spi tft lcd display module 240x320 ili9341 price

ER-TFT022-1 is 240x320 dots 2.2" color tft lcd module display with ILI9341 controller,optional capacitive touch panel with controller FT6236U and resistive touch panel,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.It supports 8080 8-bit,9-bit,16-bit,18-bit parallel,3-wire,4-wire serial spi interface. FPC with zif connector is easily to assemble or remove.Lanscape mode is also available.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 2.2"TFT Shield with Libraries, Examples.Schematic Diagram for Arduino Due,Mega 2560 and Uno.For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and Development Kit at the bottom of this page.

Reason: The hooks on the backight of ER-TFT032-3.1 is always complained by most customers for inconvenient assembly. So we cancel the hooks in the new version of ER-TFT032-3.2.That"s the only difference for these two versions.
ER-TFT032-3.2 is 240x320 dots 3.2" color tft lcd module display with ILI9341 controller and optional 4-wire resistive touch panel and 3.2 inch capactive touch panel with controller FT6236,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.It supports 8080 8/16-bit parallel,3/4-wire serial interface. FPC with zif connector is easily to assemble or remove.Lanscape mode is also available.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 3.2"TFT Touch Shield with Libraries, Examples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.

Specifications:Resolution: 240x320Driver IC: ILI9341Input Voltage: 5V/3.3VSize 2.2 inch, It has PCB backplane with power IC, SD card socketLED Numbers 4 LEDs, Driver IC: ILI9341, Color Depth 262K/65KModule Size:67mm(length)*40mm(width)*4mm(thickness), Active Area: 47.5mm(Length)x36.5mm(Width)How to use it?1. use 5v to led pin, 3.3v to vcc and 1k / 1.5k resistor voltage dividers to get it to work. 1k resistor in series from Arduino to tft logic pin, 1.5k from tft pin to ground.2.#define TFT_DC 9#define TFT_CS 10#define TFT_MOSI 11#define TFT_CLK 13#define TFT_RST 12#define TFT_MISO 83.// Use hardware SPI (on Uno, #13, #12, #11) and the above for CS/DC//ILI9341 tft = ILI9341(TFT_CS, TFT_DC);4.// If using the breakout, change pins as desiredILI9341 tft = ILI9341(TFT_CS, TFT_DC, TFT_MOSI, TFT_CLK, TFT_RST, TFT_MISO).Serial monitor output:1-- ILI9341 Test!Display Power Mode: 0x94MADCTL Mode: 0x48Pixel Format:0x5ImageFormat: 0x80Self Diagnostic: 0xC0Benchmark Time (microseconds)2-- Screen fill 18159720Text 921664Lines 8537648Horiz/Vert Lines 1485756Rectangles (outline) 946520Rectangles (filled) 37689232Circles (filled) 5325780Circles (outline) 3725412Triangles (outline) 1944508Triangles (filled) 12525852Rounded rects (outline) 1782700Rounded rects (filled) 40989648

You can get ili9341 with an operation range that suits your specific application, choosing from a wide selection of suppliers. Source wholesale ili9341 on Alibaba.com for your business and enjoy a wide variety and great deals.
ili9341 (Liquid crystal display) are made of liquid crystals that form digital images made visible through ambient light or through LED backlight. LCDs are used in the place of other displays that are less efficient such as cathode ray tubes (CRTs) and have become the most popular display type on the market.
Explore the extensive selection of wholesale ili9341 LCD displays, TFT, and HMI that can be used across a range of industries, including domestic, medical, industrial, automotive, and many others. You can choose from a number of standard industry sizes and find the ili96341 that are applicable to your required use. If you would like options that allow a smaller environmental footprint due to low power consumption, you can browse the Chip-on-Glass (COG) LCDs. COGs are designed without PCBs so have a slimmer profile.

This 3.2″ TFT LCD is a full color display with a resolution of 240 x 320 pixels or 320 x 240 pixels depending on how it is oriented. It uses the ILI9341 controller with SPI interface. It also includes a resistive touchscreen with built-in XPT2046 controller.
These full color displays are large enough for many applications even when using touch. The supplied stylus is helpful when using smaller touch targets.
Internally the display operates at 3.3V, so if using with a 5V microcontroller, be sure to include logic level shifters on the data lines to prevent possible damage.
The module power comes in on the Vcc pin. The module includes an on-board 3.3V regulator, so the module should normally be operated off of 3.6 to 5.5V power on this pin to feed the regulator. Current is typically 55-60mA
If you would prefer to operate the module directly from a 3.3V power source, there are two solder pads labeled J1. By solder shorting these two pads together, the regulator is bypassed and the module can be powered directly from 3.3V.
In general, it is best to operate the display off of 5V to ensure enough power is available. Be careful of trying to operate the display from the built-in 3.3V available on Arduino and similar microcontrollers since these power sources often have limited current capability and may overheat.
These are interesting modules to work with since they have full color and graphical capability with good library support and the touch capability adds a new dimension of usefulness.
These modules are breadboard friendly with a 14-pin header on the back that can be inserted into a solderless breadboard or a 14-pin female connector can be used to connect to it if the display is to be mounted. The display is mounted on a stiff PCB that provides good support, but be sure to press on the header pins or PCB when applying pressure to insert them into a breadboard and not press on the glass to avoid possible damage.
Though these displays can seem to be a bit intimidating to use at first, just follow these steps to get up and running fairly easily. The pin labeling is on the back only, so we have pictures with the pins labeled on both the front and back to make life a little easier.
I’m also using the Teensy 4.1 because it is currently the fastest Arduino compatible board (600MHz 32-bit vs Uno 16MHz 16-bit) and this example application of calculating Mandelbrot fractals and updating the LCD can take a long time on an Uno (77-105 seconds) and only takes about 1.25 seconds on the Teensy 4.1. If using a 3.3V Arduino like a Due, hookup will basically be the same.
Connect the SPI and control lines for the display. In our example we are using hardware SPI as it gives the best performance. The SPI pin location will depend on the MCU you are using.
If you just want to check the display functionality and speed, the ‘graphicstest’ example program installed as part of the Adafruit_ILI9341 library is a good one to run.
The program below is a modified version of the Mandelbrot example program that gets installed with the Adafruit_ILI9341 library. It was pruned down in size and basic touch added. The program just calculates the Mandelbrot set and draws it to the screen pixel-by-pixel as it is calculated. The math is fairly intense for each pixel, so it is a good judge of the power of the MCU. The display update speed is thus limited by the MCU that is doing the calculations and is not limited by the display itself.

Because UTFT uses software SPI, the speed is slower than using DmTftLibrary and it require exclusive access to the SPI pins. This also means UTFT can"t be used at the same time as UTouch or other Touch libraries.

ILI9341 is a 262144-color single-chip SOC driver for a TFT liquid crystal display with resolution of 240x320 dots (RGB), comprising a 720-channel source driver, a 320-channel gate driver, 172800 bytes GRAM for graphic display data of 240x320 dots (RGB), and power supply circuit.
ILI9341 supports parallel 8-/9-/16-/18-bit data bus MCU interface, 6-/16-/18-bit data bus RGB interface and 3-/4-line serial peripheral interface (SPI).
ILI9341 can operate with 1.65V ~ 3.3V I/O interface voltage and an incorporated voltage follower circuit to generate voltage levels for driving an LCD.
ILI9341 supports full color, 8-color display mode and sleep mode for precise power control by software and these features make the ILI9341 an ideal LCD driver for medium or small size portable products such as digital cellular phones, smart phone, MP3 and PMP where long battery life is a major concern.
Ms.Josey
Ms.Josey