lcd panel type tn brands

Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.
There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.
Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.
Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.
Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.
Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.
LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.
VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.
Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.
There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.
OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.
As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.

TN stands for twisted nematic. This is a type of LED (a form of LCD) panel display technology. TN panels are characterized as being the fastest and cheapest among the other main types of display panels, VA (vertical alignment)and IPS (in-plane switching). As such, they work great for gaming monitors and gaming laptops. However, TN panels also offer the worst viewing angles and color when compared to VA and IPS panels.
PerformanceFastest: low response times, highest refresh rates, minimal motion blur; Low input lagLongest response times typically; Higher refresh rates possibleSlower response times than TN, faster response times than VA; Gaming-quality refresh rates are rare
DisplayWorst viewing angles;Worst colorViewing angles typically better than TN, worse than IPS; Good color; Best contrast;Best image depthBest viewing angles; Best color

These cookies are used to track your activity on the BenQ website and other websites across the Internet, help measure the effectiveness of our advertising campaign and deliver advertisements that are more relevant to you and your interests. We use various advertising partners, including Amazon, Facebook, and Google. These cookies and other technologies capture data like your IP address, when you viewed the page or email, what device you were using and where you were. You can find out how to avoid them below.

For people that aren’t the most tech-savvy, it would seem that LCD monitors are all the same. But in reality, the opposite is true. There are four major types of LCD monitor panels, all with unique benefits and drawbacks depending on your needs. So, when shopping for an LCD screen, it’s important to consider how you’ll use it, and which type of computer monitor is best suited for that goal. To learn more about LCD, LED, QLED, and other monitor technology types, check out our guide on the types of monitors.
Technically, there are 11 different types of LCD panels, but they’re usually divided into three main categories — In-Plane Switching (IPS), Twisted Nematic (TN), and Vertical Alignment (VA). IPS is considered the top choice while VA is often associated with burn-in, a condition where pixels lose brightness over time and leave image silhouettes on the screen.
IPS panels tend to offer the best color accuracy, image quality, and viewing angles. As a result, these types are the best monitors for designers who demand better image quality to complete their graphic design work. In particular, IPS panels can provide fidelity at viewing angles as wide as 178 degrees.
However, these panels tend to be more expensive because of their enhanced image quality. Likewise, they don’t score as well for refresh rates, which makes them suboptimal for gamers.
IPS panels can be further divided into seven additional versions. While they’re all somewhat similar, how the pixels are structured is different. These include:S-IPS
Super PLS, or Plane to Line Switching, is another twist on IPS panels but is proprietary to Samsung. Their patented technology promises to offer wider viewing angles and 10% more brightness than standard IPS displays.
AHVA — not to be confused with VA panels — was developed by AOU and stands for Advanced Hyper-Viewing Angle. However, it still relies on IPS technology.
And Nano IPS was created by LG Electronics and promises to create a wider color range because of its use of nanoparticles instead of traditional pixels. Additionally, Nano IPS panels tend to have faster refresh rates.
Touchscreen monitors can be any panel variation, it depends on which one you need. However, if you can’t afford one, as they are expensive, then you’ll need to learn how to convert a monitor to touchscreen.
If you’re a budget shopper looking for an LCD screen, TN panels are going to be the most widely available option. While they’re wallet-friendly, this option has fantastic response times. Some TN-based LCDs can offer response times as low as one millisecond, which makes them ideal for gaming. However, TN panels aren’t as competitive when it comes to color accuracy. These panels are only six-bit instead of eight-bit like IPS panels and therefore can’t display all 16.7 million colors found in 24-bit true-color displays.
VA panels are a median choice for people who have a little bit more to spend but aren’t ready to invest in IPS panel technology. While they provide truer color than a TN panel and wider viewing angles, their response time isn’t as competitive. Additionally, VA viewing angles aren’t as wide as an IPS panel.
Although VA panels have higher contrast ratios for better black levels, they struggle with color shifting. This means that depending on your viewing angle, the brightness can vary. And especially for watching television, this can create a lack of detail in darker scenes. However, because of its affordability, this panel is incredibly popular with manufacturers and is often used in computer monitors and televisions. If you need something with closer to 100% of the sRGB color gamut, you’ll want a different option.
This is going to depend on how you plan on using your LCD monitor, along with your budget. Remember that the lowest price isn’t always the best, especially when considering computer monitor lifespan. You want a monitor that will last you a while. And, also consider the different monitor sizes as well. But as a general rule, the three main panel categories are most compatible in the following ways.
IPS panels are ideal for professionals who need true color accuracy for their work. Gamers who are more concerned with image quality will also do well with this pick. Likewise, serious tech aficionados with exacting standards regarding color accuracy, want to avoid color shifting and maximize viewing angles will like IPS panels. Remember that IPS panels include a wide array of subcategories, many of which are proprietary to select electronics brands.
Budget-conscious shoppers that want a decent LCD monitor that won’t break the bank can’t go wrong with a TN panel LCD. Additionally, gamers who want faster response times will also like these panels. And, anyone who isn’t obsessed with technical specs and simply wants an affordable monitor for general use will like these LCDs.

PC monitors and laptop screens come in all manner of shapes and sizes, but at their heart nearly all have one thing in common: an LCD panel. But not all LCDs are created equal. Some are better for gaming, some offer better contrast and some produce more accurate-looking colours. So, which is the best LCD type for your needs?
We’ll get to how the technology works below, but what you probably want to know off the bat is which technology is right for you. Here we’ll break down the main characteristics of each type: IPS, VA and TN.
Both IPS and VA have two main advantages over TN panels. The first is that they offer much better viewing angles. In other words, you can view both VA and IPS panels from far shallower angles and still be able to see what’s on-screen without much, or any, colour degradation. This is quite a big deal.
VA panels don’t tend to be quite as good as IPS, and as a result there can be a somewhat noticeable variation in brightness when viewed from different angles. ButIPS suffers from what’s known as ‘IPS glow’. This is where the backlight of the LCD shines through when the display is viewed from a certain angle.
Another advantage of IPS and VA panels is that both tend to present better colour reproduction – again, because they simply have a more controlled and precise ability to manage the light that passes through.
As for other differences, IPS tends to have a faster response time than VA since its crystals don’t have to tip over and then twist as they do with VA (see below). You can get fast-refreshing gaming monitors that use VA, but they offer a poor experience due to the slow pixel response time. IPS is slower than TN, but can be fast enough for responsive gaming.
Meanwhile, VA’s last hurrah is contrast. Since its resting state blocks light, its black level is the lowest of all LCDs, yet it can still produce bright colours when needed. A typical IPS or TN panel will have a contrast of 1000:1 or lower. VA panels can double that. This is the reason VA tends to be the best choice for TVs, where a deep black level is important for enjoying movies.
As for TN, it isn’t all bad news – it has a couple of key advantages. The first is that it’s easier to produce so can be used to make cheaper monitors.
If you’re after a monitor that offers great image quality for day-to-day work and image editing, but aren’t particularly bothered about super-competitive gaming, then go for an IPS screen. They deliver the best all-round experience for work and play, and you can still get gaming IPS monitors that refresh at over 100Hz, making them nearly as good as the best TN gaming screens.
However, if gaming is your be-all and end-all then TN is the way to go. Not only are they the most responsive – with the latest displays having refresh rates of 240Hz – but they also tend to be relatively affordable.
In the case of LCDs, a grid of pixels made from liquid crystal is sandwiched between two polarising filters and placed in front of a backlight. As light passes through this assembly, it’s either blocked by the second filter or allowed to pass, depending on the orientation of the molecules in the liquid crystal. Vary the voltage and it varies the orientation of the molecules.
This basic principle is what controls the pixels of any LCD panel. Split each pixel into three and add colour filters for red, green and blue and you have yourself a colour LCD screen.
These fundamentals apply to all the different types of LCD available to buy. However, in order to improve certain characteristics of the displays, different types of LCD have been developed that tweak the way in which the liquid crystal, polarising filters and the electrodes are arranged and controlled.
The original and most basic version of a modern LCD is TN, or twisted nematic. This has the polarisers arranged at ninety degrees to one another, so that – normally – no light passes through them. However, the resting state of the crystal has the molecules arranged in a helix, which twists the polarisation of the light as it passes through, in turn allowing it to pass through the second filter.
When a voltage is applied to the liquid crystal the molecules point directly towards the viewer, so no longer twisting the light, resulting in it being blocked by the second polarising filter. TN works well enough, but famously suffers from poor viewing angles (see above), which is why alternative models were developed.
The most famous of these is IPS, or in-plane switching. Here the polarising filters are in the same orientation so that light is blocked when the crystal is in its resting twisted state, rather than allowed to pass through as it would in TN. Then, when activated, the crystals line up in the same direction as the polarising filters and parallel to their surface: for instance, when switched they’re in-plane.
There are several variations on IPS, such as S-IPS and H-IPS, that use slightly different pixel structures and layouts, and have optimisations for faster response times – most displays that are referred to as IPS are in fact S-IPS panels – but the fundamentals are the same.
Samsung has also developed PLS as an alternative to IPS. It’s basically a reworking of the technology that allows Samsung to manufacture the panels without infringing on existing patents.
The other most common variant is Vertical Alignment (VA). Here the crystals are arranged perpendicular to the polarisers, which are again orientated at right-angles as they are with TN. As such, in its resting state a VA panel blocks light as the light isn’t being twisted. When a voltage is applied the crystals tip to a more horizontal position and twist, allowing light to pass through.

When choosing a new computer monitor, the type of panel used by the display is a key piece of information that reveals a lot about how the monitor will behave and perform. By far the most common types of display panels are TN, IPS and VA.
Monitor LCD panels are made up of many layers, including a backlight, polarizing filters and the liquid crystal layer. It"s this liquid crystal layer that determines the intensity of light let through from the backlight, and in what colors, whether red, green or blue. To control this intensity, a voltage is applied to the liquid crystals, which physically moves the crystals from one position to another. How these crystals are arranged and how they move when voltage is applied, is the fundamental difference between TN, VA and IPS.
Our original explainer about display technology and the difference between TN vs. VA vs. IPS was published almost three years ago, and while most of that information remains accurate to this day, we"ve seen the introduction of much faster IPS displays as well as a revolutionary updates to VA panels, particularly from Samsung Odyssey gaming monitors. We"ve also since tested over 100 monitors, so we have a lot more insights to share about performance.
TN is the oldest of the LCD technologies and it stands for twisted nematic. This refers to the twisted nematic effect, which is an effect that allows liquid crystal molecules to be controlled with voltage. While the actual workings of a TN-effect LCD are a little more complicated, essentially the TN-effect is used to change the alignment of liquid crystals when a voltage is applied. When there is no voltage, so the crystal is "off," the liquid crystal molecules are twisted 90 degrees and in combination with polarization layers, allow light to pass through. Then when a voltage is applied, these crystals are essentially untwisted, blocking light.
IPS stands for in-plane switching and, like all LCDs, it too uses voltage to control the alignment of liquid crystals. However unlike with TN, IPS LCDs use a different crystal orientation, one where the crystals are parallel to the glass substrates, hence the term "in plane". Rather than "twisting" the crystals to modify the amount of light let through, IPS crystals are essentially rotated, which has a range of benefits.
There are various subvariants to these technologies which can tweak things further, and you"ll also see different brand names depending on the panel manufacturer. For example, AU Optronics use "AHVA" to refer to an IPS-type panel, not a VA panel. Samsung use PLS, while brands like LG simply use "IPS". Then on the VA side we have AU Optronics "AMVA" and Samsung"s "SVA" among others.
So in summary, TN panels twist, IPS panels use a parallel alignment and rotate, while VA panels use a vertical alignment and tilt. Now let"s get into some of the performance characteristics and explore how each of the technologies differ and in general, which technology is better in any given category.
The most immediately obvious difference when viewing a TN, IPS or VA panel for the first time is in viewing angles. This is one area that hasn"t significantly changed since the introduction of these technologies.
TN panels have the weakest viewing angles, with significant shift to color and contrast in both the horizontal and especially vertical directions. Typically viewing angles are rated as 170/160 but realistically you"ll get pretty bad shifts when viewing anywhere except for dead center. Higher-end TNs tend to be somewhat better but overall this is a big weakness for TNs and can impact the experience for productivity where any shifts to color impact accuracy for things like photo editing.
VA and IPS panels are significantly better for viewing angles, with IPS panels generally giving the best overall experience. Here you"ll commonly see 178/178 ratings for viewing angles, and while there can still be some shift to colors and brightness viewing at off-center angles, this will be far less noticeable than on a TN panel. Of all the IPS panels we"ve reviewed over the years, I"d describe the majority of them as having excellent viewing angles, a non-issue for modern IPS displays.
Because the liquid crystal layer is separate to the backlight layer, there is no technical reason why TN, IPS or VA monitors should differ in terms of brightness. Across the 100 displays we"ve tested using our latest test suite, the average SDR brightness for IPS panels was 385 nits, versus 367 nits for TN and 346 nits for VA - so really there"s not much of a difference.
Contrast ratio, on the other hand, is where another major difference occurs. TN panels have the worst contrast ratios, with the twisting technique not particularly great at producing deep blacks. In the best cases you"ll see contrast ratios around 1000:1, but typically after calibration these numbers are lower, in the 700:1 to 900:1 range. Of the monitors we"ve tested, the average TN has a contrast ratio of 872:1, which is poor so if you want rich, beautiful blacks - well maybe just buy an OLED but if you"re buying LCD, don"t get a TN.
IPS is the next step up, though generally IPS contrast ratios aren"t that different from TN. In the worst cases - in particular LG"s current line-up of Nano IPS panels - you won"t see contrast performance any different from a typical TN, with a ratio below 1000:1. However outside of those worst cases, it"s much more common to see contrast at or above 1000:1, with some best case examples pushing up to 1500:1 which is about the ceiling I"ve seen for IPS. Of the IPS panels we"ve tested, an average contrast ratio of 1037:1 was recorded, 19% higher than the average contrast of a TN.
If you really want an LCD to produce deep blacks though, you"ll have to go with a VA panel. The design of these panels is much more conducive to great contrast ratios, which typically start at 2000:1, higher than even the best IPS alternatives.
We"ve measured ratios up to 5000:1 for VAs, and some TVs can push this even higher. The range of typical contrast ratios is also quite a bit larger than with the other two technologies, but when manufacturers list a 3000:1 ratio for their VA monitor they"re usually correct - on average we measured a 2898:1 contrast ratio for VAs. With that in mind you can see VAs are usually 2.5 to 3 times better at producing blacks than IPS or TN, great for night scenes.
We often get asked whether these differences in contrast ratios actually matter. Almost all monitors use some sort of matte anti-glare coating, which can reduce the effective contrast ratio in brighter viewing environments. So if you"re using your monitor during the day, or under artificial lights, the difference between TNs, IPSs and VAs in contrast ratio is going to be less noticeable. But if you typically use your monitor in a dimmer environment, like gaming with the lights off or having a cheeky late night incognito browser session, you"ll much more easily spot the massive superiority VAs have in this area.
It"s also worth mentioning that while IPS panels tend to be a middle ground for contrast they do suffer from a phenomenon called "IPS glow," which is an apparent white glow when viewing dark imagery at an angle. The best panels exhibit minimal glow but it"s still an issue across all displays of this type, and can vary between individual units.
Before when discussing TN vs. VA vs. IPS, we spent some time talking about the differences between TNs, VAs and IPS in terms of bit depth -- or the difference between 6-bit, 8-bit and 10-bit panels. But we feel this is less relevant these days when the vast majority of displays are native 8-bit panels, with the exception of a few low-end panels that are 6-bit, and a few professional grade high-end panels that are 10-bit.
It remains the case that most displays advertised as "10-bit" or having "1 billion colors" are not true 10-bit panels, instead achieving this through FRC or dithering, and the type of LCD panel technology makes little difference.
There also isn"t a significant difference these days between LCD types when it comes to coverage of "standard" color spaces like sRGB or Rec. 709, which is used by default in Windows and is widely used for video content.
Even TN panels, which historically have had the "worst" color quality, these days will cover over 95% of the sRGB color space at a minimum for any monitor worth buying. The exceptions to this are entry-level junk some OEMs like to punish their low-end laptop buyers with; it"s rare for a desktop monitor to go below 90% sRGB coverage and certainly you shouldn"t buy it if it does.
As for native true 10-bit, typically you"ll need to look for an IPS panel, which make up the majority of native 10-bit panels. Some VA panels can do it, but they are rare. Most displays you purchase that claim to be 10-bit, are actually 8-bit+FRC, with only high-end professional-grade monitors offering a native 10-bit experience.
The main differences between TN, IPS and VA for color quality these days comes in coverage of wider gamut, such as DCI-P3, Adobe RGB or Rec. 2020. DCI-P3 and the larger Rec. 2020 are important for HDR videos and gaming, while Adobe RGB is common for work with wide gamut images.
As far as gaming monitors are concerned, which is the majority of monitors we test, it"s uncommon for TN panels to exceed the sRGB color space and produce a wide color gamut. We"ve seen it on occasion, with DCI-P3 coverage topping out around 92% in the best cases, but the majority of TN displays are standard gamut which is fine for SDR content.
The next best panel type for color gamut is VA. Some entry-level VAs will start at only sRGB coverage, but today"s wide gamut VA monitors typically cover between 85 and 90% DCI-P3, or up to around 66% of Rec. 2020. They don"t generally have adequate Adobe RGB coverage (below 85%), making them most suited to a basic wide gamut experience for videos or games. We"ve also yet to test a VA monitor with a really wide color gamut, like 98% DCI-P3, despite the highest end models of today using Quantum Dot enhancement films. Still, VA is decently mid-range for gamut coverage.
If you want the widest color gamut, you"ll need to get an IPS monitor. While basic IPS panels will be limited to sRGB only, the best wide gamut IPS displays offered these days can achieve much higher gamuts than TN or IPS.
We"ve measured up to 97% DCI-P3 and over 99% Adobe RGB in the same panel - usually a high-end model from AU Optronics - which leads to excellent Rec. 2020 coverage above 80%. This tends to make IPS the most, or at times only suitable technology for color critical wide gamut work like video or photo editing, and it"s the tech I"d choose for that task.
Time to talk about speed. Whereas before there was a pretty clear cut distinction between the technologies: TN was the fastest, IPS sat in the middle, and VA was the slowest. In 2021, that is no longer the case, and there"s a lot less separating each technology.
Historically, the highest refresh rate displays on the market were almost all TN models, but that"s not true anymore. Currently there are TN, IPS and VA monitors capable of 240Hz speeds, or sometimes in excess of 240Hz, including at resolutions like 1440p.
The highest refresh rate displays on the market today are capable of 1080p 360Hz speeds, and use an IPS panel from AU Optronics, not a TN. There is lower demand for TN panels than other panel types these days, so a lot of development effort on high refresh models has gone into IPS instead. This makes IPS the highest refresh technology for now, with all three technologies being available at 1440p 240Hz.
Response times have also improved substantially for IPS and VA monitors, especially for high-end panels. There is no longer a clear distinction between TN and the rest of today"s contenders, thanks to big speed gains headed by LG"s Nano IPS and Samsung"s new-gen VA.
The fastest TN panels that we"ve measured using our current, strict test methodology are able to hit the 4ms mark on average with a cumulative deviation of around 400. Cumulative deviation tells us how close a monitor"s response times get to the ideal instant response, and also show the balance between response times and overshoot. The HP Omen X 27 is definitely a fast monitor with its 1440p 240Hz spec. However, the Samsung Odyssey G7 and G9 are actually slightly faster, with response times between 3.4 and 4.0 ms and cumulative deviation below 400.
This puts the best VA monitors of today slightly ahead of the best TN monitors that we"ve tested, which we definitely couldn"t have said a few years ago. With these new panels, Samsung have also fixed the unsightly dark level smearing issue that plagued last-generation VA panels, giving the latest VA panels an overall experience similar to the best LCDs have to offer.
Meanwhile over at the IPS camp, the best IPS panels are slightly slower than VA and TN, but still highly competitive with the best of today. The fastest we"ve seen is a response time average of 4.5ms, with cumulative deviation around 460. That"s less than 20% off the best from other technologies, giving us a pretty small difference in 2021 between the three LCD panel types in a best vs best comparison.
With that said, this discussion of response times only applies to high end monitors. Currently in the mid-range and entry-level markets, the performance differences between TN, IPS and VA are more traditional. TN monitors can still be quite fast, with performance in the 4ms range even with basic 1080p 144Hz panels. Basically if you buy a TN in any market segment, you know it will be fast.
The next step down is IPS in lower price segments, with performance varying a bit depending on the exact model. The reason for this is that mid-range and entry-level IPS monitors tend to use more last-generation panels, which aren"t as fast as the best of today. Still, performance between 6 and 9ms on average is pretty common, and cumulative deviation is still quite competitive, especially in the value-oriented IPS market. Not as fast as TN, but still generally good for motion clarity.
Budget-oriented VA panels are, unfortunately, nowhere near as fast as the best panels of today used in Samsung"s Odyssey G7 and G9 series. It"s much more common to get a 9ms to 13ms average response time here, which puts the best budget VA panels behind an average budget IPS in performance. You"ll also get dark level smearing, which is seen as a dark trail following moving objects, which you don"t get with the other two LCD technologies.
Backlight strobing or black frame insertion is also a popular feature these days for some, particularly those after a high performance gaming monitor for esports. Generally speaking, the performance of backlight strobing is dictated by response time performance, so you can get good results with all three monitor types depending on the implementation, especially with high-end panels.
However these days the most focus tends to go into TN-based esports-oriented monitors when it comes to backlight strobing, so monitors like the BenQ XL2546K can be highly attractive offerings and preferred over the best IPS or VA monitors in this feature. We"ve also seen really good implementations with IPS and VA monitors, but TN is known to be the best.
Summarizing each of the three main LCD technologies is much harder today than in previous years, as there"s been a lot of focus on improving IPS and VA panels. This has led to much better gaming monitors for all, and many more displays to analyze and keep us busy which is always a good thing.
If we had to summarize the LCD ecosystem today... TN panels are a dying breed and their main strengths have been countered in recent years. TN panels are still very fast and great for competitive gaming, but aren"t as much of an outright speed leader anymore, especially at the high end. The main advantage to buying a TN is their affordability and consistency of speed even with entry-level panels, but this comes with weaknesses like viewing angles, contrast ratio and gamut coverage, which makes them unsuitable for a lot of stuff and probably not what you"d want to choose these days.
VA panels are a real mixed bag. At the high end, VAs are very competitive with excellent motion performance, no dark level smearing, decent contrast ratios and good colors. They have to some degree replaced IPS as the middle-ground technology that offers a bit of everything. However in the lower-end of the market, VAs retain the great contrast ratios they are known for, but suffer in motion performance due to the use of last-generation panels and end up quite slow. That"s offset by affordable prices which makes them a decent budget buy in some monitors.
IPS panels have received the most attention and continue to improve each year. IPS monitors are typically the most balanced choice, with strengths in many areas including motion performance, gamut coverage and viewing angles. These strengths tend to apply consistently in all market segments, whether high-end or entry-level, and that can make IPS a great bang for buck option.
Due to the prevalence of flat panels with great uniformity and very wide gamuts, IPS is also the most suitable technology for gaming and content creation on the same display, though contrast ratios are still well behind what VA panels can achieve.
But really there"s no right answer to which monitor technology is best. You might want excellent black levels and great speed, in which case a high-end VA is best for you. Or you might want Adobe RGB coverage, in which case you"ll need to go IPS. There"s no overall winner in the LCD space right now, it"s all about which individual qualities matter most to you.

Nowadays, in the LCD panel market, there are many style brands, the price is uneven, and the LCD panel is different. Many users will feel confused when purchasing the. Some users will compare the LCD panel parameter configuration and price as a reference, while many users only pay attention to the appearance, and ignore the parameters. In fact, this is not right, LCD There is also a lot of attention inside the LCD display panel. Below we will talk about the choice of the LCD panel.
The type of LCD panel is related to the important factors such as response time, color, viewing angle and contrast of the liquid crystal display.The LCD panel also occupies about 70% of the cost of an LCD display.The other is the drive circuit and appearance cost. Therefore, the quality of the LCD display panel plays a decisive role. In terms of the different levels of positioning of the LCD display, the LCD panels also have different types of divisions. Commonly used are TN, IPS, PLS screens, and VA.
TN panel, full name Twisted Nematic panel. Due to its low production cost, TN is the most widely used entry-level LCD panel. The TN panel is characterized by a fast deflection of the liquid crystal molecules and therefore an advantage in response time. However, it is worse in terms of color performance. The TN panel is a soft screen, and a similar water ripple appears when you gently stroke it by hand. Due to the small viewing angle, such panel displays are gradually withdrawing from the mainstream market.
The advantage of the TN panel is that the output gray level is small, the liquid crystal molecules have a fast deflection speed, and the response time is easy to be improved. The advantage of the TN LCD Panel for the game player is that theresponse speed is fast, the radiation level is very low, and more importantly, the eyes are not prone to fatigue. So suitable for gamers.
The disadvantage of the TN panel is that as a native 6Bit panel, thecan only display 64 colors of red/green/blue, the maximum actual color is only 262.144, and the wide viewing angle LCD panel has the original 8-bit color, so the transition is better. In addition, the TN panel is more difficult to improve the contrast, so the TN color is relatively pale, not bright enough, and the viewing angle is small. If the center is off, there will be a significant color shift and brightness difference.
It is recommended that in addition to long-game players, do not choose the TN screen, after all, the color and viewing angle is much worse, not suitable for work or watching movies and other activities.
IPS is the abbreviation of In-Plane Switching, which means flat conversion screen technology, commonly known as "Super TFT". It is widely used in display panels such as liquid crystal displays and mobile phone screens. In general, the IPS screen is a screen that uses IPS technology. Compared with the normal display screen, it has a clearer and more detailed dynamic display effect, and the visual effect is more outstanding. Therefore, when we select the LCD display or the smartphone screen, The IPSpanel will perform even better.
Large viewing angle:The angle of view of the IPS panel can reach 178 °.This means that the effect of viewing the picture from the front or the side of the LCD panel is the same.
Excellent dynamic image quality:IPS panel can display dynamic high-definition images, especially suitable for moving image reproduction, no residual image, and smearing, it is good to watch digital high-definition video and fast moving pictures, such as games, competition game box action movies.
Energy saving and environmental protection:IPS panel technology is more energy efficient and environmentally friendly. Moreover, since the liquid crystal molecules are arranged more reasonably, the thickness of the liquid crystal layer is reduced, thereby changing the light transmittance of the LCD panel, enhancing the display effect, and also making thethinner and more power saving.
Accurate color:IPS panel technology is favored by professionals to meet the more demanding requirements of color in the design, printing, aerospace and other industries.

Panel type names are based on the molecule arrangement on a liquid crystal display - LCD monitor - and the changes that occur upon voltage application. LCD monitors - see also LED vs LCD review - adjust the molecule positioning to function, though the way the changes occur immensely impacts your response time and image quality.
While it is the oldest panel technology, a TN panel still has some advantages over the newer VA and IPS panel technologies (see QLED and IPS). For one, they are the cheapest and suitable if you want budget-friendly options . If the extent of color reproduction or better viewing angles is not essential, a TN screen might suit you.
Moreover, TN panels have the least input lag of about one millisecond. A TN computer can operate at fast refresh rates reaching 240 Hz (see 1440p - 240Hz monitors review). For this reason, they are ideal for competitive players seeking gaming monitors (check out the best monitors for Xbox One X and Xbox Series X) that enable them to take advantage of each second. The Benefits of a good monitor for gaming are shown also in our review of monitors for League of Legends.
Nevertheless, TN display technology has notable disadvantages starting with the small viewing angles on the perpendicular axis. The changing of your TN computer"s colors is common when seated at extreme angles.
TN screens also have poor color reproduction. Most TN displays cannot function at 24-bit true color, so they depend on interpolation for accurate shade simulation. This performance can lead to color banding and lower contrast ratios than VA and IPS panel technologies.
TN panels also have a relatively lower color gamut. Only high-end TN monitors display wide color ranges. Many lack a wide-gamut and therefore are unideal for color grading, web design, photo and video editing, or other usages demanding color accuracy.
With their much wider viewing angles compared to TN screens, IPS panels allow you to sit at extreme angles while getting accurate color displays. Those characteristics are also the reason why IPS displays are good for touchscreens in tablets and portable monitors suh as this ZenScreen Touch monitor from Asus or this from Elecrow, an open hardware facilitation company based in China. Unlike a TN screen, you"ll hardly notice a color shift when looking at the screen from an unideal perspective.
IPS panels also have excellent performance in black reproduction, vital in eliminating the washed-out displays typical on TN panels. Regardless, IPS monitors don"t have as high contrast ratios as VA panels.
While TN panels dominate in terms of the refresh rate, IPS panels are now available that support refresh rates even over 240 Hz. For instance, the ASUS TUF VG259QM 24.5-Inch has a 280 Hz refresh rate and features an IPS monitor (see also this 23.8-inch monitor from HP).
TN displays previously had lower lagging than any other panel type, but IPS displays are now at per. LG launched their Nano IPS UltraGear screens boasting of the fastest response times on IPS at one millisecond. Moreover, Samsung"s quantum dot technologies, which will be covered in another post, are more energy-efficient and offer enhanced color accuracy over IPS, as well.
Despite measuring up, you"ll still spend more to get an IPS screen with a one millisecond response time than a similar-rated TN monitor. If you want to benefit from IPS technology at a budget cost, expect an LCD panel at approximately four milliseconds. Dell S2318HN here has gone a step further though, combining IPS and LED - see also "What is OLED?" - technology for some great results.
Another notable demerit dominant in IPS panels is the IPS glow. If this phenomenon occurs, your screen"s backlight shines and blurs your view when sitting at extreme viewing angles. While not the biggest issue, it is something to consider if you like sitting on the side. On the other hand, these types of monitors are thin and lightweight (see "Auzai"s portable monitor", or this Desklab monitor), as well as energy-efficient. Speaking of portability, ASUS mb168b monitor and AOC e1659fwu are also easy to carry and offer good quality at an affordable price.
VA panels form a middle ground between IPS and TN monitors. They have the highest contrast ratios, making them a go-to option for TV manufacturers. While an IPS screen can have 1000:1, comparable VA alternatives may reach up to 3000:1 or 6000:1 contrast ratios.
A VA monitor won"t offer you as good of a performance as an IPS screen in viewing angles (see Lenovo Thinkvision m14). Depending on your sitting arrangement, you may experience some brightness, though not as glaring as the IPS glow.
VA panels feature slower response times than TN and IPS monitors at their best performance. While some VA monitors refresh at up to 240 Hz, they tend to have latency that can cause motion blur and ghosting.
Compared to TN panels, VA screens provide better color reproduction, often supporting full sRGB spectrum even on budget options (see the best monitors under $200 review).
Because of their attributes, VA panels are suitable for general use. However, these panels tend to perform lower in most specs apart from the contrast ratio. VA monitors are pretty excellent in single-player action, flight simulations, or casual gaming.
Media professionals prefer IPS panels to VA panels, given their wider color gamut, though professionals like music producers require different features in their monitors.

When it comes todisplay technologies such asprojectorsand panels, factors such as resolution and refresh rate are often discussed. But the underlying technology is equally, if not more, important. There are tons of different types of screens, from OLED and LED to TN, VA, and IPS. Learn about the various monitor and television types, from operation to pros and cons!
The most common form of monitor or TV on the market is LCD or Liquid Crystal Display. As the name suggests, LCDs use liquid crystals that alter the light to generate a specific colour. So some form of backlighting is necessary. Often, it’s LED lighting. But there are multiple forms of backlighting.
LCDs have utilized CCFLs or cold cathode fluorescent lamps. An LCD panel lit with CCFL backlighting benefits from extremely uniform illumination for a pretty even level of brightness across the entire screen. However, this comes at the expense of picture quality. Unlike an LED TV, cold cathode fluorescent lamp LCD monitors lack dimming capabilities. Since the brightness level is even throughout the entire array, a darker portion of scenes might look overly lit or washed out. While that might not be as obvious in a room filled with ambient light, under ideal movie-watching conditions, or in a dark room, it’s noticeable. LED TVs have mostly replaced CCFL.
An LCD panel is transmissive rather than emissive. Composition depends on the specific form of LCD being used, but generally, pixels are made up of subpixel layers that comprise the RGB (red-green-blue) colour spectrum and control the light that passes through. A backlight is needed, and it’s usually LED for modern monitors.
Please note that some of the mentioned types may be considered a sub-category of LCD TVs; therefore, some of the names may vary depending on the manufacturer and the market.
1)Film layer that polarizes light entering2)glass substrate that dictates the dark shapes when the LCD screen is on3)Liquid crystal layer4)glass substrate that lines up with the horizontal filter5)Horizontal film filter letting light through or blocking it6)Reflective surface transmitting an image to the viewer
While many newer TVs and monitors are marketed as LED TVs, it’s sort of the same as an LCD TV. Whereas LCD refers to a display type, LED points to the backlighting in liquid crystal display instead. As such, LED TV is a subset of LCD. Rather than CCFLs, LEDs are light-emitting diodes or semiconductor light sources which generate light when a current passes through.
LED TVs boast several different benefits. Physically, LED television tends to be slimmer than CCFL-based LCD panels, and viewing angles are generally better than on non-LED LCD monitors. So if you’re at an angle, the picture remains relatively clear nonetheless. LEDs are alsoextremely long-lasting as well as more energy-efficient. As such, you can expect a lengthy lifespan and low power draw. Chances are you’ll upgrade to a new telly, or an internal part will go out far before any LEDs cease functioning.
Ultimately, the choice between LED vs VA or any other display technology will depend on your specific needs and preferences, including things like size, resolution, brightness, and colour accuracy.
Please note that some of the mentioned types may be considered a sub-category of LED TVs; therefore, some of the names may vary depending on the manufacturer and the market.
Further segmenting LED TVs down, you"ll find TN panels. A TN or twisted nematic display is a type of LED TV that offers a low-cost solution with a low response time and low input lag.
These displays are known for their high refresh rates, ranging from 100Hz to 144Hz or higher. As a result, many monitors marketed towards gamers feature TN technology. The fast response time and low input lag make them ideal for fast-paced action and gaming. However, TN panels have some limitations.
Overall, while TN panels are an affordable and fast option, they may not be the best choice for those looking for accurate colour reproduction and wide viewing angles.
Like TN, IPS or In-plane Switching displays are a subset of LED panels. IPS monitors tend to boast accurate colour reproduction and great viewing angles. Price is higher than on TN monitors, but in-plane switching TVs generally feature a better picture when compared with twisted nematic sets. Latency and response time can be higher on IPS monitors meaning not all are ideal for gaming.
An IPS display aligns liquid crystals in parallel for lush colours. Polarizing filters have transmission axes aligned in the same direction. Because the electrode alignment differs from TN panels, black levels, viewing angles, and colour accuracy is much better. TN liquid crystals are perpendicular.
A VA or vertical alignment monitor is a type of LED monitor that features excellent contrast ratios, colour reproduction, and viewing angles. This is achieved by using crystals that are perpendicular to the polarizers at right angles, similar to the technology used in TN monitors. VA monitors are known for their deep blacks and vibrant colours, making them popular for media consumption and gaming.
They also have better viewing angles than TN monitors, meaning that the picture quality remains consistent when viewed from different angles. However, the response time of a VA monitor is not as fast as that of a TN monitor, which can be a concern for those looking to use the monitor for fast-paced action or gaming.
The pricing of VA monitors varies, but they are typically more expensive than TN monitors and less costly than IPS or OLED monitors. Overall, VA monitors are an excellent option for those looking for a balance between good picture quality and affordability.
A quantum dot LED TV or QLED is yet another form of LED television. But it’s drastically different from other LED variants. Whereas most LED panels use a white backlight, quantum dot televisions opt for blue lights. In front of these blue LEDs sits a thin layer of quantum dots. These quantum dots in a screen glow at specific wavelengths of colour, either red, green, or blue, therefore comprising the entire RGB (red-green-blue) colour spectrum required to create a colour TV image.
Quantum Dot TV (QD-TV): A type of television that uses quantum dots, also known as semiconductor nanocrystals, to produce more accurate and vibrant colours.
Please note that some of the mentioned types may be considered a sub-category of Quantum Dot TVs; therefore, some of the names may vary depending on the manufacturer and the market. Also, it"s worth mentioning that not all brands use the same technology. Some are using QD films or QD-LEDs, others are using QD-OLEDs, and the list could go on.
An OLED or organic light-emitting diode display isn’t another variation of LED. OLEDs use negatively and positively charged ions for illuminating individual pixels. By contrast, LCD/LED TVs use a backlight that can make an unwanted glow. In OLED display, there are several layers, including a substrate, an anode, a hole injection layer, a hole transport layer, an emissive layer, a blocking layer, an electron transport layer, and a cathode. The emissive layer, comprised of an electroluminescent layer of film, is nestled between an electron-injecting cathode and an electron removal layer, the anode. OLEDs benefit from darker blacks and eschew any unwanted screen glow. Because OLED panels are made up of millions of individual subpixels, the pixels themselves emit light, and it’s, therefore, an emissive display as opposed to a transmissive technology like LCD/LED panels where a backlight is required behind the pixels themselves.
The image quality is top-notch. OLED TVs feature superb local dimming capabilities. The contrast ratio is unrivalled, even by the best of QLEDs, since pixels not used may be turned off. There’s no light bleed, black levels are incredible, excellent screen uniformity, and viewing angles don’t degrade the picture. Unfortunately, this comes at a cost. OLEDs are pricey, and the image isn’t as bright overall when compared to LED panels. For viewing in a darkened room, that’s fine, but ambient lighting isn’t ideal for OLED use.
Please note that OLED technology can be applied to various displays and devices, and the list mentioned above may not be exhaustive. Also, some types may be considered a sub-category of OLED.
As you can see, a wide variety of displays are available on the market today, each with their unique advantages and disadvantages. While many monitors and TVs are referred to by various names, such as LED, IPS, VA, TN, or QLED, many are variations of LCD panels. The specific technology used in a display, such as the colour of backlighting and the alignment of pixels, plays a major role in determining the overall picture quality.
When choosing the right type of monitor or display for your needs, it"s important to consider all the options available and weigh the pros and cons of each one. This can include things like resolution, refresh rate, response time, colour accuracy, and more subjective factors like overall picture quality and viewing angles.
Ms.Josey
Ms.Josey