disk drives, and printers.

Micral N was the earliest commercial, non-kit microcomputer based on a microprocessor, the Intel 8008. It was built starting in 1972, and a few hundred units were sold. This had been preceded by the Datapoint 2200 in 1970, for which the Intel 8008 had been commissioned, though not accepted for use. The CPU design implemented in the Datapoint 2200 became the basis for x86 architectureIBM PC and its descendants.

Also in 1973 Hewlett Packard introduced fully BASIC programmable microcomputers that fit entirely on top of a desk, including a keyboard, a small one-line display, and printer. The Wang 2200 microcomputer of 1973 had a full-size cathode ray tube (CRT) and cassette tape storage.

The first successfully mass-marketed personal computer to be announced was the Commodore PET after being revealed in January 1977. However, it was back-ordered and not available until later that year.Apple II (usually referred to as the "Apple") was announced with the first units being shipped 10 June 1977,TRS-80 from Tandy Corporation / Tandy Radio Shack following in August 1977, which sold over 100,000 units during its lifetime. Together, these 3 machines were referred to as the "1977 trinity". Mass-market, ready-assembled computers had arrived, and allowed a wider range of people to use computers, focusing more on software applications and less on development of the processor hardware.

During the early 1980s, home computers were further developed for household use, with software for personal productivity, programming and games. They typically could be used with a television already in the home as the computer display, with low-detail blocky graphics and a limited color range, and text about 40 characters wide by 25 characters tall. Sinclair Research,ZX80 (1980), ZX81 (1981), and the ZX Spectrum; the latter was introduced in 1982, and totaled 8 million unit sold. Following came the Commodore 64, totaled 17 million units soldAmstrad CPC series (464–6128).

In the same year, the NEC PC-98 was introduced, which was a very popular personal computer that sold in more than 18 million units.Amiga 1000, was unveiled by Commodore on 23 July 1985. The Amiga 1000 featured a multitasking, windowing operating system, color graphics with a 4096-color palette, stereo sound, Motorola 68000 CPU, 256 KB RAM, and 880 KB 3.5-inch disk drive, for US$1,295.

Somewhat larger and more expensive systems were aimed at office and small business use. These often featured 80-column text displays but might not have had graphics or sound capabilities. These microprocessor-based systems were still less costly than time-shared mainframes or minicomputers.

Workstations were characterized by high-performance processors and graphics displays, with large-capacity local disk storage, networking capability, and running under a multitasking operating system. Eventually, due to the influence of the IBM PC on the personal computer market, personal computers and home computers lost any technical distinction. Business computers acquired color graphics capability and sound, and home computers and game systems users used the same processors and operating systems as office workers. Mass-market computers had graphics capabilities and memory comparable to dedicated workstations of a few years before. Even local area networking, originally a way to allow business computers to share expensive mass storage and peripherals, became a standard feature of personal computers used at home.

Before the widespread use of PCs, a computer that could fit on a desk was remarkably small, leading to the "desktop" nomenclature. More recently, the phrase usually indicates a particular style of computer case. Desktop computers come in a variety of styles ranging from large vertical tower cases to small models which can be tucked behind or rest directly beneath (and support) LCD monitors.

While the term "desktop" often refers to a computer with a vertically aligned computer tower case, these varieties often rest on the ground or underneath desks. Despite this seeming contradiction, the term "desktop" does typically refer to these vertical tower cases as well as the horizontally aligned models which are designed to literally rest on top of desks and are therefore more appropriate to the "desktop" term, although both types qualify for this "desktop" label in most practical situations aside from certain physical arrangement differences. Both styles of these computer cases hold the systems hardware components such as the motherboard, processor chip and other internal operating parts. Desktop computers have an external monitor with a display screen and an external keyboard, which are plugged into ports on the back of the computer case. Desktop computers are popular for home and business computing applications as they leave space on the desk for multiple monitors.

An all-in-one computer (also known as single-unit PCs) is a desktop computer that combines the monitor and processor within a single unit. A separate keyboard and mouse are standard input devices, with some monitors including touchscreen capability. The processor and other working components are typically reduced in size relative to standard desktops, located behind the monitor, and configured similarly to laptops.

A Home theater PC (HTPC) combines the functions of a personal computer and a digital video recorder. It is connected to a TV set or an appropriately sized computer display, and is often used as a digital photo viewer, music and video player, TV receiver, and digital video recorder. HTPCs are also referred to as media center systems or media servers. The goal is to combine many or all components of a home theater setup into one box. HTPCs can also connect to services providing on-demand movies and TV shows. HTPCs can be purchased pre-configured with the required hardware and software needed to add television programming to the PC, or can be assembled from components.

Keyboard computers are computers inside of keyboards, generally still designed to be connected to an external computer monitor or television. Examples include the Atari ST, Amstrad CPC, BBC Micro, Commodore 64, MSX, Raspberry Pi 400, and the ZX Spectrum.

Before the introduction of the IBM PC, portable computers consisting of a processor, display, disk drives and keyboard, in a suit-case style portable housing, allowed users to bring a computer home from the office or to take notes at a classroom. Examples include the Osborne 1 and Kaypro; and the Commodore SX-64. These machines were AC-powered and included a small CRT display screen. The form factor was intended to allow these systems to be taken on board an airplane as carry-on baggage, though their high power demand meant that they could not be used in flight. The integrated CRT display made for a relatively heavy package, but these machines were more portable than their contemporary desktop equals. Some models had standard or optional connections to drive an external video monitor, allowing a larger screen o