tela super amoled vs tft lcd in stock

AMOLED and TFT are two types of display technology used in smartphones. AMOLED (active-matrix organic light-emitting diode) displays are made up of tiny organic light-emitting diodes, while TFT (Thin-Film Transistor) displays use inorganic thin-film transistors.

AMOLEDs are made from organic materials that emit light when an electric current is passed through them, while TFTs use a matrix of tiny transistors to control the flow of electricity to the display.

Refresh Rate: Another key difference between AMOLED and TFT displays is the refresh rate. The refresh rate is how often the image on the screen is updated. AMOLED screens have a higher refresh rate than TFT screens, which means that they can display images more quickly and smoothly.

Response Time: The response time is how long it takes for the pixels to change from one colour to another. AMOLED screens have a shorter response time than TFT screens..

Colour Accuracy/Display Quality: AMOLED screens are more accurate when it comes to displaying colours. This is because each pixel on an AMOLED screen emits its own light, which means that the colours are more pure and true to life. TFT screens, on the other hand, use a backlight to illuminate the pixels, which can cause the colours to appear washed out or less vibrant.

Viewing Angle: The viewing angle is the angle at which you can see the screen. AMOLED screens have a wider viewing angle than TFT screens, which means that you can see the screen from more angles without the colours looking distorted.

Power Consumption: One of the main advantages of AMOLED displays is that they consume less power than TFT displays. This is because the pixels on an AMOLED screen only light up when they need to, while the pixels on a TFT screen are always illuminated by the backlight.

Production Cost: AMOLED screens are more expensive to produce than TFT screens. This is because the manufacturing process for AMOLED screens is more complex, and the materials used are more expensive.

Availability: TFT screens are more widely available than AMOLED screens and have been around for longer. They are typically used in a variety of devices, ranging from phones to TVs.

Usage: AMOLED screens are typically used in devices where power consumption is a concern, such as phones and wearable devices. TFT screens are more commonly used in devices where image quality is a higher priority, such as TVs and monitors.

AMOLED and TFT are two different types of display technology. AMOLED displays are typically brighter and more vibrant, but they are more expensive to produce. TFT displays are cheaper to produce, but they are not as bright or power efficient as AMOLED displays.

The display technology that is best for you will depend on your needs and preferences. If you need a screen that is bright and vibrant, then an AMOLED display is a good choice. If you need a screen that is cheaper to produce, then a TFT display is a good choice. However, if you’re worried about image retention, then TFT may be a better option.

tela super amoled vs tft lcd in stock

Thanks for the display technology development, we have a lot of display choices for our smartphones, media players, TVs, laptops, tablets, digital cameras, and other such gadgets. The most display technologies we hear are LCD, TFT, OLED, LED, QLED, QNED, MicroLED, Mini LED etc. The following, we will focus on two of the most popular display technologies in the market: TFT Displays and Super AMOLED Displays.

TFT means Thin-Film Transistor. TFT is the variant of Liquid Crystal Displays (LCDs). There are several types of TFT displays: TN (Twisted Nematic) based TFT display, IPS (In-Plane Switching) displays. As the former can’t compete with Super AMOLED in display quality, we will mainly focus on using IPS TFT displays.

OLED means Organic Light-Emitting Diode. There are also several types of OLED, PMOLED (Passive Matrix Organic Light-Emitting Diode) and AMOLED (Active Matrix Organic Light-Emitting Diode). It is the same reason that PMOLED can’t compete with IPS TFT displays. We pick the best in OLED displays: Super AMOLED to compete with the LCD best: IPS TFT Display.

tela super amoled vs tft lcd in stock

Steven Van Slyke and Ching Wan Tang pioneered the organic OLED at Eastman Kodak in 1979. The first OLED product was a display for a car stereo, commercialized by Pioneer in 1997. Kodak’s EasyShare LS633 digital camera, introduced in 2003, was the first consumer electronic product incorporating a full-color OLED display. The first television featuring an OLED display, produced by Sony, entered the market in 2008. Today, Samsung uses OLEDs in all of its smartphones, and LG manufactures large OLED screens for premium TVs. Other companies currently incorporating OLED technology include Apple, Google, Facebook, Motorola, Sony, HP, Panasonic, Konica, Lenovo, Huawei, BOE, Philips and Osram. The OLED display market is expected to grow to $57 billion in 2026.

AMOLED (Active Matrix Organic Light Emitting Diode) is a type of OLED display device technology. OLED is a type of display technology in which organic material compounds form the electroluminescent material, and active matrix is the technology behind the addressing of individual pixels.

An AMOLED display consists of an active matrix of OLED pixels generating light (luminescence) upon electrical activation that have been deposited or integrated onto a thin-film transistor (TFT) array, which functions as a series of switches to control the current flowing to each individual pixel.

Typically, this continuous current flow is controlled by at least two TFTs at each pixel (to trigger the luminescence), with one TFT to start and stop the charging of a storage capacitor and the second to provide a voltage source at the level needed to create a constant current to the pixel, thereby eliminating the need for the very high currents required for PMOLED.

TFT backplane technology is crucial in the fabrication of AMOLED displays. In AMOLEDs, the two primary TFT backplane technologies, polycrystalline silicon (poly-Si) and amorphous silicon (a-Si), are currently used offering the potential for directly fabricating the active-matrix backplanes at low temperatures (below 150 °C) onto flexible plastic substrates for producing flexible AMOLED displays. Brightness of AMOLED is determined by the strength of the electron current. The colors are controlled by the red, green and blue light emitting diodes.  It is easier to understand by thinking of each pixel is independently colored, mini-LED.

IPS technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but with more enhanced features and more widespread usability compared with the older generation of TN type TFT screen (normally used for low-cost computer monitors). Actually, it is called super TFT.  IPS LCD display consists of the following high-end features. It has much wider viewing angles, more consistent, better color in all viewing directions, it has higher contrast, faster response time. But IPS screens are not perfect as their higher manufacturing cost compared with TN TFT LCD.

Utilizing an electrical charge that causes the liquid crystal material to change their molecular structure allowing various wavelengths of backlight to “pass-through”. The active matrix of the TFT display is in constant flux and changes or refreshes rapidly depending upon the incoming signal from the control device.

tela super amoled vs tft lcd in stock

In recent years, smartphone displays have developed far more acronyms than ever before with each different one featuring a different kind of technology. AMOLED, LCD, LED, IPS, TFT, PLS, LTPS, LTPO...the list continues to grow.

As if the different available technologies weren"t enough, component and smartphone manufacturers adopt more and more glorified names like "Super Retina XDR" and "Dynamic AMOLED", which end up increasing the potential for confusion among consumers. So let"s take a look at some of these terms used in smartphone specification sheets and decipher them.

There are many display types used in smartphones: LCD, OLED, AMOLED, Super AMOLED, TFT, IPS and a few others that are less frequently found on smartphones nowadays, like TFT-LCD. One of the most frequently found on mid-to-high range phones now is IPS-LCD. But what do these all mean?

LCD means Liquid Crystal Display, and its name refers to the array of liquid crystals illuminated by a backlight, and their ubiquity and relatively low cost make them a popular choice for smartphones and many other devices.

LCDs also tend to perform quite well in direct sunlight, as the entire display is illuminated from behind, but does suffer from potentially less accurate colour representation than displays that don"t require a backlight.

Within smartphones, you have both TFT and IPS displays. TFT stands for Thin Film Transistor, an advanced version of LCD that uses an active matrix (like the AM in AMOLED). Active matrix means that each pixel is attached to a transistor and capacitor individually.

The main advantage of TFT is its relatively low production cost and increased contrast when compared to traditional LCDs. The disadvantage of TFT LCDs is higher energy demands than some other LCDs, less impressive viewing angles and colour reproduction. It"s for these reasons, and falling costs of alternative options, that TFTs are not commonly used in smartphones anymore.Affiliate offer

IPS technology (In-Plane Switching) solves the problem that the first generation of LCD displays experience, which adopts the TN (Twisted Nematic) technique: where colour distortion occurs when you view the display from the side - an effect that continues to crop up on cheaper smartphones and tablets.

The PLS (Plane to Line Switching) standard uses an acronym that is very similar to that of IPS, and is it any wonder that its basic operation is also similar in nature? The technology, developed by Samsung Display, has the same characteristics as IPS displays - good colour reproduction and viewing angles, but a lower contrast level compared to OLED and LCD/VA displays.

According to Samsung Display, PLS panels have a lower production cost, higher brightness rates, and even superior viewing angles when compared to their rival, LG Display"s IPS panels. Ultimately, whether a PLS or IPS panel is used, it boils down to the choice of the component supplier.

This is a very common question after "LED" TVs were launched, with the short answer simply being LCD. The technology used in a LED display is liquid crystal, the difference being LEDs generating the backlight.

One of the highlights from TV makers at the CES 2021 tradeshow, mini-LED technology seemed far removed from mobile devices until Apple announced the 2021 iPad Pro. As the name implies, the technique is based on the miniaturization of the LEDs that form the backlight of the screen — which still uses an LCD panel.

Despite the improvement in terms of contrast (and potentially brightness) over traditional LCD/LED displays, LCD/mini-LEDs still divide the screen into brightness zones — over 2,500 in the case of the iPad and 2021 "QNED" TVs from LG — compared to dozens or hundreds of zones in previous-generation FALD (full-array local dimming) displays, on which the LEDs are behind the LCD panel instead of the edges.

AMOLED stands for Active Matrix Organic Light-Emitting Diode. While this may sound complicated it actually isn"t. We already encountered the active matrix in TFT LCD technology, and OLED is simply a term for another thin-film display technology.

OLED is an organic material that, as the name implies, emits light when a current is passed through it. As opposed to LCD panels, which are back-lit, OLED displays are "always off" unless the individual pixels are electrified.

This means that OLED displays have much purer blacks and consume less energy when black or darker colours are displayed on-screen. However, lighter-coloured themes on AMOLED screens use considerably more power than an LCD using the same theme. OLED screens are also more expensive to produce than LCDs.

Because the black pixels are "off" in an OLED display, the contrast ratios are also higher compared to LCD screens. AMOLED displays have a very fast refresh rate too, but on the downside are not quite as visible in direct sunlight as backlit LCDs. Screen burn-in and diode degradation (because they are organic) are other factors to consider.Affiliate offer

OLED stands for Organic Light Emitting Diode. An OLED display is comprised of thin sheets of electroluminescent material, the main benefit of which is they produce their own light, and so don"t require a backlight, cutting down on energy requirements. OLED displays are more commonly referred to as AMOLED displays when used on smartphones or TVs.

As we"ve already covered, the AM part of AMOLED stands for Active Matrix, which is different from a Passive Matrix OLED (P-OLED), though these are less common in smartphones.

Super AMOLED is the name given by Samsung to its displays that used to only be found in high-end models but have now trickled down to more modestly specced devices. Like IPS LCDs, Super AMOLED improves upon the basic AMOLED premise by integrating the touch response layer into the display itself, rather than as an extra layer on top.

As a result, Super AMOLED displays handle sunlight better than AMOLED displays and also require less power. As the name implies, Super AMOLED is simply a better version of AMOLED. It"s not all just marketing bluster either: Samsung"s displays are regularly reviewed as some of the best around.

The latest evolution of the technology has been christened "Dynamic AMOLED". Samsung didn"t go into detail about what the term means, but highlighted that panels with such identification include HDR10+ certification that supports a wider range of contrast and colours, as well as blue light reduction for improved visual comfort.

In the same vein, the term "Fluid AMOLED" used by OnePlus on its most advanced devices basically highlights the high refresh rates employed, which results in more fluid animations on the screen.Affiliate offer

Resolution describes the number of individual pixels (or points) displayed on the screen and is usually presented for phones by the number of horizontal pixels — vertical when referring to TVs and monitors. More pixels on the same display allow for more detailed images and clearer text.

Speaking of pixel density, this was one of Apple"s highlights back in 2010 during the launch of the iPhone 4. The company christened the LCD screen (LED, TFT, and IPS) used in the smartphone as "Retina Display", thanks to the high resolution of the panel used (960 by 640 pixels back then) in its 3.5-inch display.

With the iPhone 11 Pro, another term was introduced to the equation: "Super Retina XDR". Still using an OLED panel (that is supplied by Samsung Display or LG Display), the smartphone brings even higher specs in terms of contrast - with a 2,000,000:1 ratio and brightness level of 1,200 nits, which have been specially optimized for displaying content in HDR format.

As a kind of consolation prize for iPhone XR and iPhone 11 buyers, who continued relying on LCD panels, Apple classified the display used in the smartphones with a new term, "Liquid Retina". This was later applied also to the iPad Pro and iPad Air models, with the name defining screens that boast a high range and colour accuracy, at least based on the company"s standards.

TFT(Thin Film Transistor) - a type of LCD display that adopts a thin semiconductor layer deposited on the panel, which allows for active control of the colour intensity in each pixel, featuring a similar concept as that of active-matrix (AM) used in AMOLED displays. It is used in TN, IPS/PLS, VA/PVA/MVA panels, etc.

LTPS(Low Temperature PolySilicon) - a variation of the TFT that offers higher resolutions and lower power consumption compared to traditional TFT screens, based on a-Si (amorphous silicon) technology.

IGZO(Indium Gallium Zinc Oxide) - a semiconductor material used in TFT films, which also allows higher resolutions and lower power consumption, and sees action in different types of LCD screens (TN, IPS, VA) and OLED displays

LTPO(Low Temperature Polycrystaline Oxide) - a technology developed by Apple that can be used in both OLED and LCD displays, as it combines LTPS and IGZO techniques. The result? Lower power consumption. It has been used in the Apple Watch 4 and the Galaxy S21 Ultra.

Among televisions, the long-standing featured technology has always been miniLED - which consists of increasing the number of lighting zones in the backlight while still using an LCD panel. There are whispers going around that smartphones and smartwatches will be looking at incorporating microLED technology in their devices soon, with it being radically different from LCD/LED displays as it sports similar image characteristics to that of OLEDs.

As previously stated, OLED/AMOLED screens have the advantage of a varied contrast level, resulting from individual brightness control for the pixels. Another result of this is the more realistic reproduction of black, as well as low power consumption when the screen shows off dark images - which has also helped to popularize dark modes on smartphones.

In the case of LCD displays, the main advantage lies in the low manufacturing cost, with dozens of players in the market offering competitive pricing and a high production volume. Some brands have taken advantage of this feature to prioritize certain features - such as a higher refresh rate - instead of adopting an OLED panel, such as the Xiaomi Mi 10T.

tela super amoled vs tft lcd in stock

AMOLED (Active Matrix Organic Light Emitting Diode) and TFT (Thin Film Transistor) are the two types of displays that are used in mobile phones. TFT is actually a process of producing the displays and is used even by AMOLED but for most purposes, TFT is used to refer to LCD displays. The difference between them is the material as AMOLED uses organicmaterials, mainly carbon, while TFT does not.

There are differences between the two that are quite tangible. For starters, AMOLED generates its own light rather than relying on a backlight like a TFT-LCD does. This consequently means that AMOLED displays are much thinner than LCD displays; due to the absence of a backlight. It also results in much better colors than a TFT is capable of producing. As each pixel’s color and light intensity can be regulated independently and no light seeps from adjacent pixels. A side by side comparison of the two displays with the same picture should confirm this. Another effect of the lack of a backlight is the much lower power consumption of the device. This is very desirable when it comes to mobile phones where every single feature competes for the limited capacity of the battery. As the screen is on 90% of the time that the device is being used, it is very good that AMOLED displays consume less. Just how much of a difference is not very fixed though as it really depends on the color and intensity of the image. Having a black background with white text consumes much less energy than having black text on a white background.

The biggest disadvantage that AMOLED has is the shorter lifespan of the screen compared to TFT. Each pixel in the display degrades with each second that it is lit and even more so the brighter it is.  Despite improvements on the lifetime of AMOLED displays, AMOLED still only lasts a fraction of the lifetime of a TFT display. With that said, an AMOLED display is able to outlast the usable lifetime of the device before parts of it start to degrade.

The main hindrance to the massive adaptation of AMOLED is the low production numbers. TFT has been in production for much longer and the infrastructure is already there to meet the demands.

tela super amoled vs tft lcd in stock

A thin-film-transistor liquid-crystal display (TFT LCD) is a variant of a liquid-crystal display that uses thin-film-transistor technologyactive matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven (i.e. with segments directly connected to electronics outside the LCD) LCDs with a few segments.

In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968. In 1971, Lechner, F. J. Marlowe, E. O. Nester and J. Tults demonstrated a 2-by-18 matrix display driven by a hybrid circuit using the dynamic scattering mode of LCDs.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).active-matrix liquid-crystal display (AM LCD) using CdSe TFTs in 1974, and then Brody coined the term "active matrix" in 1975.high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.

The circuit layout process of a TFT-LCD is very similar to that of semiconductor products. However, rather than fabricating the transistors from silicon, that is formed into a crystalline silicon wafer, they are made from a thin film of amorphous silicon that is deposited on a glass panel. The silicon layer for TFT-LCDs is typically deposited using the PECVD process.

Polycrystalline silicon is sometimes used in displays requiring higher TFT performance. Examples include small high-resolution displays such as those found in projectors or viewfinders. Amorphous silicon-based TFTs are by far the most common, due to their lower production cost, whereas polycrystalline silicon TFTs are more costly and much more difficult to produce.

The twisted nematic display is one of the oldest and frequently cheapest kind of LCD display technologies available. TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Modern, high end consumer products have developed methods to overcome the technology"s shortcomings, such as RTC (Response Time Compensation / Overdrive) technologies. Modern TN displays can look significantly better than older TN displays from decades earlier, but overall TN has inferior viewing angles and poor color in comparison to other technology.

The transmittance of a pixel of an LCD panel typically does not change linearly with the applied voltage,sRGB standard for computer monitors requires a specific nonlinear dependence of the amount of emitted light as a function of the RGB value.

IPS has since been superseded by S-IPS (Super-IPS, Hitachi Ltd. in 1998), which has all the benefits of IPS technology with the addition of improved pixel refresh timing.

Less expensive PVA panels often use dithering and FRC, whereas super-PVA (S-PVA) panels all use at least 8 bits per color component and do not use color simulation methods.BRAVIA LCD TVs offer 10-bit and xvYCC color support, for example, the Bravia X4500 series. S-PVA also offers fast response times using modern RTC technologies.

A technology developed by Samsung is Super PLS, which bears similarities to IPS panels, has wider viewing angles, better image quality, increased brightness, and lower production costs. PLS technology debuted in the PC display market with the release of the Samsung S27A850 and S24A850 monitors in September 2011.

TFT dual-transistor pixel or cell technology is a reflective-display technology for use in very-low-power-consumption applications such as electronic shelf labels (ESL), digital watches, or metering. DTP involves adding a secondary transistor gate in the single TFT cell to maintain the display of a pixel during a period of 1s without loss of image or without degrading the TFT transistors over time. By slowing the refresh rate of the standard frequency from 60 Hz to 1 Hz, DTP claims to increase the power efficiency by multiple orders of magnitude.

Due to the very high cost of building TFT factories, there are few major OEM panel vendors for large display panels. The glass panel suppliers are as follows:

External consumer display devices like a TFT LCD feature one or more analog VGA, DVI, HDMI, or DisplayPort interface, with many featuring a selection of these interfaces. Inside external display devices there is a controller board that will convert the video signal using color mapping and image scaling usually employing the discrete cosine transform (DCT) in order to convert any video source like CVBS, VGA, DVI, HDMI, etc. into digital RGB at the native resolution of the display panel. In a laptop the graphics chip will directly produce a signal suitable for connection to the built-in TFT display. A control mechanism for the backlight is usually included on the same controller board.

The low level interface of STN, DSTN, or TFT display panels use either single ended TTL 5 V signal for older displays or TTL 3.3 V for slightly newer displays that transmits the pixel clock, horizontal sync, vertical sync, digital red, digital green, digital blue in parallel. Some models (for example the AT070TN92) also feature input/display enable, horizontal scan direction and vertical scan direction signals.

New and large (>15") TFT displays often use LVDS signaling that transmits the same contents as the parallel interface (Hsync, Vsync, RGB) but will put control and RGB bits into a number of serial transmission lines synchronized to a clock whose rate is equal to the pixel rate. LVDS transmits seven bits per clock per data line, with six bits being data and one bit used to signal if the other six bits need to be inverted in order to maintain DC balance. Low-cost TFT displays often have three data lines and therefore only directly support 18 bits per pixel. Upscale displays have four or five data lines to support 24 bits per pixel (truecolor) or 30 bits per pixel respectively. Panel manufacturers are slowly replacing LVDS with Internal DisplayPort and Embedded DisplayPort, which allow sixfold reduction of the number of differential pairs.

Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.

K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. AIP. 37 (1): 1079–82. doi:10.1889/1.2433159. S2CID 129569963.

tela super amoled vs tft lcd in stock

Escolher um celular hoje em dia pode ser um desafio e tanto, desde a fabricante até os pequenos detalhes de design. Sendo que um dos fatores mais importantes nessa decisão é a tela. Por isso, vamos te ajudar a entender a diferença entre as principais tecnologias: LCD, IPS, OLED e AMOLED.

Assim, da próxima vez que você se deparar com um monte de siglas, vai saber diferenciar, entender e definir o tipo de tela que faz mais sentido para seu uso.

Começando pelo primeiro tipo que mais se difundiu no mundo dos smartphones. O LCD, que pode ser traduzido como “painel de cristal líquido”, trouxe várias vantagens para o mercado de telas.

De forma bastante simplificada, para formar a imagem na tela, existem camadas com uma substância cristalina que consegue alterar suas moléculas. Dessa forma, com uma corrente elétrica, ora elas podem ficar opacas — impedindo a travessia da luz — ora podem ser transparentes, permitindo a passagem de iluminação.

IPS significa comutação plana (ou In-Plane Switching). Hoje em dia, praticamente todos celulares que têm uma tela LCD utilizam essa tecnologia. Por ser bastante comum, ela costuma baratear o custo e torná-lo mais acessível.

Os OLED chegaram como uma evolução dos LEDs que já estavam presentes nos antigos painéis LCD . LED significa “diodo emissor de luz”, e OLED seria “diodo emissor de luz orgânico”. O grande diferencial de um para o outro é que essa nova versão consegue emitir a própria luz.

Já que cada pixel tem sua própria luz, é possível desligá-los totalmente em uma cena escura, trazendo o famoso “preto puro” sem aquele aspecto de cinza lavado do LCD/IPS.

Todavia, assim como LCD, ele também tem seus problemas. Talvez, o mais famoso seja o burn-in. Como o pixel fica aceso durante todo tempo de uso, quando temos uma imagem fixa por muito tempo, sem alterações, o pixel começa a “queimar” (parecido com uma lâmpada convencional). Isso acabava deixando marcas fantasmas nas telas.

Hoje em dia, a grande maioria das telas OLED, na verdade são AMOLEDs. Esse nome virou mais questão de marca e identificação do que de fato outra tecnologia empregada. Obviamente, nenhuma marca quer correr o risco de queimar os pixels, por isso o uso amplo desse tipo de painel.

O Super AMOLED veio com uma pequena diferença em relação ao AMOLED tradicional. Falando de forma simplificada, esse tipo de tela conseguiu implementar uma camada sensível ao toque entre os painéis, dispensando a camada de vidro dos antecessores.

Isso permitiu telas mais responsivas e aparelhos com construções mais finas. Contudo, em termos de características na imagem, não tivemos grandes mudanças.

O AMOLED Dinâmico ou Dynamic AMOLED trouxe o suporte ao HDR10+. Com essa compatibilidade, foi possível proporcionar imagens com mais contraste e melhores cores.

Mais uma vez, uma pequena evolução de tecnologia. O AMOLED dinâmico 2X traz um brilho e precisão de cores ainda melhor do que seu antecessor. Além disso, seu brilho também é mais forte, principalmente para ambientes externos.

Outra vantagem interessante é o consumo ainda mais eficiente de bateria, aumentando o tempo de uso do celular. O Dynamic AMOLED 2X também recebeu certificação TUV Rheinland para proteção ocular. Isso quer dizer que ele emite menos luz azul, que pode cansar a vista.

Até aqui, falamos apenas de tecnologias empregadas nos paineis, de modo a tentar melhorar a qualidade da imagem, trazer mais eficiência e outras formas de iluminar a tela.

É possível ver, cada vez menos, opções de celulares compactos à disposição no mercado. Por trás dessa realidade há um conjunto de fatores, como as múltiplas funções que um smartphone pode acumular. Saiba outros motivos que colaboram para o aumento das telas dos aparelhos. Assista ao vídeo POR QUE AS TELAS DOS CELULARES ESTÃO CADA VEZ MAIORES e se inscreva no Canaltech no YouTube.

tela super amoled vs tft lcd in stock

Mobile display technology is firmly split into two camps, the AMOLED and LCD crowds. There are also phones sporting OLED technology, which is closely associated with the AMOLED panel type. AMOLED and LCD are based on quite different underlying technologies, leading manufacturers to tout a number of different benefits depending on which display type they’ve opted for. Smartphone manufacturers are increasingly opting for AMOLED displays, with LCD mostly reserved for less expensive phones.

We’ll start alphabetically with AMOLED, although to be a little broader we should probably start with a little background about OLED technology in general.

The arrangement of these sub-pixels alters the performance of the displays slightly. Pentile vs striped pixel layouts, for example, results in superior image sharpness, but lower pixel life spans due to the smaller pixel sizes.

Finally, the AM part in AMOLED stands in for Active Matrix, rather than a passive matrix technology. This tells us how each little OLED is controlled. In a passive matrix, a complex grid system is used to control individual pixels, where integrated circuits control a charge sent down each column or row. But this is rather slow and can be imprecise. Active Matrix systems attach a thin film transistor (TFT) and capacitor to each LED. This way, when a row and column are activated to access a pixel, the capacitor at the correct pixel can retain its charge in between refresh cycles, allowing for faster and more precise control.

One other term you will encounter is Super AMOLED, which is Samsung’s marketing term for a display that incorporates the capacitive touchscreen right into the display, instead of it being a separate layer on top of the display. This makes the display thinner.

The use of LEDs and minimal substrates means that these displays can be very thin. Furthermore, the lack of a rigid backlight and innovations in flexible plastic substrates enables flexible OLED-based displays. Complex LCD displays cannot be built in this way because of the backlight requirement. Flexy displays were originally very promising for wearables. Today, premium-tier smartphones make use of flexible OLED displays. Although, there are some concerns over how many times a display can flex and bend before breaking.

LCD stands for Liquid Crystal Display and reproduces colors quite differently from AMOLED. Rather than using individual light-emitting components, LCD displays rely on a backlight as the sole light source. Although multiple backlights can be used across a display for local dimming and to help save on power consumption, this is more of a requirement in larger TVs.

Scientifically speaking, there’s no individual white light wavelength. White light is a mixture of all other visible colors in the spectrum. Therefore, LCD backlights have to create a pseudo white light as efficiently as possible, which can then be filtered into different colors in the liquid crystal element. Most LCDs rely on a blue LED backlight which is filtered through a yellow phosphor coating, producing a pseudo white light.

All combined, this allows an LCD display to control the amount of RGB light reaching the surface by culling a backlight, rather than producing colored light in each pixel. Just like AMOLED, LCD displays can either be active or passive matrix devices, but most smartphones are active these days.

This wide variation in the way that light is produced has quite a profound difference to the user experience. Color gamut is often the most talked-about difference between the two display types, with AMOLED providing a greater range of color options than LCD, resulting in more vibrant-looking images.

OLED displays have been known for additional green and blue saturation, as these tend to be the most powerful colors in the sub-pixel arrangement, and very little green is required for white light. Some observers find that this extra saturation produces results that they find slightly unnatural looking. Although color accuracy has improved substantially in the past few years and tends to offer better accuracy for wider color gamuts like DCI-P3 and BT-2020. Despite not possessing quite such a broad gamut, LCD displays typically offer 100% sRGB gamut used by most content and can cover a wide gamut and most of the DCI-P3 color space too.

As we mentioned before, the lack of a backlight and filtering layers weighs in favor of OLED over LCD. LCD displays often suffer from light bleed and a lower contrast ratio as the backlight doesn’t switch off even when pixels are supposed to be black, while OLED can simply switch off its pixels. LCD’s filtering layer also inherently blocks some light and the additional depth means that viewing angles are also reduced compared to OLED.

One downside of AMOLED is that different LEDs have different life spans, meaning that the individual RBG light components eventually degrade at slightly different rates. As well as the dreaded but relatively rare burn-in phenomenon, OLED display color balance can drift very slightly over time, while LED’s single backlight means that color balance remains more consistent across the display. OLED pixels also often turn off and on slower, meaning that the highest refresh rate displays are often LCD. Particularly in the monitor market where refresh rates exceed 120Hz. That said, plenty of OLED smartphones offer 90, 120, and even 144Hz support.

There are some pros and cons to both technologies and some reasonable user preferences between the different color and contrast profiles. Although the prevalence of multiple display modes available in modern smartphones makes this somewhat less of an issue these days. However, the falling production costs and additional benefits of OLED displays have made them a more popular choice than ever across a wide range of price segments. OLED dominates the high-end smartphone and TV spaces owing to its wider color gamut, superior contrast ratio, while still supporting decent refresh rates. Not to mention its flexible characteristics for brand new mobile form factors.

Major display manufacturers, such as LG Display and Samsung Display, are betting big on OLED technology for the future, making major investments into additional production facilities. Particularly when it comes to its use in flexible display technology. The AMOLED panel market is expected to be worth close to $30 billion in 2022, more than double its value in 2017 when this article was first published.

That said, developments in Quantum Dot and mini LED displays are closing the already small performance gap between LCD and OLED, so certainly don’t count LCD out of the race just yet.

tela super amoled vs tft lcd in stock

This rise of small, powerful components has also led to significant developments in display technology. The most recent of which, AMOLED, is now the main competitor for the most common display used in quality portable electronics – the TFT–LCD IPS (In-Plane Switching) display. As more factories in the Far East begin to produce AMOLED technology, it seems likely we will enter a battle of TFT IPS versus AMOLED, or LCD vs LED. Where a large percentage of a product’s cost is the display technology it uses, which provides best value for money when you’re designing a new product?

TFT IPSdisplays improved on previous TFT LCD technology, developed to overcome limitations and improve contrast, viewing angles, sunlight readability and response times. Viewing angles were originally very limited – so in-plane switching panels were introduced to improve them.

Modern TFT screens can have custom backlights turned up to whatever brightness that their power limit allows, which means they have no maximum brightness limitation. TFT IPS panels also have the option for OCA bonding, which uses a special adhesive to bond a touchscreen or glass coverlens to the TFT. This improves sunlight readability by preventing light from bouncing around between the layers of the display, and also improves durability without adding excess bulk; some TFT IPS displays now only measure around 2 mm thick.

AMOLED technology is an upgrade to older OLED technology. It uses organic compounds that emit light when exposed to electricity. This means no backlight, which in turn means less power consumption and a reduction in size. AMOLED screens tend to be thinner than TFT equivalents, often produced to be as thin as 1 mm. AMOLED technology also offers greater viewing angles thanks to deeper blacks. Colours tend to be greater, but visibility in daylight is lower than IPS displays.

As manufacturers increasingly focus on smaller devices, such as portable smartphones and wearable technology, the thinness and high colour resolution of AMOLED screens have grown desirable. However, producing AMOLED displays is far more costly as fewer factories offer the technology at a consistent quality and minimum order quantities are high; what capacity there is is often taken up the mobile phone market Full HD TFT IPS displays have the advantage of being offered in industry standard sizes and at a far lower cost, as well as offering superior sunlight visibility.

The competition between displays has benefitted both technologies as it has resulted in improvements in both. For example, Super AMOLED, a marketing brand by Samsung, involves the integration of a touchscreen layer inside the screen, rather than overlaid on it. The backlight in TFT technology means they can never truly replicate the deep blacks in AMOLED, but improvements have been made in resolution to the point where manufacturers like Apple have been happy to use LCD screens in their smartphones, even as they compete with Samsung’s Super AMOLED.

Aside from smartphones, many technologies utilise displays to offer direct interaction with customers. To decide whether TFT LCD will survive the rise of AMOLED technology, we must first recap the advantages of LCD. The backlit quality means that whites are bright and contrast is good, but this will wear down a battery faster than AMOLED. Additionally, cost is a significant factor for LCD screens. They are cheaper, more freely available and are offered in industry standard sizes so can be ordered for new products without difficulty.

It seems hard to deny that AMOLED will someday become the standard for mobile phones, which demand great colour performance and are reliant on battery life. Where size is an issue, AMOLED will also grow to dominance thanks to its superior thinness. But for all other technologies, particularly in industrial applications, TFT-LCD offers bright, affordable display technology that is continually improving as the challenge from AMOLED rises.

tela super amoled vs tft lcd in stock

A tecnologia não para de evoluir a cada dia, o que nos garante ter smartphones cada vez mais finos e poderosos. As fabricantes também investem em melhorias em suas telas para oferecer painéis com cores mais fieis e nível de brilho superior a cada geração. Aqui temos diversas opções, que vão da clássica LCD à Super AMOLED. Mas quais as diferenças entre cada uma delas?

O TudoCelular preparou esse especial para explicar o que cada tecnologia tem a oferecer e qual é a melhor para cada tipo de uso. Sempre existe uma guerra travada entre os fãs do LCD e OLED, onde cada um tenta provar qual é superior. Também explicaremos as diferenças entre as variações nos painéis LCD e OLED, já que nem todos são fabricados da mesma forma e nem oferecem exatamente a mesma qualidade de imagem.

LCD é uma abreviação de “Liquid Crystal Display”, que em nosso bom português seria “Tela de Cristal Líquido”. Este é o tipo de tela mais comum em smartphones, especialmente nos de entrada, já que o custo de produção é consideravelmente inferior ao das telas OLED.

O painel é formado por duas camadas principais, sendo uma de cristais líquidos que reage por estímulos elétricos, e um segundo painel por fornecer luz (normalmente chamado de backlight). Entre estas camadas há outras mais finas que servem para bloquear ou permitir a passagem de luz, gerando os diferentes tons de cores que vemos na tela.

Cada pixel da tela LCD é responsável por reproduzir as três cores primárias do padrão RGB (vermelha, verde e azul). Com a combinação destas cores em intensidades diferentes de acordo com a carga elétrica fornecida pelo backlight, temos 256 tonalidades. Se você multiplicar 256 três vezes terá as 16,77 milhões de cores que as telas de smartphones são capazes de reproduzir.

As telas do tipo LCD contam com transistores para controlar a quantidade correta de energia a ser enviada para cada pixel. Este tipo de tecnologia recebeu o nome de TFT (Thin Film Transistor), o que acabou sendo chamada como tela do tipo TFT (no entanto, o nome correto para este tipo de painel é TN, abreviação de Twisted Nematic). Inicialmente, tal tecnologia tinha seus problemas: alto consumo de energia e baixo ângulo de visão.

Para eliminar estas limitações foi desenvolvida a tecnologia IPS (In-Plane Switching), que organiza e alterna a orientação das moléculas de cristal líquido do painel entre os substratos de vidro. Isso ajuda a ampliar o ângulo de visão e a reprodução de cores no geral. Com a mudança temos um nível de contraste superior, além de cores mais vivas e que ficam menos desbotadas quando vistas de lado.

As telas IPS LCD usam silício amorfo como líquido para a unidade de exibição, pois este substrato pode ser montado em circuitos complexos de alta corrente. Isso, porém, restringe a resolução da tela e aumenta a temperatura geral do dispositivo. Com isso, o desenvolvimento da tecnologia levou à substituição do silício amorfo por silício policristalino, que impulsionou a resolução da tela e mantém baixas temperaturas.

O resultado disso é que a tela LCD de polisilício de baixa temperatura, conhecida como LTPS, ajuda a fornecer densidades de pixels maiores, menor consumo de energia que o LCD padrão e faixas de temperatura controladas. Esta tecnologia vem ganhando cada vez mais espaço no mercado.

Para ficar mais fácil de entender, aqui vai um resumo. A tecnologia LCD é dividida basicamente em três tipos de grupos: TN, IPS e LTPS. A tecnologia TFT, na verdade, está presente em cada um desses tipos de painéis. O que muda é a forma como os cristais são organizados, resultando em nível de brilho, contraste e ângulo de visão diferenciados. A LTPS é a melhor opção, mas ainda não está tão difundida quanto à IPS, especialmente em smartphones mais básicos.

Em telas com pontos quânticos não temos a camada TFT responsável por controlar a energia passada para os pixels. Em seu lugar encontramos os cristais nanoscópicos, que regulam a luz do painel. Eles podem ser distribuídos pela tela em diversos tamanhos, resultando em tons diferentes para cada cor.

Neste tipo de tela ainda temos o backlight gerando luz, mas a intensidade é menor, o que ajuda a economizar bateria. E por não termos mais um filtro entre o backlight e o pixel, o contraste acaba sendo maior, permitido que a tela exiba cores até 50% mais intensas. Além destes benefícios temos também um ganho em brilho, permitindo uma melhor visualização geral do conteúdo.

Infelizmente, esta tecnologia tem um custo de produção mais elevado, o que acaba limitando a sua produção para smartphones. Atualmente é mais comum encontrar telas LCD com pontos quânticos em TVs, que tentam brigar com as TVs OLED pelo gosto do público.

Deixando as telas LCD de lado vamos agora para sua maior rival, a tecnologia OLED. Ao contrário de termos painéis formados por cristais líquidos, este tipo de tela traz diodos orgânicos. Eles são polímeros feitos de composto líquido e podem ser colocados em qualquer superfície sem a necessidade de serem encapsulados.

Assim como em telas LCD, nas do tipo OLED também temos diversas camadas que formam o painel usado em smartphones. O que muda é que esta tecnologia não exige a presença de um backlight para gerar luz. Aqui cada pixel é capaz de produzir luminosidade e cor, gerando as imagens vistas na tela.

Pelo fato de não ter backlight, a tecnologia OLED permite que o pixel seja desligado quando a cor preta é exibida, diferente da tela LCD em há sempre luz sendo enviada ao pixel mesmo que nenhuma cor seja reproduzida. Isso não apenas ajuda a economizar bateria em smartphones com tela OLED, mas também entrega um contraste maior, com preto realmente sendo preto.

A corrente é passada de duas formas para os pixels: passivamente ou ativamente. Na primeira delas toda uma linha de pixels é comandada por vez, o que torna a taxa de atualização da tela mais lenta. Em telas OLED mais simples é normal ver usuários reclamando de rastos em cenas de movimentação rápida.

Para resolver este problema surgiu a AMOLED (Active Matrix Organic Light-Emitting Diode), que como o nome sugere traz uma matriz ativa de controle para ativar e desativar cada pixel individualmente. E advinha quem é que regula a tensão da corrente elétrica fornecida a esses pixels? Isso mesmo, a camada TFT presente nas telas LCD.

Então quer dizer que apenas as telas AMOLED da Samsung são do tipo ativa e as demais OLED são do tipo passiva? Não, necessariamente. Devido à lentidão na atualização de todos os pixels, os painéis OLED passivos foram abandonados pelas fabricantes, mas nem todas adotam o termo AMOLED comercialmente.

Para diferenciar a sua tela das demais, Samsung então criou o termo Super AMOLEDem 2010. Pode parecer só marketing, mas a gigante sul-coreana realmente levou a tecnologia a um novo nível. Para começar, ela removeu a camada responsável por registrar os toques na tela, deixando o painel mais fino e flexível.

O sensor de toque foi incorporado ao próprio vidro da tela, resultando em um melhor tempo de respostas aos comandos dados pelo usuário, além de ampliar a sensibilidade. Por ser mais fina, a tela também reflete menos, o que melhora a visibilidade em ambientes com forte iluminação.

Outro ponto em comum entre as telas OLED e LCD está no uso de substrato de vidro. Este composto passa maior resistência às telas dos smartphones (não necessariamente contra quedas). Você pode pressionar com mais força a tela do seu aparelho sem que ela sofra danos permanentes.

Porém, o uso de substratos de vidro acaba limitando a flexibilidade do painel. Desta limitação surgiu a necessidade de um novo tipo de tela OLED, conhecida como P-OLED (Plastic-OLED). Aqui saí o vidro e entra o plástico, o que deixa a tela mais frágil contra impactos, mas permite que a fabricante possa dobrar o painel ou mesmo criar um aparelho curvo, como vimos na linha G Flex da LG.

Uma gama de plásticos tem sido usada e testada para displays flexíveis, incluindo polietileno tereftalato (PET) e polietileno naftalato (PEN). No entanto, a mudança de um substrato de vidro também tem que acomodar o tipo de tecnologias TFT usadas, a fim de reduzir as temperaturas de fabricação ou o uso de plásticos que possam suportar temperaturas mais altas.

Como resultado, as fabricantes de telas OLED flexíveis estão usando plásticos de poliimida (PI) que podem suportar melhor as altas temperaturas de fabricação de TFT. O tipo de substrato e o processo de aquecimento usados também definem a flexibilidade da exibição. Este tipo de tela deve definir o futuro dos smartphones flexíveis, que não devem demorar muito para chegar ao mercado.

E agora é que as coisas ficam um pouco confusas. Samsung vem usando telas flexíveis na sua linha Edge de smartphones, seguindo com a família S8, S9 e Note que trazem painel curvo nas bordas do aparelho. Assim como a tela P-OLED usada pela LG, Samsung também adota substrato de plástico, porém não tão flexível.

Além disso, há certas diferenças na tecnologia do painel subjacente, mas elas não estão vinculadas aos nomes usados para descrever os painéis. Haverá diferenças sutis entre os displays P-OLED e AMOLED, em termos de brilho, gama de cores, regulação do branco, etc. Assim como já existem diferenças entre os painéis AMOLED da própria Samsung. Mas para a maioria dos consumidores, isso será de pouca importância.

Telas do tipo AMOLED oferecem contraste superior e menor consumo de energia, além de cores mais vivas. Os amantes de telas LCD defendem que a tecnologia OLED exagera na reprodução de cores deixando tudo muito saturado. Algumas fabricantes, como a própria Samsung, vêm oferecendo perfis de saturação para que cada usuário escolha como prefere ver as imagens na tela do seu smartphone.

Por mais que a tecnologia OLED pareça superior, ela sofre de um problema que afasta muitos usuários: o temido burn-in. Como cada pixel é ativado e desativado de forma independente, caso o usuário mantenha um conteúdo estático muito tempo na tela (como os botões virtuais do Android), o painel OLED pode acabar ficando marcado, sempre exibido aqueles elementos.

Samsung vem trabalhando na tecnologia MicroLED, que promete unir os pontos positivos do LCD e OLED. A novidade chegará inicialmente em TVs, o que pode demorar ainda para vermos a tecnologia em smartphones. Apple também vem estudando a implementação de MicroLED em seus novos smartwatches. Enquanto a novidade não chega aos smartphones, veremos as empresas buscando formas de aprimorar as telas LCD e OLED.

tela super amoled vs tft lcd in stock

AMOLED (Active-Matrix Organic Light-Emitting Diode) é uma tecnologia que varia das telas OLED (Organic Light-Emitting Diode), que, por sua vez, são construídas com suporte na tecnologia de telas TFT.

Essa tecnologia, presente nas telas AMOLED, permite que os milhares de pixels em uma tela sejam iluminados, ou não, através de uma ativação elétrica. Através de isoladores, semicondutores e contatos metálicos do TFT, ligados diretamente a uma camada de vidro, é possível realizar uma gama de funções que vão ordenar como cada pixel deverá se comportar e em que momento ele deve brilhar.

Baseado nessa tecnologia, a OLED, seguida da AMOLED, tem como princípio básico tornar a tela do seu celular cada vez mais fina, leve e mais nítida. Uma tela AMOLED possui quatro camadas: uma de cátodo, uma orgânica, outra de circuitos TFT e uma última com substratos. Esse conjunto permite que esse tipo de display transmita essas ordens para os pixels três vezes mais rápido do que as telas OLED comuns. Isso permite, por exemplo, ver filmes sem aqueles famosos "pulos", mostrando mais fluidez.

A tela Super AMOLED foi apresentada pela Samsung durante a Mobile World Congress de 2010 e os primeiros aparelhos com essa tecnologia ganharam as lojas pelo mundo nos meses seguintes. Mas o que torna um telefone com tela Super AMOLED mais leve? Simples: a Samsung, única fabricante dessa tela até agora, conseguiu eliminar mais uma camada de vidro (e de ar), atitude que a tela AMOLED “comum” já havia conseguido anteriormente.

Eliminando uma camada de vidro e de ar, elimina-se também o número de superfícies refletoras. Acredite, a espessura do sensor de toque é de apenas 0,001 mm! Isso faz com que seja gasto menos energia para obter cores intensas e seja mais fácil obter maior nitidez. Você perceberá que não existe mais aquele “blur” na visualização de vídeos, por exemplo, e verá melhor as cores mostradas mesmo na luz intensa do sol, sem perder a qualidade.

O primeiro smartphone a ganhar uma tela Super AMOLED foi o Samsung Wave, que vem com o sistema Bada OS. Mas a tecnologia se “popularizou” (com muitas aspas) no mercado com a chegada do Samsung Galaxy S. Testamos vários smartphones aqui no TechTudo, e a tela deste aparelho é realmente impressionante.

As novas telas conhecidas como Super AMOLED Plus exibem 50% mais sub-pixels, o que traz ainda mais nitidez para a tela Super AMOLED. Porém, a resolução por polegada é menor. Por exemplo, uma tela 4.3 polegadas Plus, equivale a uma tela 4.0 Super AMOLED. A Samsung já se manifestou a este respeito e disse estar produzindo uma nova tela que permite alcançar 300 ppi, a mesma resolução presente nas telas Retina Display.

A Super AMOLED Plus foi anunciada na CES 2011, junto com o primeiro celular com esta tecnologia, o Samsung Infuse 4G. Mas, com certeza, o próximo queridinho do mundo a usar essa tela será o Samsung Galaxy S II - que, como indicado no site da Samsung, será lançado no próximo dia 28.

Como o padrão adotado para os tablets são telas de 7 a 10 polegadas, o preço para a produção de uma tela Super AMOLED ainda não é viável nesses tamanhos, portanto, o Samsung Galaxy Tab 10.1, o mais recente da empresa no mercado, ainda tem tela com tecnologia TFT WXGA. De qualquer modo, com a Samsung empenhada em reduzir o preço dessa tecnologia, é só questão de tempo para aparecerem os primeiro tablets com Super AMOLED.

Ainda com preços muito altos, celulares e smartphones com tela Super AMOLED já estão disponíveis no Brasil, com preço inicial de R$ 1499,00 para o Samsung Wave desbloqueado. Este aparelho tem tela de 3,3 polegadas, processador de 1 GHz, sistema operacional Bada OS (próprio da Samsung) e pesa apenas 118g.

Já o Samsung Galaxy S é encontrado por aí pelo preço inicial de R$ 1799,00, desbloqueado. Ele tem câmera de 5 megapixels, tela de 4,0 polegadas, memória de 16 GB expansível até 32 GB com microSD e processador de 1 GHz.

tela super amoled vs tft lcd in stock

Smartphone displays or displays, in general, have grown leaps and bounds over the years. There was a time when no matter how expensive a phone you would have, it would have the same display technology, that would be found in a mid-range phone - a basic LCD screen. Yes, the resolution and quality would be different, but the underlying technology would be the same.

OLED panels have been around since the 2000s when it was introduced in a car stereo system. Later, when it got a little mainstream, we saw it in some phones, but because it wasn’t cost-effective and did not look anything like the OLEDs of today, we soon got rid of them. After tons of improvements and development, it came to rule the best TVs that money could buy. Now, the display technology is finding its way back into our phones and personal devices, albeit in three distinct forms - OLED, AMOLED & P-OLED.

OLED or organic light-emitting diode is a display technology that runs a current through organic diodes on a glass substrate to create an image. The light-emitting pixels of an OLED display emits blue and yellow light. The yellow and blue light combine to form white light, which then passes through red, green, and blue subpixels in order to produce a single pixel. Unlike LCDs, OLED Panels do not need a separate backlight. This is one of the many reasons, why OLED displays consume much less energy, especially when they’re showing a dark image.

OLED panels, also have a much better response time, which, basically means, that each pixel responds to signal change much quicker than a traditional LCD. This is the refresh rate that manufacturers refer to. It basically means that an OLED panel will be able to change colours 120 times in a second. This gives the pictures that you watch a much more lucid, and smooth appeal.

OLED panels also take up a lot less space than your LCD panels, because they don’t use a panel for the backlight. This also makes them cheaper to make. And because they don’t need a backlight to work, OLED displays can be transparent at times. This has allowed manufacturers to develop in-display fingerprint readers and under-display cameras.

OLED panels are cheaper to manufacture, but because they are very thin, and fragile, in order to make a proper display out of it, as in a TV or a mobile phone, you need to use reinforced glass or metal frames. Also, at peak brightness, OLEDs draw more power than a regular LCD.

If you’re buying a premium smartphone with an OLED display, chances are, you’re actually buying an AMOLED Display. AMOLED is an acronym for "Active Matrix OLED," and modern OLED displays found in consumer electronics use an active matrix as opposed to passive matrices found in older OLED displays.

The active matrix or the thin-film transistor arrays used in AMOLED displays are more power efficient than most old OLED displays. Samsung dominates the market of AMOLED displays and has named the best of the best they produce as the Super AMOLED display. AMOLED displays usually combine the benefit of P-OLED displays and your regular OLED displays. They are very durable and versatile, and hence, tend to cost more.

tela super amoled vs tft lcd in stock

Você sabe diferenciar os tipos de telas dos smartphones? Confira informações sobre o celular LCD, Oled, Amoled e saiba a diferença entre cada display com este conteúdo do Pincei!

Display é a palavra inglesa para “exibição” e nada mais é do que a tela de um celular sem o vidro. Uma de suas atribuições é indicar o toque e as imagens entregues pelo dispositivo. O vidro tem a função de proteger o display.

A tela de celular LCD (Liquid Crystal Display), fabricada de cristais líquidos, é bastante comum. Largamente utilizado pela maioria dos fabricantes de telefones populares, o visor LCD não emite luz e pode ser dos seguintes tipos:

2. LCD IPS (Comutação In-Place): Chamados também de Retina Display. Melhores que os LCDs TFT, absorvem comparativamente menos energia, melhorando a vida útil da bateria.

3. LCD de tela sensível ao toque resistivo: São telas de 2 camadas, com o toque não se apresenta muito responsivo ou preciso. Frequentemente usados em smartphones baratos, e telefones com recursos de baixo custo. Possui também a versão touchscreen capacitiva e resistente.

Ele é muito melhor que o LCD em termos de cor, brilho, resolução e responsividade. Leve e com ângulo de visão ampliado, apresenta-se muito econômico, pois consome menos energia.

A tela AMOLED (Diodo Emissor de Luz Orgânico de Matriz Ativa) constitui uma versão avançada do OLED, incluindo todas as vantagens. Da mesma forma, a alternativa atual ao AMOLED é a tela de celular Super AMOLED, que oferece telas bem fininhas.

Sua primeira versão já apresentava novidades como revestimento oleofóbico, ou seja, capaz de repelir substâncias oleosas, além de não as absorver. Uma ótima ideia para evitar que a tela fica manchada com a oleosidade das mãos.

Garantindo dispositivos requintados, elegantes e sensíveis, a Corning continuou inovando, até chegar no Gorilla Glass Antimicrobiano, com a missão de impedir a instalação e crescimento de micróbios e bactérias nas superfícies dos celulares.

Agora que você já sabe tudo sobre o Celular LCD, OLED, AMOLED e suas subdivisões, clique aqui e entre em um dos grupos de oferta do Pincei. Encontre o smartphone que você procura em promoção e com as melhores condições de pagamento!

tela super amoled vs tft lcd in stock

Quase todo dia trazemos uma ou outra notícia com promessas de que determinada fabricante lançará um novo smartphone superior a todos os outros modelos do mercado.

Além das inovações em hardware e visual, muitas companhias apostam em novas telas e, de vez em quando, surgem novos termos para designar alguma peculiaridade do display.

Antiga