monochrome lcd screen manufacturer

Monochrome LCD display manufacturer, support full series of monochrome LCD screen customization, one-stop service, support various series of sample testing, support small batch trial production, fastest same-day delivery.

In this new age of technological advancements, the monochrome LCD display still plays a very important role in the computer business. Monochrome is a computer display system that only shows one color or two colors with several shades, to display information. Monochrome displays are usually found in terminals, and instruments using CRT or LCD technology. LCD displays are popular due to their low cost LCD technology, low power consumption, and ease of customization with minimal tooling costs. Vatronix is one of the companies that manufactures and produces Monochrome LCD displays.

The monochrome displays that they produce are made from high-quality materials, which ensures that they are durable and last a long time without defects. They also offer customization services of these Monochrome LCD displays to suit your preferences. All you have to do is place your order and clearly state your specifications and they will do it. Keeping these displays at optimum working conditions without servicing them increases the risk of having unscheduled downtime, hence the need for a one-stop service. This is guaranteed by Vatronix when you purchase these displays from them. It also prevents expensive repair work on equipment.

They currently have over 400 standard LCD modules that support customization, and below are some of the display modules they produce; PCB-TC2004A-SDBTSW. This is a dot matrix display LCD screen module, which is a standard screen displaying 4 lines and 20 letters per line. The TC1602C2-SDYFSG monochrome LCD panel is sized at 84.0mm by 44.0mm and it displays 2 lines of letters, 16 letters per line. It is available in black letters on emerald green background, white letters on blue background, blue letters on gay background and other colors. The KNY1602G-FUTFNF is a 1602 custom monochrome display screen. It displays 2 lines of letters and 16 words per line on a gray film and blue letters. The TS2023-ic2 is a Font LCD with an operating temperature range of -30 to +80 degrees Celsius. The storage temperature ranges from -40 to +85 degrees Celsius. It is usually used in automotive electronics, instrumentation, intelligent terminals, and open mold custom

monochrome lcd screen manufacturer

Monochrome LCD (mono LCD) technology offers high reliability and is ideal for industrial and consumer applications. Mono LCD displays can be alphanumeric LCD (character LCD), graphic LCD or segmented glass LCD.

Varitronix monochrome LCDs benefit from low power consumption, versatility in size (124 active products), wide operating temperatures and polariser options.

Mono alphanumeric displays are formatted with a fixed alphanumeric character count, for example 2 rows of 8 characters each. Character display modules range from 8×1 to 40×4 lines. These high reliability displays are ideal for industrial and consumer products – they benefit from low power consumption and a wide operating temperature range. A wide range of off the shelf alphanumeric LCD and character LCD products is available.

Segmented glass LCDs are available in a wide range of extremely cost effective standard products which use multiplexing to reduce the number of control pins required to drive the display. High stability and extended temperature range variants are available, and the products are ideally suited for applications such as instrumentation and control panels. Customisation of the artwork is an affordable option if required.

A wider range of complementary monochrome displays is available from Orient LCD which benefits from small MOQs and short lead times. Orient offers a series of “AMC” character LCD modules which are directly controlled by I2C and SPI interfaces.

As a leading manufacturer of small-to-medium-sized LCDs, BOE Varitronix offers complete solutions for a wide range of applications, from automotive and telecommunications, to industrial and consumer applications.

Monochrome display has been the core business for BOE Varitronix, who offer TFT LCD modules for electric meters, high-end white goods, home automation applications, consumer products and markets related to IoT, as well as medium-to-large sized monochrome displays aimed at high-end display markets.

monochrome lcd screen manufacturer

When looking for a cost-effective LCD display solution capable of displaying text, Icons or full graphics look no further than the Phoenix Display monochrome line.

Character LCD Display modules are an efficient and effective solution for displaying text only for a variety of applications in any number of products. Our in-house engineering team can assess and replace your current Character LCD Display or build a Custom LCD Display for use in your project or product. With 30+ standard character LCD Displays in stock, plus any custom solutions available, Phoenix Display can provide the display solution you want at the price you need.

When your project or product is in need of increased graphical content capabilities and performance, look to the graphic LCD Displays from Phoenix Display International.

Our Graphic LCD Display modules allow you to customize each individual pixel to display both text and graphical images simultaneously. Let our in-house team of engineers assess your current graphic LCD solution and suggest one of our standard models, or we can design a Custom LCD Display module capable of displaying both text and images in a monochromatic format

And finally PDI’s Monochrome TFT LCDs provide a high performance solution for industrial and automotive instrumentation, audio/visual displays and industrial devices that do not require full color. They offer an excellent contrast ratio, high resolution, wide viewing angles, fast response time, sunlight readability and wide operating temperatures.

monochrome lcd screen manufacturer

As a LCD display module manufacturer and technical developer in industrial display modules, Raystar has gained its reputation for Monochrome displays module products which are included Graphic LCD, Character LCD and Custom-made LCD display module types. The structures of display modules are in COB/COG types and its backlight are available in Blue, Green, White, Yellow-Green, Red and Amber color. Monochrome LCD display Module are included TN/STN/ FSTN/VATN, Positive or Negative, Transflective / Transmissive / Reflective standard. Check Raystar Website or email us for more product information.

monochrome lcd screen manufacturer

For product design engineers and manufacturers, a custom display and touch solution is the best approach to meet their unique application needs. Turning to us to be your monochrome LCD manufacturer means you’ll gain the experience and expertise of our in-house engineering team. Our talented engineers can develop customized solutions using a wide range of LCD technologies:Custom TN LCD displays

As we work with you to design a custom monochrome display, we’ll provide you with data-based recommendations and dedicated support. The know-how we bring to our clients has resulted in a proven track record of success, even with the most demanding applications.

monochrome lcd screen manufacturer

Monochrome LCD (mono LCD) is a cost-effective technology, both graphic versions and text or segment type displays suitable for semi or full customization. We make a lot of custom-designed monochrome LCDs for many different applications.

monochrome lcd screen manufacturer

Dr Pan: Hello, Greg. Monochrome LCD Panel can be made with TN, HTN, STN, FSTN and VA technology. It can be divided into dot matrix and segment LCD on the basis of the display mode. Depending on the types of polarizers, it can be divided into transmissive LCD, reflective LCD and transflective LCD.

Let us look at the typical structure of monochrome LCD. From top to bottom, top polarizer, top ITO glass, ITO film,liquid crystal, ITO film,bottom ITO glass and bottom polarizer.

Dr Pan: Absolutely. First, it is cheaper. And usually, the colorful screens we can see are standard products, which do not need to be designed. Monochrome LCD screen is highly customized product. You can select the outer dimension, the view area, the connection type, the display mode, the view degree, the type of the polarizer and the driving mode according to your requirements.

monochrome lcd screen manufacturer

Monolrome LCD displays have a variety of basic functions, and as the name implies, they are suitable for a variety of purposes. Monochrome lcd display have a variety of basic functions and lcd display packs. In addition, the monochrome lcd display pack has a variety of functions, lcdds, and displays that have different functions.@@@@@

There are various functions, various sizes are available. Find for wholesale lcd displays in bulk, such as a monogrome lcd display, a dual-sensitive lcd display, for more purposes and is the only choice. Find the ideal type of lcd displays in bulk, at wholesale prices on Alibaba.com.

monochrome lcd screen manufacturer

Monochrome lcd panel is low cost LCD screen, monochrome lcd display is the mainstream in custom lcd screen because its custom tooling fee is very cheap.Monochrome LCD display included standard graphic monochrome lcd display, character lcd module, monochrome segment lcd display, monochrome tft lcd module and custom lcd screen.The monochrome lcd screen structures have COG LCD (chip on lcd glass), COB (chip on board), COF (chip on film).

An seven segment lcd display is like the below picture, it can display numbers from 0 to 9 and several letters such as C, A, b E, L, and F by control some segments "on" and "off". it is the cheapest lcd display panel.

The segment lcd also could be in Icon lcd display, that is the display content are the custom segments based on customer"s application.each segment means one icon, we could design the icon on our application.

The familiar Characters lcd modules have 16x1, 16x2, 16x4 characters, 20x1, 20x2, 20x4 characters, and 40x2, 40x4 etc, characters lcd display module. An 16x2 lcd display means 16 characters x 2 lines character on the lcd. normally, one characters is made by 5x8 pixels, we could display numbers 1~9, and A~Z letters and most of characters on the 5x8 pixels per characters.

The standard graphic lcd resolution have 96x64、96x96、122x32、128x64、128x128、160x128、160x160、192x64、240x64、240x128、320x240 etc.we could display all the characters and image in the graphic lcd display. of course, the higher resolution lcd, the display effect of image would be better.

(What is lcd resolution: )Lcd resolution means how many pixels of lcd screen,128x64 lcd resolution means 128 column x 64 row pixels on the lcd screen, we also call it 128x64 lcd display. monochrome lcd resolution could be 320x240 (QVGA) or 480x240 maximum, tft lcd resolution could be VGA (640X480) or HD (1366x768, FHD(1920x1080) or 4k2k lcd resolution.

Yes, if you only need the low quantity monochrome lcd display for your project, you could choose Maclight standard monochrome lcd, Maclight have wide range standard Characters lcd and Graphic lcd module, including COB type and COG type for your choosing. please find the standard monochrome list in the end of article, welcome to contact Maclight at [email protected]

The tooling fee of monochrome lcd panel would be around 300~500 USD, if only the simple segment lcd panel, such as TN display mode, then tooling fee would be cheaper, but if the custom lcd screen is monochrome graphic lcd panel, such as STN display panel, the tooling fee would be little higher than TN lcd panel. because the tooling mask for stn lcd would be higher than TN lcd panel. but it is only the tooling fee for monochrome lcd panel.

If for custom monochrome lcd module that with IC chip on glass, we call it COG LCD module, the tooling fee would be more higher, because if for custom TN or STN lcd display panel, the tooling mask can be made by PI film, while for custom monochrome COG LCD module, the custom COG LCD tooling mask would be used the metal mask, the tooling fee would be more higher to around 1500~2000 USD.

Besides the custom lcds panel, for some custom lcd mode that in transmissive lcd or transflective lcd display mode, because lcd panel is passive display, instead of OLED display, lcd panel can not emit light by itself, it have to use the backlight, the backlight tooling fee would be upper than 1000 USD or more, the more complicating structure on the backlight, the tooling fee would be higher. for saving the cost of tooling fee on lcd backlight, the simple structure would be cheaper.

The MOQ of custom lcd display for monochrome lcd is calculated based on the mother-glass of LCD panel, some person may ask, what is mother-glass of lcd panel? is it the mother of lcd panel? no, no,no..., it is just a joke, the mother-glass of lcd is the primary glass of lcd, we also call it ITO glass, because it have an ITO layer on the glass. the lcd panels are array on the mother glass in manufacturing lcd panel, and cutting it one by one after lcd cell production finished. the main mother glass sizes if 14"x16", as in lcd manufacturing, for stable running in the full-auto machine line, it is at least 50 set of 14"x16" for an production running, that is the smaller sizes of lcd, the bigger MOQ of lcd quantity is necessary.

1. Confirm the sizes what you would like to custom making? the custom mono lcd displays would be mainly less than 10", the custom sizes is up to the mother glass of lcd panels that is less than 14"x16". the custom mono lcd can be custom made the random sizes below 10".

If you would not like to custom lcd display, you could choose the standard lcd from the following list, it is no MOQ requirement for the standard lcd.

Monochrome lcd display have TN, STN LCD, monochrome tft lcd types. the monochrome lcd could be with or without backlight. even for monochrome lcd display, it have difference LCD colors for choosing, such as yellow-green mode, blue mode, gray mode, black-white mode, negative display mode and positive display available. the backlight color could be white, green, orange, yellow-green colors.

monochrome lcd screen manufacturer

... properties, the RS PRO 7-segment LCD display is clear and easy to read. It"s an ideal choice when you need an LCD panel that works well in both direct sunlight and low-light conditions.

The LM240160SCW, manufactured by TOPWAY, is a graphic LCD display module equipped with 240x160 dot matrix pattern. The module is used in operations that require monochrome graphic ...

The LM12832B Series, manufactured by TOPWAY, is a graphic LCD display module equipped with 240x64 dot matrix pattern. The module is used in operations that require monochrome graphic ...

Backlight is used for black-and-white LCD backlight, which is mainly divided into side backlight and bottom backlight. The side backlight is led light entering from one end of the light guide plate, with ...

In many cases, attractive organic LED technology has come to replace older, monochrome LC displays. We can assist you with character-based and fully graphic ...

... waterproof interface. In addition, the 2K high-definition monitor screen can display delicate picture quality. Furthermore, optical bonding between the touch screen and LCD modules makes the image more realistic.

monochrome lcd screen manufacturer

Asia has long dominated the display module TFT LCD manufacturers’ scene. After all, most major display module manufacturers can be found in countries like China, South Korea, Japan, and India.

In this post, we’ll list down 7 best display module TFT LCD manufacturers in the USA. We’ll see why these companies deserve recognition as top players in the American display module industry.

STONE Technologies is a leading display module TFT LCD manufacturer in the world. The company is based in Beijing, China, and has been in operations since 2010. STONE quickly grew to become one of the most trusted display module manufacturers in 14 years.

Now, let’s move on to the list of the best display module manufacturers in the USA. These companies are your best picks if you need to find a display module TFT LCD manufacturer based in the United States:

Planar Systems is a digital display company headquartered in Hillsboro, Oregon. It specializes in providing digital display solutions such as LCD video walls and large format LCD displays.

Microtips Technology is a global electronics manufacturer based in Orlando, Florida. The company was established in 1990 and has grown into a strong fixture in the LCD industry.

What makes Microtips a great display module TFT LCD manufacturer in the USA lies in its close ties with all its customers. It does so by establishing a good rapport with its clients starting from the initial product discussions. Microtips manages to keep this exceptional rapport throughout the entire client relationship by:

Displaytech is an American display module TFT LCD manufacturer headquartered in Carlsbad, California. It was founded in 1989 and is part of several companies under the Seacomp group. The company specializes in manufacturing small to medium-sized LCD modules for various devices across all possible industries.

The company also manufactures embedded TFT devices, interface boards, and LCD development boards. Also, Displaytech offers design services for embedded products, display-based PCB assemblies, and turnkey products.

Displaytech makes it easy for clients to create their own customized LCD modules. There is a feature called Design Your Custom LCD Panel found on their site. Clients simply need to input their specifications such as their desired dimensions, LCD configuration, attributes, connector type, operating and storage temperature, and other pertinent information. Clients can then submit this form to Displaytech to get feedback, suggestions, and quotes.

A vast product range, good customization options, and responsive customer service – all these factors make Displaytech among the leading LCD manufacturers in the USA.

Products that Phoenix Display offers include standard, semi-custom, and fully-customized LCD modules. Specifically, these products comprise Phoenix Display’s offerings:

Clients flock to Phoenix Display because of their decades-long experience in the display manufacturing field. The company also combines its technical expertise with its competitive manufacturing capabilities to produce the best possible LCD products for its clients.

True Vision Displays is an American display module TFT LCD manufacturing company located at Cerritos, California. It specializes in LCD display solutions for special applications in modern industries. Most of their clients come from highly-demanding fields such as aerospace, defense, medical, and financial industries.

The company produces several types of TFT LCD products. Most of them are industrial-grade and comes in various resolution types such as VGA, QVGA, XGA, and SXGA. Clients may also select product enclosures for these modules.

All products feature high-bright LCD systems that come from the company’s proprietary low-power LED backlight technology. The modules and screens also come in ruggedized forms perfect for highly-demanding outdoor industrial use.

LXD Incorporated is among the earliest LCD manufacturers in the world. The company was founded in 1968 by James Fergason under the name International Liquid Xtal Company (ILIXCO). Its first headquarters was in Kent, Ohio. At present, LXD is based in Raleigh, North Carolina.

We’ve listed the top 7 display module TFT LCD manufacturers in the USA. All these companies may not be as well-known as other Asian manufacturers are, but they are equally competent and can deliver high-quality display products according to the client’s specifications. Contact any of them if you need a US-based manufacturer to service your display solutions needs.

We also briefly touched on STONE Technologies, another excellent LCD module manufacturer based in China. Consider partnering with STONE if you want top-of-the-line smart LCD products and you’re not necessarily looking for a US-based manufacturer. STONE will surely provide the right display solution for your needs anywhere you are on the globe.

monochrome lcd screen manufacturer

Excellent 1st,and Client Supreme is our guideline to deliver the ideal provider to our prospects.Nowadays, we have been seeking our best to become certainly one of the most effective exporters in our discipline to meet shoppers more require for Monochrome Lcd, High Brightness Tft Lcd Display Panel, Small Tft Monitor, Tft Led Panel,Transparent Lcd Module. We welcome new and old customers from all walks of life to contact us for future business relationships and achieving mutual success! The product will supply to all over the world, such as Europe, America, Australia,Kenya, Swaziland,Algeria, Chile.Our company is working by the operation principle of "integrity-based, cooperation created, people oriented, win-win cooperation". We hope we can have a friendly relationship with businessman from all over the world

monochrome lcd screen manufacturer

Each display can be configured in your choice of LCD mode, LED backlight type, and viewing angle. These monochrome LCDs are ideal for industrial and consumer applications where high stability and low-power consumption is a priority.

Our monochrome LCD displays can be configured to suit your product"s application with RGB LED backlights, low power backlights, single color backlights, or no backlight.

monochrome lcd screen manufacturer

Take your design to the next level with our range of monochrome LCD displays, colour OLED & TFT LCD display solutions, with our without touch, fully customisable to your system requirements.

Monochrome displays are continually evolving. Choose from our extensive portfolio of new and established technologies, from STN/FSTN LCD to Vertical Alignment.

It is now possible to transform from a monochrome display to a colour display in space constrained systemsby using a letterbox shaped display. These ultra-wide displays are ideal for applications with restricted build height such as rack mount systems or landscape format front panels.

A TFT display is a form of Liquid Crystal Display with thin film transistors for controlling the image formation. The TFT technology works by controlling brightness in red, green and blue sub-pixels through transistors for each pixel on the screen.

monochrome lcd screen manufacturer

Our company specializes in developing solutions that arerenowned across the globe and meet expectations of the most demanding customers. Orient Display can boast incredibly fast order processing - usually it takes us only 4-5 weeks to produce LCD panels and we do our best to deliver your custom display modules, touch screens or TFT and IPS LCD displays within 5-8 weeks. Thanks to being in the business for such a noteworthy period of time, experts working at our display store have gained valuable experience in the automotive, appliances, industrial, marine, medical and consumer electronics industries. We’ve been able to create top-notch, specialized factories that allow us to manufacture quality custom display solutions at attractive prices. Our products comply with standards such as ISO 9001, ISO 14001, QC 080000, ISO/TS 16949 and PPM Process Control. All of this makes us the finest display manufacturer in the market.

In a nutshell, Orient Display means 18% of global market share for automotive touch screen displays, emphasis on innovation, flexibility and customer satisfaction.Don"t wait and see for yourself that the game is worth the candle!

monochrome lcd screen manufacturer

Glass substrate with ITO electrodes. The shapes of these electrodes will determine the shapes that will appear when the LCD is switched ON. Vertical ridges etched on the surface are smooth.

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directlybacklight or reflector to produce images in color or monochrome.seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.

LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in LCD projectors and portable consumer devices such as digital cameras, watches, calculators, and mobile telephones, including smartphones. LCD screens have replaced heavy, bulky and less energy-efficient cathode-ray tube (CRT) displays in nearly all applications. The phosphors used in CRTs make them vulnerable to image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs do not have this weakness, but are still susceptible to image persistence.

Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, often made of Indium-Tin oxide (ITO) and two polarizing filters (parallel and perpendicular polarizers), the axes of transmission of which are (in most of the cases) perpendicular to each other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. Before an electric field is applied, the orientation of the liquid-crystal molecules is determined by the alignment at the surfaces of electrodes. In a twisted nematic (TN) device, the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This induces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.

The chemical formula of the liquid crystals used in LCDs may vary. Formulas may be patented.Sharp Corporation. The patent that covered that specific mixture expired.

Most color LCD systems use the same technique, with color filters used to generate red, green, and blue subpixels. The LCD color filters are made with a photolithography process on large glass sheets that are later glued with other glass sheets containing a TFT array, spacers and liquid crystal, creating several color LCDs that are then cut from one another and laminated with polarizer sheets. Red, green, blue and black photoresists (resists) are used. All resists contain a finely ground powdered pigment, with particles being just 40 nanometers across. The black resist is the first to be applied; this will create a black grid (known in the industry as a black matrix) that will separate red, green and blue subpixels from one another, increasing contrast ratios and preventing light from leaking from one subpixel onto other surrounding subpixels.Super-twisted nematic LCD, where the variable twist between tighter-spaced plates causes a varying double refraction birefringence, thus changing the hue.

LCD in a Texas Instruments calculator with top polarizer removed from device and placed on top, such that the top and bottom polarizers are perpendicular. As a result, the colors are inverted.

The optical effect of a TN device in the voltage-on state is far less dependent on variations in the device thickness than that in the voltage-off state. Because of this, TN displays with low information content and no backlighting are usually operated between crossed polarizers such that they appear bright with no voltage (the eye is much more sensitive to variations in the dark state than the bright state). As most of 2010-era LCDs are used in television sets, monitors and smartphones, they have high-resolution matrix arrays of pixels to display arbitrary images using backlighting with a dark background. When no image is displayed, different arrangements are used. For this purpose, TN LCDs are operated between parallel polarizers, whereas IPS LCDs feature crossed polarizers. In many applications IPS LCDs have replaced TN LCDs, particularly in smartphones. Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided either by applying an alternating current or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).

Displays for a small number of individual digits or fixed symbols (as in digital watches and pocket calculators) can be implemented with independent electrodes for each segment.alphanumeric or variable graphics displays are usually implemented with pixels arranged as a matrix consisting of electrically connected rows on one side of the LC layer and columns on the other side, which makes it possible to address each pixel at the intersections. The general method of matrix addressing consists of sequentially addressing one side of the matrix, for example by selecting the rows one-by-one and applying the picture information on the other side at the columns row-by-row. For details on the various matrix addressing schemes see passive-matrix and active-matrix addressed LCDs.

LCDs are manufactured in cleanrooms borrowing techniques from semiconductor manufacturing and using large sheets of glass whose size has increased over time. Several displays are manufactured at the same time, and then cut from the sheet of glass, also known as the mother glass or LCD glass substrate. The increase in size allows more displays or larger displays to be made, just like with increasing wafer sizes in semiconductor manufacturing. The glass sizes are as follows:

Until Gen 8, manufacturers would not agree on a single mother glass size and as a result, different manufacturers would use slightly different glass sizes for the same generation. Some manufacturers have adopted Gen 8.6 mother glass sheets which are only slightly larger than Gen 8.5, allowing for more 50 and 58 inch LCDs to be made per mother glass, specially 58 inch LCDs, in which case 6 can be produced on a Gen 8.6 mother glass vs only 3 on a Gen 8.5 mother glass, significantly reducing waste.AGC Inc., Corning Inc., and Nippon Electric Glass.

In 1922, Georges Friedel described the structure and properties of liquid crystals and classified them in three types (nematics, smectics and cholesterics). In 1927, Vsevolod Frederiks devised the electrically switched light valve, called the Fréedericksz transition, the essential effect of all LCD technology. In 1936, the Marconi Wireless Telegraph company patented the first practical application of the technology, "The Liquid Crystal Light Valve". In 1962, the first major English language publication Molecular Structure and Properties of Liquid Crystals was published by Dr. George W. Gray.RCA found that liquid crystals had some interesting electro-optic characteristics and he realized an electro-optical effect by generating stripe-patterns in a thin layer of liquid crystal material by the application of a voltage. This effect is based on an electro-hydrodynamic instability forming what are now called "Williams domains" inside the liquid crystal.

In the late 1960s, pioneering work on liquid crystals was undertaken by the UK"s Royal Radar Establishment at Malvern, England. The team at RRE supported ongoing work by George William Gray and his team at the University of Hull who ultimately discovered the cyanobiphenyl liquid crystals, which had correct stability and temperature properties for application in LCDs.

The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968.dynamic scattering mode (DSM) LCD that used standard discrete MOSFETs.

On December 4, 1970, the twisted nematic field effect (TN) in liquid crystals was filed for patent by Hoffmann-LaRoche in Switzerland, (Swiss patent No. 532 261) with Wolfgang Helfrich and Martin Schadt (then working for the Central Research Laboratories) listed as inventors.Brown, Boveri & Cie, its joint venture partner at that time, which produced TN displays for wristwatches and other applications during the 1970s for the international markets including the Japanese electronics industry, which soon produced the first digital quartz wristwatches with TN-LCDs and numerous other products. James Fergason, while working with Sardari Arora and Alfred Saupe at Kent State University Liquid Crystal Institute, filed an identical patent in the United States on April 22, 1971.ILIXCO (now LXD Incorporated), produced LCDs based on the TN-effect, which soon superseded the poor-quality DSM types due to improvements of lower operating voltages and lower power consumption. Tetsuro Hama and Izuhiko Nishimura of Seiko received a US patent dated February 1971, for an electronic wristwatch incorporating a TN-LCD.

In 1972, the concept of the active-matrix thin-film transistor (TFT) liquid-crystal display panel was prototyped in the United States by T. Peter Brody"s team at Westinghouse, in Pittsburgh, Pennsylvania.Westinghouse Research Laboratories demonstrated the first thin-film-transistor liquid-crystal display (TFT LCD).high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.active-matrix liquid-crystal display (AM LCD) in 1974, and then Brody coined the term "active matrix" in 1975.

In 1972 North American Rockwell Microelectronics Corp introduced the use of DSM LCDs for calculators for marketing by Lloyds Electronics Inc, though these required an internal light source for illumination.Sharp Corporation followed with DSM LCDs for pocket-sized calculators in 1973Seiko and its first 6-digit TN-LCD quartz wristwatch, and Casio"s "Casiotron". Color LCDs based on Guest-Host interaction were invented by a team at RCA in 1968.TFT LCDs similar to the prototypes developed by a Westinghouse team in 1972 were patented in 1976 by a team at Sharp consisting of Fumiaki Funada, Masataka Matsuura, and Tomio Wada,

In 1983, researchers at Brown, Boveri & Cie (BBC) Research Center, Switzerland, invented the passive matrix-addressed LCDs. H. Amstutz et al. were listed as inventors in the corresponding patent applications filed in Switzerland on July 7, 1983, and October 28, 1983. Patents were granted in Switzerland CH 665491, Europe EP 0131216,

The first color LCD televisions were developed as handheld televisions in Japan. In 1980, Hattori Seiko"s R&D group began development on color LCD pocket televisions.Seiko Epson released the first LCD television, the Epson TV Watch, a wristwatch equipped with a small active-matrix LCD television.dot matrix TN-LCD in 1983.Citizen Watch,TFT LCD.computer monitors and LCD televisions.3LCD projection technology in the 1980s, and licensed it for use in projectors in 1988.compact, full-color LCD projector.

In 1990, under different titles, inventors conceived electro optical effects as alternatives to twisted nematic field effect LCDs (TN- and STN- LCDs). One approach was to use interdigital electrodes on one glass substrate only to produce an electric field essentially parallel to the glass substrates.Germany by Guenter Baur et al. and patented in various countries.Hitachi work out various practical details of the IPS technology to interconnect the thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.

Hitachi also improved the viewing angle dependence further by optimizing the shape of the electrodes (Super IPS). NEC and Hitachi become early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and In Plane Switching subsequently remain the dominant LCD designs through 2006.South Korea and Taiwan,

In 2007 the image quality of LCD televisions surpassed the image quality of cathode-ray-tube-based (CRT) TVs.LCD TVs were projected to account 50% of the 200 million TVs to be shipped globally in 2006, according to Displaybank.Toshiba announced 2560 × 1600 pixels on a 6.1-inch (155 mm) LCD panel, suitable for use in a tablet computer,

In 2016, Panasonic developed IPS LCDs with a contrast ratio of 1,000,000:1, rivaling OLEDs. This technology was later put into mass production as dual layer, dual panel or LMCL (Light Modulating Cell Layer) LCDs. The technology uses 2 liquid crystal layers instead of one, and may be used along with a mini-LED backlight and quantum dot sheets.

Since LCDs produce no light of their own, they require external light to produce a visible image.backlight. Active-matrix LCDs are almost always backlit.Transflective LCDs combine the features of a backlit transmissive display and a reflective display.

CCFL: The LCD panel is lit either by two cold cathode fluorescent lamps placed at opposite edges of the display or an array of parallel CCFLs behind larger displays. A diffuser (made of PMMA acrylic plastic, also known as a wave or light guide/guiding plateinverter to convert whatever DC voltage the device uses (usually 5 or 12 V) to ≈1000 V needed to light a CCFL.

EL-WLED: The LCD panel is lit by a row of white LEDs placed at one or more edges of the screen. A light diffuser (light guide plate, LGP) is then used to spread the light evenly across the whole display, similarly to edge-lit CCFL LCD backlights. The diffuser is made out of either PMMA plastic or special glass, PMMA is used in most cases because it is rugged, while special glass is used when the thickness of the LCD is of primary concern, because it doesn"t expand as much when heated or exposed to moisture, which allows LCDs to be just 5mm thick. Quantum dots may be placed on top of the diffuser as a quantum dot enhancement film (QDEF, in which case they need a layer to be protected from heat and humidity) or on the color filter of the LCD, replacing the resists that are normally used.

WLED array: The LCD panel is lit by a full array of white LEDs placed behind a diffuser behind the panel. LCDs that use this implementation will usually have the ability to dim or completely turn off the LEDs in the dark areas of the image being displayed, effectively increasing the contrast ratio of the display. The precision with which this can be done will depend on the number of dimming zones of the display. The more dimming zones, the more precise the dimming, with less obvious blooming artifacts which are visible as dark grey patches surrounded by the unlit areas of the LCD. As of 2012, this design gets most of its use from upscale, larger-screen LCD televisions.

RGB-LED array: Similar to the WLED array, except the panel is lit by a full array of RGB LEDs. While displays lit with white LEDs usually have a poorer color gamut than CCFL lit displays, panels lit with RGB LEDs have very wide color gamuts. This implementation is most popular on professional graphics editing LCDs. As of 2012, LCDs in this category usually cost more than $1000. As of 2016 the cost of this category has drastically reduced and such LCD televisions obtained same price levels as the former 28" (71 cm) CRT based categories.

Monochrome LEDs: such as red, green, yellow or blue LEDs are used in the small passive monochrome LCDs typically used in clocks, watches and small appliances.

Today, most LCD screens are being designed with an LED backlight instead of the traditional CCFL backlight, while that backlight is dynamically controlled with the video information (dynamic backlight control). The combination with the dynamic backlight control, invented by Philips researchers Douglas Stanton, Martinus Stroomer and Adrianus de Vaan, simultaneously increases the dynamic range of the display system (also marketed as HDR, high dynamic range television or FLAD, full-area local area dimming).

The LCD backlight systems are made highly efficient by applying optical films such as prismatic structure (prism sheet) to gain the light into the desired viewer directions and reflective polarizing films that recycle the polarized light that was formerly absorbed by the first polarizer of the LCD (invented by Philips researchers Adrianus de Vaan and Paulus Schaareman),

A pink elastomeric connector mating an LCD panel to circuit board traces, shown next to a centimeter-scale ruler. The conductive and insulating layers in the black stripe are very small.

A standard television receiver screen, a modern LCD panel, has over six million pixels, and they are all individually powered by a wire network embedded in the screen. The fine wires, or pathways, form a grid with vertical wires across the whole screen on one side of the screen and horizontal wires across the whole screen on the other side of the screen. To this grid each pixel has a positive connection on one side and a negative connection on the other side. So the total amount of wires needed for a 1080p display is 3 x 1920 going vertically and 1080 going horizontally for a total of 6840 wires horizontally and vertically. That"s three for red, green and blue and 1920 columns of pixels for each color for a total of 5760 wires going vertically and 1080 rows of wires going horizontally. For a panel that is 28.8 inches (73 centimeters) wide, that means a wire density of 200 wires per inch along the horizontal edge.

The LCD panel is powered by LCD drivers that are carefully matched up with the edge of the LCD panel at the factory level. The drivers may be installed using several methods, the most common of which are COG (Chip-On-Glass) and TAB (Tape-automated bonding) These same principles apply also for smartphone screens that are much smaller than TV screens.anisotropic conductive film or, for lower densities, elastomeric connectors.

Monochrome and later color passive-matrix LCDs were standard in most early laptops (although a few used plasma displaysGame Boyactive-matrix became standard on all laptops. The commercially unsuccessful Macintosh Portable (released in 1989) was one of the first to use an active-matrix display (though still monochrome). Passive-matrix LCDs are still used in the 2010s for applications less demanding than laptop computers and TVs, such as inexpensive calculators. In particular, these are used on portable devices where less information content needs to be displayed, lowest power consumption (no backlight) and low cost are desired or readability in direct sunlight is needed.

A comparison between a blank passive-matrix display (top) and a blank active-matrix display (bottom). A passive-matrix display can be identified when the blank background is more grey in appearance than the crisper active-matrix display, fog appears on all edges of the screen, and while pictures appear to be fading on the screen.

STN LCDs have to be continuously refreshed by alternating pulsed voltages of one polarity during one frame and pulses of opposite polarity during the next frame. Individual pixels are addressed by the corresponding row and column circuits. This type of display is called response times and poor contrast are typical of passive-matrix addressed LCDs with too many pixels and driven according to the "Alt & Pleshko" drive scheme. Welzen and de Vaan also invented a non RMS drive scheme enabling to drive STN displays with video rates and enabling to show smooth moving video images on an STN display.

Bistable LCDs do not require continuous refreshing. Rewriting is only required for picture information changes. In 1984 HA van Sprang and AJSM de Vaan invented an STN type display that could be operated in a bistable mode, enabling extremely high resolution images up to 4000 lines or more using only low voltages.

High-resolution color displays, such as modern LCD computer monitors and televisions, use an active-matrix structure. A matrix of thin-film transistors (TFTs) is added to the electrodes in contact with the LC layer. Each pixel has its own dedicated transistor, allowing each column line to access one pixel. When a row line is selected, all of the column lines are connected to a row of pixels and voltages corresponding to the picture information are driven onto all of the column lines. The row line is then deactivated and the next row line is selected. All of the row lines are selected in sequence during a refresh operation. Active-matrix addressed displays look brighter and sharper than passive-matrix addressed displays of the same size, and generally have quicker response times, producing much better images. Sharp produces bistable reflective LCDs with a 1-bit SRAM cell per pixel that only requires small amounts of power to maintain an image.

Segment LCDs can also have color by using Field Sequential Color (FSC LCD). This kind of displays have a high speed passive segment LCD panel with an RGB backlight. The backlight quickly changes color, making it appear white to the naked eye. The LCD panel is synchronized with the backlight. For example, to make a segment appear red, the segment is only turned ON when the backlight is red, and to make a segment appear magenta, the segment is turned ON when the backlight is blue, and it continues to be ON while the backlight becomes red, and it turns OFF when the backlight becomes green. To make a segment appear black, the segment is always turned ON. An FSC LCD divides a color image into 3 images (one Red, one Green and one Blue) and it displays them in order. Due to persistence of vision, the 3 monochromatic images appear as one color image. An FSC LCD needs an LCD panel with a refresh rate of 180 Hz, and the response time is reduced to just 5 milliseconds when compared with normal STN LCD panels which have a response time of 16 milliseconds.

Samsung introduced UFB (Ultra Fine & Bright) displays back in 2002, utilized the super-birefringent effect. It has the luminance, color gamut, and most of the contrast of a TFT-LCD, but only consumes as much power as an STN display, according to Samsung. It was being used in a variety of Samsung cellular-telephone models produced until late 2006, when Samsung stopped producing UFB displays. UFB displays were also used in certain models of LG mobile phones.

In-plane switching is an LCD technology that aligns the liquid crystals in a plane parallel to the glass substrates. In this method, the electrical field is applied through opposite electrodes on the same glass substrate, so that the liquid crystals can be reoriented (switched) essentially in the same plane, although fringe fields inhibit a homogeneous reorientation. This requires two transistors for each pixel instead of the single transistor needed for a standard thin-film transistor (TFT) display. The IPS technology is used in everything from televisions, computer monitors, and even wearable devices, especially almost all LCD smartphone panels are IPS/FFS mode. IPS displays belong to the LCD panel family screen types. The other two types are VA and TN. Before LG Enhanced IPS was introduced in 2001 by Hitachi as 17" monitor in Market, the additional transistors resulted in blocking more transmission area, thus requiring a brighter backlight and consuming more power, making this type of display less desirable for notebook computers. Panasonic Himeji G8.5 was using an enhanced version of IPS, also LGD in Korea, then currently the world biggest LCD panel manufacture BOE in China is also IPS/FFS mode TV panel.

In 2011, LG claimed the smartphone LG Optimus Black (IPS LCD (LCD NOVA)) has the brightness up to 700 nits, while the competitor has only IPS LCD with 518 nits and double an active-matrix OLED (AMOLED) display with 305 nits. LG also claimed the NOVA display to be 50 percent more efficient than regular LCDs and to consume only 50 percent of the power of AMOLED displays when producing white on screen.

This pixel-layout is found in S-IPS LCDs. A chevron shape is used to widen the viewing cone (range of viewing directions with good contrast and low color shift).

Vertical-alignment displays are a form of LCDs in which the liquid crystals naturally align vertically to the glass substrates. When no voltage is applied, the liquid crystals remain perpendicular to the substrate, creating a black display between crossed polarizers. When voltage is applied, the liquid crystals shift to a tilted position, allowing light to pass through and create a gray-scale display depending on the amount of tilt generated by the electric field. It has a deeper-black background, a higher contrast ratio, a wider viewing angle, and better image quality at extreme temperatures than traditional twisted-nematic displays.

Blue phase mode LCDs have been shown as engineering samples early in 2008, but they are not in mass-production. The physics of blue phase mode LCDs suggest that very short switching times (≈1 ms) can be achieved, so time sequential color control can possibly be realized and expensive color filters would be obsolete.

Some LCD panels have defective transistors, causing permanently lit or unlit pixels which are commonly referred to as stuck pixels or dead pixels respectively. Unlike integrated circuits (ICs), LCD panels with a few defective transistors are usually still usable. Manufacturers" policies for the acceptable number of defective pixels vary greatly. At one point, Samsung held a zero-tolerance policy for LCD monitors sold in Korea.ISO 13406-2 standard.

Dead pixel policies are often hotly debated between manufacturers and customers. To regulate the acceptability of defects and to protect the end user, ISO released the ISO 13406-2 standard,ISO 9241, specifically ISO-9241-302, 303, 305, 307:2008 pixel defects. However, not every LCD manufacturer conforms to the ISO standard and the ISO standard is quite often interpreted in different ways. LCD panels are more likely to have defects than most ICs due to their larger size. For example, a 300 mm SVGA LCD has 8 defects and a 150 mm wafer has only 3 defects. However, 134 of the 137 dies on the wafer will be acceptable, whereas rejection of the whole LCD panel would be a 0% yield. In recent years, quality control has been improved. An SVGA LCD panel with 4 defective pixels is usually considered defective and customers can request an exchange for a new one.

Some manufacturers, notably in South Korea where some of the largest LCD panel manufacturers, such as LG, are located, now have a zero-defective-pixel guarantee, which is an extra screening process which can then determine "A"- and "B"-grade panels.clouding (or less commonly mura), which describes the uneven patches of changes in luminance. It is most visible in dark or black areas of displayed scenes.

The zenithal bistable device (ZBD), developed by Qinetiq (formerly DERA), can retain an image without power. The crystals may exist in one of two stable orientations ("black" and "white") and power is only required to change the image. ZBD Displays is a spin-off company from QinetiQ who manufactured both grayscale and color ZBD devices. Kent Displays has also developed a "no-power" display that uses polymer stabilized cholesteric liquid crystal (ChLCD). In 2009 Kent demonstrated the use of a ChLCD to cover the entire surface of a mobile phone, allowing it to change colors, and keep that color even when power is removed.

In 2004, researchers at the University of Oxford demonstrated two new types of zero-power bistable LCDs based on Zenithal bistable techniques.e.g., BiNem technology, are based mainly on the surface properties and need specific weak anchoring materials.

Resolution The resolution of an LCD is expressed by the number of columns and rows of pixels (e.g., 1024×768). Each pixel is usually composed 3 sub-pixels, a red, a green, and a blue one. This had been one of the few features of LCD performance that remained uniform among different designs. However, there are newer designs that share sub-pixels among pixels and add Quattron which attempt to efficiently increase the perceived resolution of a display without increasing the actual resolution, to mixed results.

Spatial performance: For a computer monitor or some other display that is being viewed from a very close distance, resolution is often expressed in terms of dot pitch or pixels per inch, which is consistent with the printing industry. Display density varies per application, with televisions generally having a low density for long-distance viewing and portable devices having a high density for close-range detail. The Viewing Angle of an LCD may be important depending on the display and its usage, the limitations of certain display technologies mean the display only displays accurately at certain angles.

Temporal performance: the temporal resolution of an LCD is how well it can display changing images, or the accuracy and the number of times per second the display draws the data it is being given. LCD pixels do not flash on/off between frames, so LCD monitors exhibit no refresh-induced flicker no matter how low the refresh rate.

Color performance: There are multiple terms to describe different aspects of color performance of a display. Color gamut is the range of colors that can be displayed, and color depth, which is the fineness with which the color range is divided. Color gamut is a relatively straight forward feature, but it is rarely discussed in marketing materials except at the professional level. Having a color range that exceeds the content being shown on the screen has no benefits, so displays are only made to perform within or below the range of a certain specification.white point and gamma correction, which describe what color white is and how the other colors are displayed relative to white.

Brightness and contrast ratio: Contrast ratio is the ratio of the brightness of a full-on pixel to a full-off pixel. The LCD itself is only a light valve and does not generate light; the light comes from a backlight that is either fluorescent or a set of LEDs. Brightness is usually stated as the maximum light output of the LCD, which can vary greatly based on the transparency of the LCD and the brightness of the backlight. Brighter backlight allows stronger contrast and higher dynamic range (HDR displays are graded in peak luminance), but there is always a trade-off between brightness and power consumption.

Usually no refresh-rate flicker, because the LCD pixels hold their state between refreshes (which are usually done at 200 Hz or faster, regardless of the input refresh rate).

No theoretical resolution limit. When multiple LCD panels are used together to create a single canvas, each additional panel increases the total resolution of the display, which is commonly called stacked resolution.

LCDs can be made transparent and flexible, but they cannot emit light without a backlight like OLED and microLED, which are other technologies that can also be made flexible and transparent.

As an inherently digital device, the LCD can natively display digital data from a DVI or HDMI connection without requiring conversion to analog. Some LCD panels have native fiber optic inputs in addition to DVI and HDMI.

Limited viewing angle in some older or cheaper monitors, causing color, saturation, contrast and brightness to vary with user position, even within the intended viewing angle. Special films can be used to increase the viewing angles of LCDs.

As of 2012, most implementations of LCD backlighting use pulse-width modulation (PWM) to dim the display,CRT monitor at 85 Hz refresh rate would (this is because the entire screen is strobing on and off rather than a CRT"s phosphor sustained dot which continually scans across the display, leaving some part of the display always lit), causing severe eye-strain for some people.LED-backlit monitors, because the LEDs switch on and off faster than a CCFL lamp.

Only one native resolution. Displaying any other resolution either requires a video scaler, causing blurriness and jagged edges, or running the display at native resolution using 1:1 pixel mapping, causing the image either not to fill the screen (letterboxed display), or to run off the lower or right edges of the screen.

Fixed bit depth (also called color depth). Many cheaper LCDs are only able to display 262144 (218) colors. 8-bit S-IPS panels can display 16 million (224) colors and have significantly better black level, but are expensive and have slower response time.

Input lag, because the LCD"s A/D converter waits for each frame to be completely been output before drawing it to the LCD panel. Many LCD monitors do post-processing before displaying the image in an attempt to compensate for poor color fidelity, which adds an additional lag. Further, a video scaler must be used when displaying non-native resolutions, which adds yet more time lag. Scaling and post processing are usually done in a single chip on modern monitors, but each function that chip performs adds some delay. Some displays have a video gaming mode which disables all or most processing to reduce perceivable input lag.

Dead or stuck pixels may occur during manufacturing or after a period of use. A stuck pixel will glow with color even on an all-black screen, while a dead one will always remain black.

In a constant-on situation, thermalization may occur in case of bad thermal management, in which part of the screen has overheated and looks discolored compared to the rest of the screen.

Loss of brightness and much slower response times in low temperature environments. In sub-zero environments, LCD screens may cease to function without the use of supplemental heating.

The production of LCD screens uses nitrogen trifluoride (NF3) as an etching fluid during the production of the thin-film components. NF3 is a potent greenhouse gas, and its relatively long half-life may make it a potentially harmful contributor to global warming. A report in Geophysical Research Letters suggested that its effects were theoretically much greater than better-known sources of greenhouse gasses like carbon dioxide. As NF3 was not in widespread use at the time, it was not made part of the Kyoto Protocols and has been deemed "the missing greenhouse gas".

Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.

Explanation of CCFL backlighting details, "Design News — Features — How to Backlight an LCD" Archived January 2, 2014, at the Wayback Machine, Randy Frank, Retrieved January 2013.

Energy Efficiency Success Story: TV Energy Consumption Shrinks as Screen Size and Performance Grow, Finds New CTA Study; Consumer Technology Association; press release 12 July 2017; https://cta.tech/News/Press-Releases/2017/July/Energy-Efficiency-Success-Story-TV-Energy-Consump.aspx Archived November 4, 2017, at the Wayback Machine

LCD Television Power Draw Trends from 2003 to 2015; B. Urban and K. Roth; Fraunhofer USA Center for Sustainable Energy Systems; Final Report to the Consumer Technology Association; May 2017; http://www.cta.tech/cta/media/policyImages/policyPDFs/Fraunhofer-LCD-TV-Power-Draw-Trends-FINAL.pdf Archived August 1, 2017, at the Wayback Machine

K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. 37 (1): 1079–1082. doi:10.1889/1.2433159. S2CID 129569963.

Jack H. Park (January 15, 2015). "Cut and Run: Taiwan-controlled LCD Panel Maker in Danger of Shutdown without Further Investment". www.businesskorea.co.kr. Archived from the original on May 12, 2015. Retrieved April 23, 2015.

NXP Semiconductors (October 21, 2011). "UM10764 Vertical Alignment (VA) displays and NXP LCD drivers" (PDF). Archived from the original (PDF) on March 14, 2014. Retrieved September 4, 2014.

"Samsung to Offer "Zero-PIXEL-DEFECT" Warranty for LCD Monitors". Forbes. December 30, 2004. Archived from the original on August 20, 2007. Retrieved September 3, 2007.

"D