tft display arduino code quotation

1st Arduino project, beyond the very basic intros, and no coding experience before this endeavor, so I"m sure I"m just not searching the right things/way to figure this out.
The project - replacing gauges in my truck with Arduino+TFT display. As a starter, I"m working strictly on single fuel gauge functionality, and eventually including dual fuel gauges (2 separate fuel tanks in truck), voltage gauge, coolant temp gauge, and GPS driven speedometer. Yeah...I"m already realizing I"m in for a bit of a steep learning curve here, lol.
The setup - Genuine Arduino Mega 2560, Seeed Studio 2.8" touchscreen sheild V1.0, aftermarket universal style fuel sender. Sender is connected to Analog pin 9 through a voltage divider circuit running roughly 1.5VDC-4.95VDC, and I get appropriate numbers from the serial monitor when cycling the sender. I"m not currently utilizing the touch features of the screen, though I may in the future. RIght now it"s strictly a display device. I did find out how to modify the TFT.h file to get the display to function on the Mega board, and am writing static text to it currently.
The problem - how the heck do I get the value read from the Analog pin to display on the screen? I"ve spent the last couple of days searching the forums here and on Adafruit, as well as various other sites found on Google. I"ve spent hours looking at other"s code to try and figure this out, but not being a coder before this, I"m finding it difficult to determine which parts of the code are relevant to what I"m attempting to do, and I think I may be confusing myself/WAY overthinking it, lol. It seems like it should be a simple thing...
This is my current code. I started with the Draw Text example sketch, and modified it for my use. dTankPin is the variable I set for the driver"s side fuel tank, with dLevel being the variable set to store the reading I get from the sender. I set static text lines for Tank - D, Tank - P (driver and passenger side fuel tanks), Volts, and C/T (coolant temp), then MPH for the future GPS speedometer. The commented out lines in there are just static values I added to initially set font size to fit the screen, but that I want to replace with the dynamic values i get from reading the various sensors.
That part I"m good with, but I can"t figure out how to get a value read from the analog pins to display as numbers on the screen. I"m not looking to be spoon fed the answers, but if I could maybe get some guidance on what functions I"m missing, or what I should be searching for to figure this out?

Yes, Chinese Vendors tend to package hacked versions of old libraries. e.g. this seems to be based on UTFT v2.79 and UTouch has now been replaced by URTouch.

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
As the code is a bit longer and for better understanding I will post the source code of the program in sections with description for each section. And at the end of this article I will post the complete source code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.
In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work you can check my particular tutorial. Here you can download that file:

I installed the libray of MCUFRIEND_kbv library and Adafruit_GFX via the Library Manager,but the problem remains same ,even it is compile and uplode very well but still screen display the White screen…
I am trying to use TFT LCD Display ILI9486/ILI9488 480x320 with Arduino Due. The display is showing blank white screen. My test program compiles and uploads without any error. However, LCD display remains blank with white screen.
Hello everyone to my new tutorial in which we are going to program arduino for tft lcd shield of 3.5" with ILI9486 driver, 8 bit. I found it important to write this tutorial as if we see we find tutorial for 1.44, 1.8, 2.0, 2.4, 2.8 inch shields however there are no or less tutorials available for 3.5" shield as its completely different from other smaller tft lcd shields -adafruit tft lcd library doesn"t even support ILI9486 driver in 3.5" tft lcd, it supports drivers of tft shields lesser then 3.5"
Go through the above link to know better, lets start with our tutorial however if we can"t use Adafruit_TFTLCD library which library will we use ?, there"s a simple answer to this that"s MCUFRIEND_kbv library which helps to use 3.5" tft lcd shield, if you see this library makes it much more easier to program arduino for tft lcd shield than adafruit as we have to simply create a tft object in MCUFRIEND_kbv library and then using that we can control the tft lcd shield however in Adafruit_TFTLCD library we will have to create the object and also define connections which makes it a very long task.
Once added, create the tft object using library name and a name for object, you can also define some color codes for text which we are going to type, using the define function and giving color code. This all is to be done before setup.#include#include#define BLACK 0x0000#define RED 0xF800#define WHITE 0xFFFFMCUFRIEND_kbv tft;
Its time to now start our tft lcd screen and change the background, this is to be done by using some simple functions by obtaining the tft ID and changing the background bytft.fillScreen("color_name");void}
Now we will be programming in loop for printing text on TFT LCD shield, for that we will be using a number of functions such as -tft.setCursor("x","y");x means the position from the x axis on screen and y means position from the y axis on screen of tft lcd shield.tft.setTextSize("number");number here refers to text size which take parameter as number you can give any number from 1 according to your requirements.tft.setTextColor("color");color here means to give the color name we had defined before setup, this makes the text color as whatever you give.tft.print("value");value is nothing but what you want to print, whatever you give as value must be in double quotes.void loop() {// put your main code here, to run repeatedly:tft.setCursor(0,0);tft.setTextSize(3);tft.setTextColor(WHITE);tft.print("my first project with tft -");tft.setCursor(0,70);tft.setTextSize(2);tft.setTextColor(RED);tft.print("welcome to the world of arduino and display , myself I love arduino and game programming very much. This is why I have my own youtube channel in which I share my arduino projects and games made by me , isn"t it amazing !");}
Graphics which we see in our phone is combination of square, rectangle, circle, triangle, lines. This is why here we will learning how to draw the following shapes.tft.drawRect(x,y,width,height,color);x means the position from the x axis of the screen, y means the position from y axis of the screen, width refers to set the width of rectangle, height refers to set the height of the rectangle and color means the color of rectangle you want it to be. You can use this same function by simply keeping the height and width same.tft.drawCircle(x,y,radius,color);x means the position from the x axis of the screen, y means the position from y axis of the screen, radius is a para to set the radius of circle and color means the color of circle you want it to be.tft.drawTriangle(x1,y1,x2,y2,x3,y3,color);x1, y1, x2 etc. are to set the position of triangle"s three points from which lines are drawn.tft.drawLine(x1,y1,x2,y2,color);x1 and y1 are to set point 1 from which line is made to point 2 which is set by x2 and y2.
I have shown we can draw text and shapes by which we can make various graphics, you can also refer to code given by me, one is for text and other is for graphics display.
I recently purchased a touch screen module to go with my Arduino Mega 2560. The demo documentation was easy enough to follow, I uploaded a TFTpaint program demo, the GLUE demo, as well as a mock phone dialer program. My initial hopes were to utilize some drawing utilities in conjunction with the needed touch libraries in order to create a custom GUI for an automation project I am working on. Over the last couple of nights I have been exploring different display driver libraries for the Arduino and it would seem that GUIslice is exceptionally well-designed. However, there is no native support for my LCD. I am quite new to modifying source code and attempting to configure the library file correctly to match my screen has proven to be a challenge.
I will include the sample files for my LCD screen. This will provide information regarding library supports required to drive the display. Also, I will present all library files which I believe are necessary to drive the display, including the required raw GUIslice library files which must be configured accordingly to hardware of my LCD Screen. I will include a photo of the back of the module with the pins and descriptors as well. Lastly, I will provide the modified library files which I have edited to try and interface with the pins of my LCD screen and the GPIOs of my MEGA board.
These are all the modified files and needed libraries to run MY LCD. There is a sketch included that should have all config.h aspects modified as needed to drive my display:
After studying some of the test results of different models and settings provided via an Excel doc located at the bottom of this post, I looked at the source code for the libraries used in driving myLCD examples to find that Adafruit_TFTLCD.h is called to within the driver layer for Adafruit-GFX of GUIslice_drv_adagfx.cpp
I know that it can be driven using the Adafruit_TFTLCD.h library. and Adafruit_GFX.h library. --both of which are embedded in GUIslice-- srcTouchScreen.h is also called out in myLCD example code but I do not recall whether it is embedded in GUIslice through reference in GUIslice.h
Presently, I don"t have time to dig into this further. Working a lot and doing family. I would like to avoid purchasing a new display simply so that it is out-of-the-box compatible with GUIslice when I know that myLCD can be configured with the application. the GUIslice Builder cross-platform app looks incredible and I have already utilized it as a way to speed up the process of compiling code to my device. Adding support for this display could open the doors up for a lot of new development using GUIslice on other screens with the same hardware and pinout. My experience is currently limited and I would not be able to create a GUI so quickly were it not for the help of GUIslice. This platform is going to become my mainstay for navigating the user interface of my project. If nothing else, someone please help send me in the right direction. I have been through these files enough that my head is spinning and I"m at a loss for progress. SD access is not imperative, however, touch and graphic support are. Currently, my screen is white when the code compiles. I can only assume that something is not correct with the configuration files and I just feel as though I"ve been chasing my tail.
TFT LCDs are the most popular color displays – the displays in smartphones, tablets, and laptops are actually the TFT LCDs only. There are TFT LCD shields available for Arduino in a variety of sizes like 1.44″, 1.8″, 2.0″, 2.4″, and 2.8″. Arduino is quite a humble machine whenever it comes to process or control graphics. After all, it is a microcontroller platform, and graphical applications usually require much greater processing resources. Still, Arduino is capable enough to control small display units. TFT LCDs are colorful display screens that can host beautiful user interfaces.
Most of the smaller TFT LCD shields can be controlled using the Adafruit TFT LCD library. There is also a larger TFT LCD shield of 3.5 inches, with an ILI9486 8-bit driver.
The Adafruit library does not support the ILI9486 driver. Actually, the Adafruit library is written to control only TFT displays smaller than 3.5 inches. To control the 3.5 inch TFT LCD touch screen, we need another library. This is MCUFRIEND_kbv. The MCUFRIEND_kbv library is, in fact, even easier to use in comparison to the Adafruit TFT LCD library. This library only requires instantiating a TFT object and even does not require specifying pin connections.
TFT LCDs for ArduinoUser interfaces are an essential part of any embedded application. The user interface enables any interaction with the end-user and makes possible the ultimate use of the device. The user interfaces are hosted using a number of devices like seven-segments, character LCDs, graphical LCDs, and full-color TFT LCDs. Out of all these devices, only full-color TFT displays are capable of hosting sophisticated interfaces. A sophisticated user interface may have many data fields to display or may need to host menus and sub-menus or host interactive graphics. A TFT LCD is an active matrix LCD capable of hosting high-quality images.

Hi guys, welcome to today’s tutorial. Today, we will look on how to use the 1.8″ ST7735 colored TFT display with Arduino. The past few tutorials have been focused on how to use the Nokia 5110 LCD display extensively but there will be a time when we will need to use a colored display or something bigger with additional features, that’s where the 1.8″ ST7735 TFT display comes in.
The ST7735 TFT display is a 1.8″ display with a resolution of 128×160 pixels and can display a wide range of colors ( full 18-bit color, 262,144 shades!). The display uses the SPI protocol for communication and has its own pixel-addressable frame buffer which means it can be used with all kinds of microcontroller and you only need 4 i/o pins. To complement the display, it also comes with an SD card slot on which colored bitmaps can be loaded and easily displayed on the screen.
The schematics for this project is fairly easy as the only thing we will be connecting to the Arduino is the display. Connect the display to the Arduino as shown in the schematics below.
Due to variation in display pin out from different manufacturers and for clarity, the pin connection between the Arduino and the TFT display is mapped out below:
We will use two example sketches to demonstrate the use of the ST7735 TFT display. The first example is the lightweight TFT Display text example sketch from the Adafruit TFT examples. It can be accessed by going to examples -> TFT -> Arduino -> TFTDisplaytext. This example displays the analog value of pin A0 on the display. It is one of the easiest examples that can be used to demonstrate the ability of this display.
The second example is the graphics test example from the more capable and heavier Adafruit ST7735 Arduino library. I will explain this particular example as it features the use of the display for diverse purposes including the display of text and “animated” graphics. With the Adafruit ST7735 library installed, this example can be accessed by going to examples -> Adafruit ST7735 library -> graphics test.
The first thing, as usual, is to include the libraries to be used after which we declare the pins on the Arduino to which our LCD pins are connected to. We also make a slight change to the code setting reset pin as pin 8 and DC pin as pin 9 to match our schematics.
Next, we create an object of the library with the pins to which the LCD is connected on the Arduino as parameters. There are two options for this, feel free to choose the most preferred.
Next, we move to the void setup function where we initialize the screen and call different test functions to display certain texts or images. These functions can be edited to display what you want based on your project needs.
The complete code for this is available under the libraries example on the Arduino IDE. Don’t forget to change the DC and the RESET pin configuration in the code to match the schematics.
Uploading the code to the Arduino board brings a flash of different shapes and text with different colors on the display. I captured one and its shown in the image below.
That’s it for this tutorial guys, what interesting thing are you going to build with this display? Let’s get the conversation started. Feel free to reach me via the comment section if you have any questions as regards this project.

Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big 4"(3.97" diagonal) bright (6 white-LED backlight) and colorful (18-bit 262,000 different shades)! 480x800 pixels with individual pixel control. As a bonus, this display has a optional resistive touch panel with controller XPT2046 and capacitive touch panel with FT6336.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (Due/Mega 2560).
This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library at the bottom of this page that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x,y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!
If you"ve had a lot of Arduino DUEs go through your hands (or if you are just unlucky), chances are you’ve come across at least one that does not start-up properly.The symptom is simple: you power up the Arduino but it doesn’t appear to “boot”. Your code simply doesn"t start running.You might have noticed that resetting the board (by pressing the reset button) causes the board to start-up normally.The fix is simple,here is the solution.

Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big (5" diagonal) bright (12 white-LED backlight) and colorfu 480x272 pixels with individual pixel control. As a bonus, this display has a optional resistive touch panel attached on screen by default.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Due/Mega 2560).
This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library at the bottom of this page that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x,y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!
For 5 inch screen,the high current is needed.But the current of arduino uno or arduino mega board is low, an external 5V power supply is needed. Refer to the image shows the external power supply position on shield ER-AS-RA8875.
If you"ve had a lot of Arduino DUEs go through your hands (or if you are just unlucky), chances are you’ve come across at least one that does not start-up properly.The symptom is simple: you power up the Arduino but it doesn’t appear to “boot”. Your code simply doesn"t start running.You might have noticed that resetting the board (by pressing the reset button) causes the board to start-up normally.The fix is simple,here is the solution.

I am trying to get my LCD screen to display a couple of values, some of which will be calculated in the code, and others that will be read in from a variety of sensors. The issue that I am having is that with the following code (for testing out the screen) the first thing that is supposed to be printed is an x value, which only displays the first iteration of the loop, then disappears. Does anyone know why this might be happening, and how to fix it?

The screen is 1.77" diagonal, with 160 x 128 pixel resolution. The TFT library interfaces with the screen"s controller through SPI when using the TFT library. Refer to the screen"s data sheet for complete details.
The Arduino TFT library extends the Adafruit GFX, and Adafruit ST7735 libraries that it is based on. The GFX library is responsible for the drawing routines, while the ST7735 library is specific to the screen on the Arduino screen. The Arduino specific additions were designed to work as similarly to the Processing API as possible.
The TFT library relies on the SPI library, which must be included in any sketch that uses the scree. If you wish to use the SD card, you need to include the SD library as well.

This TFT display is big (2.8" diagonal) bright (4 white-LED backlight) and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. It has way more resolution than a black and white 128x64 display. As a bonus, this display has a resistive touchscreen attached to it already, so you can detect finger presses anywhere on the screen.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino UNO. Solder three jumpers and you can use it at full speed on a Leonardo or Mega as well.
This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. This shield needs fewer pins than our v1 shield, so you can connect more sensors, buttons and LEDs: 5 SPI pins for the display, another pin for the SPI touchscreen controller and another pin for uSD card if you want to read images off of it.
The display uses digital pins 13-9. Touchscreen controller requires digital pin 8. microSD pin requires digital #4. That means you can use digital pins 2, 3, 5, 6, 7 and analog 0-5. Pin 4 is available if not using the microSD

NHD-4.3CTP-SHIELD-L | Arduino Shield with TFT Display | FTDI FT801 Embedded Video Engine | On-board Audio Power Amplifier | 4.3" Standard LCD | Capacitive Touchscreen
Engineered in Elgin IL USA, we designed this Arduino shield with our 4.3" capacitive touch standard TFT display for effortless touch development. This shield is ready to mate with classic Arduino boards such as Uno, Mega and Leonardo by connecting directly to the back of the shield. This greatly reduces software and hardware development time and simplifies the design process. No extra controller boards or messy cables required, providing a much easier and simpler experience developing with a touchscreen TFT. This shield features a 480x272 resolution display, capacitive touchscreen, and FT801 embedded video engine by FTDI which may be used to develop and demonstrate the functionality of the FT801 IC and our 4.3" touch TFT displays. It also includes PWM to control the dimming of the backlight and generates audio output with an on-board power amplifier. A microSD card slot built-in allows additional storage space for more complex code. This will eliminate any memory constraints of the Arduino board.
Choose from a wide selection of interface options or talk to our experts to select the best one for your project. We can incorporate HDMI, USB, SPI, VGA and more into your display to achieve your design goals.
Equip your display with a custom cut cover glass to improve durability. Choose from a variety of cover glass thicknesses and get optical bonding to protect against moisture and debris.

When the system is pluged in to power, it will connect to the WiFi (the connection informations --- ssid and password ---, must be configured in code ), will display an inspirational quote for one hour and go to sleep for 24 hours. After the long sleep, it will connect again to the WiFi, display another quote and go to sleep. Again and again.
This seems to be all, but... IT IS NOT! The RTC from ESP8266, when this microcontroller is in DeepSleepMode, is not very precise ( in my tests it will fall behind with at least 1 hour in 23 hours of DeepSleep ). So to fix this issue, I made the ESP8266 to take the time from an NTP Server, after displaying the quote for an hour, and storing the hours and minutes in the RTC memory. When the 7 cycles of waking-up and going back to sleep, the ESP8266 take again the time from the NTP Server and compare the stored time with the one took seconds ago. If the hour stored is later than the current hour, the ESP8266 will go to DeepSleep for the remaining time between the two intervals of time ( the stored one and the current one ).Else, if the number of minutes stored are greater than the number of current minutes, the ESP8266 will go to LightSleep for the remaining number of minutes between the two intervals of time ( this time, the RTC is precise enough to wake up the ESP8266 at the exact time ).
Ms.Josey
Ms.Josey