lcd module technology comparison quotation

Find prices for solar panels and compare technical specifications of various brands and models of modules in our regularly updated solar panel comparison table. Compare panels to see which may be best suited to your home or business, or learn more about PV modules you’ve been quoted on by a solar power system installation company.

As you can imagine, creating a solar panel comparison table of this nature and extent was quite a daunting task given the number of brands and models now available, modules being discontinued, prices always changing and technical specification information sometimes difficult to track down.

lcd module technology comparison quotation

A Supplier Quotation is a formal price furnished by a supplier to provide the products required by a buyer at specified prices and within a specified period of time. The quotation process can be used for the purchase of services, supplies, materials, etc. There is an in-built algorithm in Sparrow ERP that automatically selects supplier based on price.Supplier Quotations comparison is important before confirming PO for the supplier. In Sparrow, we have provided a very intuitive interface to compare multiple PO for similar products from different suppliers.

Keeping Electronics Manufacturing Services (EMS) in mind we have designed purchasing functionalities to make the process as transparent as possible.For Electronics Manufacturing Services (EMS) companies we have a special module that automatically fetches prices from different suppliers website and presents them in a useful way to estimate BoM prices.

lcd module technology comparison quotation

Photovoltaic (PV) solar modules are designed to produce renewable and clean energy for approximately 25 years. The first substantial PV installations happened in the early 1990s and since early 2000s solar PV electricity distribution has grown extremely fast [1].

The cumulative worldwide PV generation capacity reached 302 GW in the end of 2016 [2] and the predominant technology (90% of the market) is crystalline silicon (c-Si) cells [3]. Also, during the last years there were several advances on renewable energy in general, including significant price decline and a constant increase in attention to environmental impacts from energy sources [4, 5]. Furthermore, the International Technology Roadmap for Photovoltaic (ITRPV) prediction for the installed PV capacity in 2050 is 4500 gigawatts [6].

As a result of the increase in the global market for PV energy, the volume of modules that reach the end of their life will grow at the same rate in the near future. At the end of 2016, the cumulative global PV waste reached 250,000 metric tons, while it is expected that by 2050 that figure will increase to 5.5–6 million tons [7].

Much PV waste currently ends up in landfill. Given heavy metals present in PV modules, e.g. lead and tin, this can result in significant environmental pollution issues. Furthermore, valuable metals like silver and copper are also present, which represents a value opportunity if they can be recovered. Hence, the landfill option cerates additional costs and it does not recover the intrinsic values of the materials present in the PV modules.

Hence, methods for recycling solar modules are being developed worldwide to reduce the environmental impact of end-of-life modules and to recover some of the value from old PV modules. However, current recycling methods are mostly based on downcycling processes, recovering only a portion of the materials and value, so there is plenty of room for progress in this area. Moreover, currently only Europe has a strong regulatory framework in place to support recycling, but other countries are starting to build specific frameworks related to PV waste. It’s clear that sustainable development of the PV industry should be supported by regulatory frameworks and institutions across the globe, which is not the case at the moment. There must be adequate management policies for photovoltaic modules when they reach their end-of-life (EoL) or when they are not able to produce electricity any longer.

As mentioned above, the European Union (EU) provides a legislative framework for extended producer responsibility of PV modules in European scale through the Waste Electrical and Electronic Equipment (WEEE) Directive 2012/19/EU [8]. The main objectives of this policy are to preserve, protect and improve the quality of the environment, to protect human health and to utilize natural resources prudently and rationally. Since February 2014, the collection, transport and recycling of PV modules that reached their EoL is regulated in every EU country [8].

On the other hand, countries with fast expanding PV markets such as China [9], Japan [10], India [11], Australia [12] and USA [13] still lack specific regulations for EoL PV modules. These countries treat PV waste under a general regulatory framework for hazardous and non-hazardous solid waste or WEEE. However, there are some exceptions.

In 2012 the Japanese government introduced a “feed-in tariff” [14] that guaranteed the rate for electricity generated from renewable energy and exported to the grid, which supported rapid growth of solar module installation in the country. Once all the installed capacity starts reaching EoL (within 20–30 years) they will create a significant waste problem for Japan. In late 2017, the Japan Photovoltaic Energy Association (JPEA) has published voluntary guidelines on how to properly dispose of EoL photovoltaic modules. Also, manufacturers, importers and distributors of photovoltaic modules have been invited to provide information on the chemical substances contained in the product and to inform the waste disposal companies. JPEA strongly recommend that industry follow the guidelines [15].

In USA, some states go beyond the Resource Conservation and Recovery Act which regulates hazardous and non-hazardous waste management [13]. California, for example, has additional threshold limits for hazardous materials classification based on the Senate Bill 489 that categorizes end-of-life PV modules as Universal Waste (facilitating easy transport). This bill is currently pending United States Environmental Protection Agency approval [16].

In Australia, governments have recognized the significance of guaranteeing that regulations are in place to deal with the PV waste issue. Ministers agreed that the state of Victoria would lead innovative programs that seek to reduce the environmental impacts caused throughout the lifecycle of photovoltaic systems. These efforts are part of an industry-led voluntary product management arrangement to address the potential emerging risks of PV systems and their waste. PV modules are listed under the National Product Administration Act to signal the intention to consider a scheme to deal with such waste [17].

The non-inclusion of PV residues in waste legislation in some countries is due to different reasons. Solar modules have a lifespan of up to 25–30 years [18] and so there has been limited interest in investigating the aspects of EoL so far. Moreover, the quantity of this type of waste is still considered insignificant compared to the quantity of other WEEE [19], which currently makes setting up specific recycling plants for solar modules uneconomical. In addition, the definition of mandatory requirements for EoL treatment could still be an obstacle to the effective acceptance of these recycling processes [20]. Because of that, there should be a continuous focus on scientific evidences on the potential impacts and benefits related to the treatment of photovoltaic residues.

Only about 10% of PV modules are recycled worldwide. The main reason for that is the lack of regulation. Actually, it has been shown that, for the current recycling technologies, silicon-based modules do not have enough valuable materials to be recovered and the cost of the recycling process is always higher than the landfill option (not considering the externalities), making recycling an economically unfavorable option [23]. However, the prediction for 2050 is that the recoverable value could cumulatively exceed 15 billion US dollars (equivalent to 2 billion modules, or 630 GW) [7]. In addition, the recycling of solar PV modules can ensure the sustainability of the long-term supply chain [24], thereby increasing the recovery of energy and embedded materials and, also, reducing CO2 emissions and energy payback time (EPBT) related to this industry.

For years, the PV industry and researchers have worked intensively in search of different types of efficient and cost-effective materials to manufacture solar PV modules and specific ways of keeping them adequately bonded to withstand several years of outdoor exposure. The modules are made to minimize the amount of moisture that can come in contact with the solar cells and their contacts while keeping manufacturing costs down. The current standard c-Si module is bonded using two layers of EVA to bond the layers together. Because of that, recycling solar modules is a relatively complex task, since these materials need to be separated. Once the materials/layers of a solar module can be separated, metals such as lead, copper, gallium, cadmium, aluminum and silicon can be recovered and reused in new products.

Originally created by PV CYCLE in 2007 and commercially available in Europe, the process of recycling mono or multicrystalline silicon modules begins with the separation of the aluminum frame and the junction boxes and then a mechanical process is used for the extraction of the remaining materials of the module (a process similar to recycling of glass or electronic waste). The problems with this process are that the value of the material recovered is low (as it is a downcycling process) and that the maximum amount of recovered materials is about 80%, which is not sufficient for future requirements, and the value of recovered materials is smaller than the original [25]. Thin film processes are under development or near implementation in Italy, Japan and South Korea but costs are not yet competitive. Even up to 90% recovery of materials is not sufficient when compared to production costs [26]. Lastly for recycling processes aiming to generate new materials, the aim is to keep the materials intact for reuse or direct recycling, recovering the frame, glass, tabbing and solar cells without breakages and in good condition. The recovery rates can achieve up to 95% and the materials recovered have higher commercial value. However, these processes are complex and are currently just at laboratory scale, being studied by a few research groups [27].

Even with the difficulty of recovering rare, toxic and valuable materials from solar modules, the recycling process has a remarkable environmental advantage [28]. Nevertheless, the need to recycle this type of waste is imminent. The better knowledge of these technologies and growth on the waste amounts that could generate profitable outcomes has supported the development of the first PV recycling plants. Hence, PV manufacturing companies (e.g. First Solar, Pilkington, Sharp Solar, and Siemens Solar) are investing in the research on solar modules at EoL [29].

The challenges to design the ideal PV recycling process are many. The focus should be on the avoidance of damage to the PV cells and module materials, economic feasibility, and high recovery rate of materials that have some monetary value or are scare or are hazardous, that can be reused in the supply chain. Finally, the next step for the industry and researchers is to create module designs that are “recycling-friendly” [29].

lcd module technology comparison quotation

A thin-film-transistor liquid-crystal display (TFT LCD) is a variant of a liquid-crystal display that uses thin-film-transistor technologyactive matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven (i.e. with segments directly connected to electronics outside the LCD) LCDs with a few segments.

In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968. In 1971, Lechner, F. J. Marlowe, E. O. Nester and J. Tults demonstrated a 2-by-18 matrix display driven by a hybrid circuit using the dynamic scattering mode of LCDs.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).active-matrix liquid-crystal display (AM LCD) using CdSe TFTs in 1974, and then Brody coined the term "active matrix" in 1975.high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.

The circuit layout process of a TFT-LCD is very similar to that of semiconductor products. However, rather than fabricating the transistors from silicon, that is formed into a crystalline silicon wafer, they are made from a thin film of amorphous silicon that is deposited on a glass panel. The silicon layer for TFT-LCDs is typically deposited using the PECVD process.

The twisted nematic display is one of the oldest and frequently cheapest kind of LCD display technologies available. TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Modern, high end consumer products have developed methods to overcome the technology"s shortcomings, such as RTC (Response Time Compensation / Overdrive) technologies. Modern TN displays can look significantly better than older TN displays from decades earlier, but overall TN has inferior viewing angles and poor color in comparison to other technology.

Most TN panels can represent colors using only six bits per RGB channel, or 18 bit in total, and are unable to display the 16.7 million color shades (24-bit truecolor) that are available using 24-bit color. Instead, these panels display interpolated 24-bit color using a dithering method that combines adjacent pixels to simulate the desired shade. They can also use a form of temporal dithering called Frame Rate Control (FRC), which cycles between different shades with each new frame to simulate an intermediate shade. Such 18 bit panels with dithering are sometimes advertised as having "16.2 million colors". These color simulation methods are noticeable to many people and highly bothersome to some.gamut (often referred to as a percentage of the NTSC 1953 color gamut) are also due to backlighting technology. It is not uncommon for older displays to range from 10% to 26% of the NTSC color gamut, whereas other kind of displays, utilizing more complicated CCFL or LED phosphor formulations or RGB LED backlights, may extend past 100% of the NTSC color gamut, a difference quite perceivable by the human eye.

The transmittance of a pixel of an LCD panel typically does not change linearly with the applied voltage,sRGB standard for computer monitors requires a specific nonlinear dependence of the amount of emitted light as a function of the RGB value.

Initial iterations of IPS technology were characterised by slow response time and a low contrast ratio but later revisions have made marked improvements to these shortcomings. Because of its wide viewing angle and accurate color reproduction (with almost no off-angle color shift), IPS is widely employed in high-end monitors aimed at professional graphic artists, although with the recent fall in price it has been seen in the mainstream market as well. IPS technology was sold to Panasonic by Hitachi.

IPS has since been superseded by S-IPS (Super-IPS, Hitachi Ltd. in 1998), which has all the benefits of IPS technology with the addition of improved pixel refresh timing.

Less expensive PVA panels often use dithering and FRC, whereas super-PVA (S-PVA) panels all use at least 8 bits per color component and do not use color simulation methods.BRAVIA LCD TVs offer 10-bit and xvYCC color support, for example, the Bravia X4500 series. S-PVA also offers fast response times using modern RTC technologies.

A technology developed by Samsung is Super PLS, which bears similarities to IPS panels, has wider viewing angles, better image quality, increased brightness, and lower production costs. PLS technology debuted in the PC display market with the release of the Samsung S27A850 and S24A850 monitors in September 2011.

TFT dual-transistor pixel or cell technology is a reflective-display technology for use in very-low-power-consumption applications such as electronic shelf labels (ESL), digital watches, or metering. DTP involves adding a secondary transistor gate in the single TFT cell to maintain the display of a pixel during a period of 1s without loss of image or without degrading the TFT transistors over time. By slowing the refresh rate of the standard frequency from 60 Hz to 1 Hz, DTP claims to increase the power efficiency by multiple orders of magnitude.

External consumer display devices like a TFT LCD feature one or more analog VGA, DVI, HDMI, or DisplayPort interface, with many featuring a selection of these interfaces. Inside external display devices there is a controller board that will convert the video signal using color mapping and image scaling usually employing the discrete cosine transform (DCT) in order to convert any video source like CVBS, VGA, DVI, HDMI, etc. into digital RGB at the native resolution of the display panel. In a laptop the graphics chip will directly produce a signal suitable for connection to the built-in TFT display. A control mechanism for the backlight is usually included on the same controller board.

Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.

K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. AIP. 37 (1): 1079–82. doi:10.1889/1.2433159. S2CID 129569963.

lcd module technology comparison quotation

In a high speed video, slow GtG pixel response looks like a refresh cycle “fades into” another refresh cycle. Here is a high speed video of an 5ms 60Hz IPS LCD:

More high speed videos can be found at Understanding Scanout Lag Via High Speed Video, which also has high speed video other panels including TN LCD and OLED pixel response.

Accomplishing (A) in current technology, is often done via a strobe backlight such as LightBoost or ULMB found in motion blur reduction. See Motion Blur Reduction FAQ.

Accomplishing (B) in current technology, is often done via upgrading to a higher refresh rate along with a faster GPU.  240fps at 240Hz can have one-quarter the display motion blur of 60fps at 60Hz. See Official List of Best Gaming Monitors.

It is possible for the same panel to have a higher GtG than MPRT (some strobe backlight driven LCDs). Conversely, it is also possible for the same panel to have a lower GtG and a higher MPRT (OLED panels creating motion blur). Ideally, GtG and MPRT must be simultaneously very low to eliminate motion blur.

Usually, most strobed displays (e.g. LightBoost, ULMB) attempts to hide LCD pixel response in the dark periods between strobe-backlight flashes. See High Speed Video of LightBoost.

There are large GtG differences in different colors on some panel technologies such as VA, especially at colder temperatures, GtG can change by several milliseconds due to temperatures being a few degrees lower. Lower temperatures slows down LCD response significantly, especially in cold rooms in mid-winter.

To help assist future 1000 Hz developments, GPUs can incorporate Frame Rate Amplification Technology to make 1000 frames per second possible with upcoming GPUs.

Pre-requisite technologies are starting to be demonstrated successfully in the laboratory, and probably will hit the high end gaming market before 2030s as a flickerless MPRT blur reduction technology — for strobeless ULMB — for blurless sample-and-hold.

lcd module technology comparison quotation

Get pricing, lead times, and design-for-manufacturing feedback in a matter of clicks, not days. The Xometry Instant Quoting Engine® puts data science to work so you can easily choose the optimal price and lead time option for your project. Learn more about our instant quoting technology.

lcd module technology comparison quotation

All the older TV’s and computer monitors you grew up with had the squarish 4:3 shape– 33% wider than it was high. These are often referred to as square monitors.  4:3 LCD monitors can display analog video signals that conform to NTSC and PAL standards. They are not capable of displaying HD (high-definition) video.

16:9 is the native aspect ratio of most high-definition widescreen LCD monitors and TV’s (16:9 and 16:10 are very similar). It is 78% wider than it is tall, and fully one-third wider than a 4:3 screen. 16:9 widescreen monitors are ideally suited to display HD video signals. Some models can also display SD (standard definition) video signals, but this will require some compromises, as you will read below.

Nearly all experts agree that in order to display optimal video images, it is critical to match the aspect ratio of the monitor to the aspect ratio of the camera (or other incoming video source). Below is a example of a 16:9 image on a 16:9 widescreen lcd monitor:

Unfortunately, despite the continued widespread use of 4:3 cameras, LCD monitors with a 4:3 aspect ratio are getting harder and harder to find. Many manufacturers have abandoned them in favor of the newer 16:9 widescreens. TRU-Vu Monitors still offers a complete line of industrial-grade 4:3 aspect ratio LCD monitors. These range in size from 5.5″ to 19″ screens. They are available with standard, waterproof, steel or open frame enclosures. They can be touch screen,  sunlight readable, medical-grade, or optically bonded.

16:9 widescreen LCD monitors are the ideal complement to 16:9 format HD cameras. These are increasingly used in video conferencing, broadcast and medical applications. They display superb, distortion-free, high-definition images. TRU-Vu Monitors offers these in 7″, 10.1″, 13.3″, 15.6″, 17.3″, 18.5″ and 21.5″ to 65” LCD screen sizes, in standard, touch screen, sunlight readable, medical-grade, optically bonded and open frame configurations.

You must avoid video images which are stretched, chopped, squeezed, shrunk or distorted. Be sure to choose a LCD monitor with the correct aspect ratio (4:3 aspect ratio or 16:9 aspect ratio) that matches your camera or other incoming video signal.