el700 3-axsis lcd touch screen price

I then realised for the first time that the EL 700 is a full touch screen with NO PHYSICAL BUTTONS. Have I got this correct? If so then it should be completely customisable for a mill or lathe without unwanted functions showing. A very desirable point.
However I am not sure I would want a full touch screen as there are many situations where touch screens are not very easy to use. I think that I would really want to try a EL700 before purchase.

RB211: thanks for posting your experience with Ditron. Reading (and looking at the images) of VectorWarbirds recent posting is what made me look into the LCD DRO display. Unfortunately the brand that he bought does not appear to have a 4-axis model.
weirdscience: also thanks for posting your experience w/ Ditron, the manuals and the link to Ditron"s web page - I had not found that page when I started looking at LCD DROs. Another poster on this forum recently posted his ordeal with ordering a different brand of DRO thru Aliexpress. Since the Reeson DRO appears identical to the Ditron (even has the same model number on back), I figured I would pay the extra $50 to $75 for one bought thru eBay.
I"ve bookmarked the Ditron link and will read / watch the videos when I have a bit of time the next few evenings. I was really interested in the Electronica EL700. I just did not contact them early enough before their stay at home / shutdown. They also offer the EL700 with glass scales for a cost save over magnetic scales and they include the touch probe with the DRO purchase. Just have no idea what the EL700 package cost is if purchased directly from the mfg in India. At DRO PROs, the probe is a $400 cost increase if bought with the unit, $900 (!!!) if bought individually. There is noway that I can justify either of those costs just to have the touch probe.

The EL700 a 4 axes DRO with color TFT display is a master piece in its segment. Its dynamic tool position display, soft touch keyboard provide ease of operation, hence improves the productivity. Also the attractive aluminum die casted case design provides a longer life.
EL700 on shop floor makes any machining operation fast and cost effective thanks to its dynamic tool position display, simultaneous display of 4 axis, feed rate indication. EL700 stands out for its advanced features and easy user interface.

ER-TFT043A2-3 is 480x272 dots 4.3" color tft lcd module display with driver IC ST7282 and optional capacitive touch panel with controller and connector,optional 4-wire resistive touch panel with connector,superior display quality,wide view angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO,ARM and Raspberry PI .
It can be used in any embedded systems,car,mp4,gps,industrial device,security and hand-held equipment which requires display in high quality and colorful image.It supports rgb interface. FPC with zif connector is easily to assemble or remove.Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 4.3"TFT Touch Shield with Libraries, Examples.Schematic Diagram for Arduino Due,Mega 2560,Uno and 8051 Microcontroller Development Board&Kit.

In the previous article, I described the steps needed to install an LCD touchscreen on the Raspberry Pi. In this article, I will show you how to adjust the screen rotation of the LCD to landscape mode, and will show you how to calibrate the touchscreen pointer for optimal accuracy. Just follow the steps below to compete the process of setting up your Raspberry Pi LCD touchscreen:
1. First we need to change the setting for screen rotation in the /boot/cmdline.txt file. This setting is called fbtft_device.rotate=X. By default, this is set to X=0, which results in a portrait mode screen orientation. In order to switch the orientation to landscape mode, change fbtft_device.rotate=0 to fbtft_device.rotate=90. Enter sudo nano /boot/cmdline.txt at the command prompt. There should only be one line in this file. Go to the end of it and you will find the fbtft_device.rotate=X setting. Change the value from 0 to 90:
However, if you try to touch the screen now, you will find that the pointer movement does not correspond to your finger movement. This is because the LCD screen driver and the touchscreen controller driver have separate settings for screen rotation. We need to change the rotation of the touchscreen controller driver to match the rotation of the LCD screen driver.
2. You probably noticed that dragging your finger to the right moves the pointer up, not to the right. This indicates that the x and y axes of the touchscreen are swapped. To correct this, we need to swap the x axis for the y axis. This can be done by changing the swap_xy=X parameter in /etc/modules.
Now if you drag your finger around the screen, you will notice that the y axis (up and down) is correctly aligned with the motion of your finger. However, the x axis (left and right) is still inverted. To fix this, we need to install two more kernel modules, xinput and evtest. xinput is a Linux utility that will allow us to configure input device settings for the touchscreen controller, and evtest is an input device event monitor and query tool.
After the Pi finishes rebooting, you should notice that when you move your finger across the touch screen, the pointer should follow correctly in both axes. If you are using the Raspberry Pi 2 Model B, you will need to complete the calibration steps below before the pointer follows your finger correctly (and make sure that you have enabled startx to load automatically – see step 6 in this article).
You can rotate the screen 90 degrees (as we did in this tutorial) and the power connector will be at the bottom of the screen, but you can also rotate it 270 degrees so that the power connector is at the top of the screen. To do this, simply enter fbtft_device.rotate=270 in the /boot/cmdline.txt file. Then change the DISPLAY=:0 xinput --set-prop "ADS7846 Touchscreen" "Evdev Axis Inversion" 0 1 line in the /etc/X11/xinit/xinitrc file to DISPLAY=:0 xinput --set-prop "ADS7846 Touchscreen" "Evdev Axis Inversion" 1 0. All you need to do is switch the values of the 0 and 1 at the end of this line.
Now that we have our LCD touchscreen up and running, the final step in the installation is the calibration of touch control. This will make the pointer much more accurate and easier to use.
2. Now we need to install the calibration tool we will be using, xinput_calibrator; and other filters for controlling the touchscreen response. Install the tslib library by entering aptitude install libts-bin:
4. Now we can use ts_calibrate. Enter ts_calibrate at the command prompt (make sure you are still in root mode) to run the ts_calibrate program. The program will consecutively display five crosses on different parts of the screen, which you need to touch with as much precision as possible:
Drag the cross around the screen and observe how closely it follows your finger or stylus to test the accuracy of the calibration. Now press the “Draw” button to enter the drawing mode:
This is kind of a long process, but it is well worth it if you want to get the LCD touchscreen set up properly. So if you have any trouble setting this up or have anything to say, please leave a comment below. Also, if you found this article useful, please share it with your friends!

The majority of TFT displays contain a touch panel, or touch screen. The touch panel is a touch-sensitive transparent overlay mounted on the front of the display glass. Allowing for interaction between the user and the LCD display.
Some touch panels require an independent driver IC; which can be included in the TFT display module or placed on the customer’s Printed Circuit Board (PCB). Touch screens make use of coordinate systems to locate where the user touched the screen.
Resistive touch panels are the lowest cost option and are standard equipment on many TFT modules. They are more common on smaller TFT displays, but can still be incorporated on larger modules.
Resistive touch panels are constructed using flexible materials with an air gap between and are coated with a resistive layer. When an object applies pressure to the top layer, it makes contact with microdots located on the bottom layer. This allows the touch screen to find the location of the touch using X and Y coordinates.
Custom resistive touch screens are an option if the customer requires a seal or gasket to be in contact with the glass and not in contact with the touch panel.
Resistive touch panels allow a single touch, although advances in new resistive technology will allow multi-touch operation in the near future. One main advantage of a resistive touch screen is the ability to be activated by the touch of any material. This includes a range of items from a bare finger, to a pencil, to even the edge of a credit card; regardless of its composition.
Capacitive touch panels have become popular with such software as Windows 8®, Android® and Apple®. Additionally it is used in products such as cell phones and tablets, where multi-touch and zoom capabilities are important.
Current capacitive touch technology is limited to a conductive stylus such as a finger. The touch screen operates on capacitive sensing, based on capacitive coupling. A capacitive touch screen detects any material that is conductive or has a different dielectric then the air around it.
Contrast ratio, or static contrast ratio, is one way to measure the sharpness of the TFT LCD display. This ratio is the difference between the darkest black and the brightest white the display is able to produce. The higher the number on the left, the sharper the image. A typical contrast ratio for TFT may be 300:1. This number ratio means that the white is 300 times brighter than the black.
TFT LCD displays are measured in inches; this is the measurement of the diagonal distance across the glass. Common TFT sizes include: 1.77”, 2.4”, 2.8”, 3”, 4.3”, 5”, 5.7”, 5.8”, 7”, 10.2”, 12.1 and 15”.
Certain combinations of width and height are standardized and typically given a name and a letter representation that is descriptive of its dimensions. Popular names given to the TFT LCD displays resolution include:
The TFT display (minus touch screen/backlight) alone will contain one controller/driver combination. These are built into the display so the design engineer does not need to locate the correct hardware.
Ms.Josey
Ms.Josey