tft display for stm32f4 factory
A:All materials we purchase for making any orders are high quality andRoHS compliant, and Control quality with ISO 9001:2008, ISO 14001:2004 management system.
I have tried to compile the example file GxTFT_FSMC_BlackSTM32F407V.ino. The necessary assisting files should be in place including STM32GENERIC in the hardware folder. After having worked for quite some time Arduino IDE stops with an error message. I list the last page of the verbose output:
"C:\Users\Peas\AppData\Local\Arduino15\packages\arduino\tools\arm-none-eabi-gcc\4.8.3-2014q1/bin/arm-none-eabi-g++" -mcpu=cortex-m4 -mfpu=fpv4-sp-d16 -mfloat-abi=hard -DF_CPU=168000000L -mthumb -DSTM32GENERIC -DRAM_LENGTH=131072 -DFLASH_LENGTH=524288 -c -g -Os -w -std=gnu++11 -ffunction-sections -fdata-sections -nostdlib -fno-threadsafe-statics --param max-inline-insns-single=500 -fno-rtti -fno-exceptions -Dprintf=iprintf -MMD -DSTM32F4 -DARDUINO=10807 -DARDUINO_BLACK_F407VE -DARDUINO_ARCH_STM32 -DSTM32F407VE -DHSE_VALUE=8000000 -DMENU_SERIAL_AUTO=SerialUSB "-IC:\Users\Peas\Documents\Arduino\hardware\STM32GENERIC-master\STM32\cores\arduino/stm32" "-IC:\Users\Peas\Documents\Arduino\hardware\STM32GENERIC-master\STM32\cores\arduino/usb" "-IC:\Users\Peas\Documents\Arduino\hardware\STM32GENERIC-master\STM32\system/CMSIS" "-IC:\Users\Peas\Documents\Arduino\hardware\STM32GENERIC-master\STM32\system/STM32F4/CMSIS_Inc" "-IC:\Users\Peas\Documents\Arduino\hardware\STM32GENERIC-master\STM32\system/STM32F4/CMSIS_Src" "-IC:\Users\Peas\Documents\Arduino\hardware\STM32GENERIC-master\STM32\system/STM32F4/HAL_Inc" "-IC:\Users\Peas\Documents\Arduino\hardware\STM32GENERIC-master\STM32\system/STM32F4/HAL_Src" "-IC:\Users\Peas\Documents\Arduino\hardware\STM32GENERIC-master\STM32\system/STM32F4/stm32_chip" "-IC:\Users\Peas\Documents\Arduino\hardware\STM32GENERIC-master\STM32\cores\arduino" "-IC:\Users\Peas\Documents\Arduino\hardware\STM32GENERIC-master\STM32\variants\BLACK_F407VE" "-IC:\Users\Peas\Documents\Arduino\libraries\GxTFT\src" "-IC:\Users\Peas\Documents\Arduino\hardware\STM32GENERIC-master\STM32\libraries\SPI\src" "-IC:\Users\Peas\Documents\Arduino\libraries\Adafruit_GFX_Library" "-IC:\Users\Peas\Documents\Arduino\hardware\STM32GENERIC-master\STM32\libraries\stm32_dma\src" "C:\Users\Peas\Documents\Arduino\libraries\GxTFT\src\GxIO\STM32GENERIC\GxIO_STM32F407ZGM4_FSMC\GxIO_STM32F407ZGM4_FSMC.cpp" -o "C:\Users\Peas\AppData\Local\Temp\arduino_build_724464\libraries\GxTFT\GxIO\STM32GENERIC\GxIO_STM32F407ZGM4_FSMC\GxIO_STM32F407ZGM4_FSMC.cpp.o"
C:\Users\Peas\Documents\Arduino\libraries\GxTFT\src\GxIO\STM32GENERIC\GxIO_STM32F407ZGM4_FSMC\GxIO_STM32F407ZGM4_FSMC.cpp: In constructor "GxIO_STM32F407ZGM4_FSMC::GxIO_STM32F407ZGM4_FSMC(bool)":
C:\Users\Peas\Documents\Arduino\libraries\GxTFT\src\GxIO\STM32GENERIC\GxIO_STM32F407ZGM4_FSMC\GxIO_STM32F407ZGM4_FSMC.cpp:97:11: error: "PG12" was not declared in this scope
C:\Users\Peas\Documents\Arduino\libraries\GxTFT\src\GxIO\STM32GENERIC\GxIO_STM32F407ZGM4_FSMC\GxIO_STM32F407ZGM4_FSMC.cpp:98:11: error: "PG0" was not declared in this scope
We have many years of production and sales experience, we have accumulated rich strength in the 15.6 Inch VGA TFT Display, 15.6 Inch LCD Screen, 10.1 Inch LCD Display field. Since introduced the part overseas vanguard technology and the craft and formed the powerful technical support system, it has poured into the vigor for our development. We are strict with every part of our work.
This LCD panel has a built-in EK9716BB3+EK73002 controller, a 40pin 24-bit RGB Interface, can support All View full viewing angle with IPS technology. It is composed with 10 LEDs connected 2 in parallel and 1 in serial l, with backlight voltage 16.5V/current 20mA and 16:9 aspect ratio. Optional with 4 wire resistive touch panel (RTP) and projected capacitive touch screen (PCAP.). Sharing controller board same hardware with 5” TFT LCD 800x480 resolution and 7” 800x480 resolution.
The STM32F429 Discovery helps you to discover the high-performance microcontrollers of the STM32 F4 series and to develop your applications easily. It offers everything required for beginners and experienced users to get started quickly.
Based on the STM32F429ZIT6, it includes an ST-LINK/V2 embedded debug tool, a 2.4" QVGA TFT LCD, an external SDRAM of 64 Mbits, a gyroscope ST MEMs, a USB OTG micro-AB connector, LEDs and pushbuttons.
A large number of free ready-to-run application firmware examples are available on www.st.com/stm32f4-discovery to support quick evaluation and development.
This article will explain how to program the Black Pill STM32F4 microcontrollers. It can be considered the big brother of the STM32F1 series, more powerful, and with all the features of the F1 version.
These products combine very high performance, real-time capabilities, digital signal processing, low-power / low-voltage operation, and connectivity while maintaining full integration and ease of development.
The range of STM32 microcontrollers, based on an industry-standard core, comes with a vast choice of tools and software to support project development, making this family of products ideal for small projects and end-to-end platforms.
The ARM® Cortex®-M4-based STM32F4 MCU series leverages ST’s NVM technology and ART Accelerator™ to reach the industry’s highest benchmark scores for Cortex-M-based microcontrollers with up to 225 DMIPS/608 CoreMark executing from Flash memory at up to 180 MHz operating frequency.
The STM32F4 series consists of eight compatible product lines of digital signal controllers (DSC), a perfect symbiosis of the real-time control capabilities of an MCU, and the signal processing performance of a digital signal processor (DSP):
Advanced lines: 180 MHz CPU/225 DMIPS, up to 2 Mbytes of dual-bank Flash memory with SDRAM and Chrom-ART Accelerator™STM32F469/479– Quad-SPI interface, LCD-TFT controller and MPI-DSI interface
Access lines:The entry-level microcontrollers of the STM32F4 series!84 MHz CPU/105 DMIPS, the smallest, cost-effective solution with outstanding power efficiency (Dynamic Efficiency™)STM32F401 –Less than 3 x 3mm with USB 2.0FS OTG and SDIO interfaces
100 MHz CPU/125 DMIPS, outstanding power efficiency (Dynamic Efficiency™) and Batch Acquisition Mode (BAM), a new smart DMA-optimizing power consumption for data batchingSTM32F410 –New milestone in outstanding power efficiency (89 µA/MHz and 6 µA in Stop mode), true random number generator, low-power timer, and DAC.
STM32F412– High RAM and Flash memory density, USB interface, and enhanced peripheral set including a flexible external static memory controller with up to 16-bit data bus for LCD and external memory control, dual-mode Quad-SPI, CAN, DFSDM, and TRNG.
STM32F413/F423– Extends STM32F412 features with higher RAM and Flash memory density and an enhanced peripheral set including 10 UARTs, 3 CANs, SAI interface, a low-power timer, 2 DACs, 2 DFSDM with up to 6 filters. The STM32F423 includes AES encryption.
The STM32 is a family of microcontroller ICs based on the 32-bit RISC ARM Cortex-M33F, Cortex-M7F, Cortex-M4F, Cortex-M3, Cortex-M0+, and Cortex-M0 cores.STMicroelectronics licenses the ARM Processor IP from ARM Holdings. The ARM core designs have numerous configurable options, and ST chooses the individual configuration to use for each design. ST attaches its own peripherals to the core before converting the design into a silicon die. The following tables summarize the STM32 microcontroller families.
The STM32 H7-series is a group of high performance STM32 microcontrollers based on the ARM Cortex-M7F core with double-precision floating point unit and optional second Cortex-M4F core with single-precision floating point. Cortex-M7F core can reach working frequency up to 480 MHz, while Cortex-M4F - up to 240 MHz. Each of these cores can work independently or as master/slave core.
The STM32H7 Series is the first series of STM32 microcontrollers in 40 nm process technology and the first series of ARM Cortex-M7-based microcontrollers which is able to run up to 480 MHz, allowing a performance boost versus previous series of Cortex-M microcontrollers, reaching new performance records of 1027 DMIPS and 2400 CoreMark.
The STM32 F4-series is the first group of STM32 microcontrollers based on the ARM Cortex-M4F core. The F4-series is also the first STM32 series to have DSP and floating-point instructions. The F4 is pin-to-pin compatible with the STM32 F2-series and adds higher clock speed, 64 KB CCM static RAM, full-duplex I²S, improved real-time clock, and faster ADCs. The summary for this series is:
Common peripherals included in all IC packages are USB 2.0 OTG HS and FS, two CAN 2.0B, one SPI + two SPI or full-duplex I²S, three I²C, four USART, two UART, SDIO for SD/MMC cards, twelve 16-bit timers, two 32-bit timers, two watchdog timers, temperature sensor, 16 or 24 channels into three ADCs, two DACs, 51 to 140 GPIOs, sixteen DMA, improved real-time clock (RTC), cyclic redundancy check (CRC) engine, random number generator (RNG) engine. Larger IC packages add 8/16-bit external memory bus capabilities.
The STM32 F3-series is the second group of STM32 microcontrollers based on the ARM Cortex-M4F core. The F3 is almost pin-to-pin compatible with the STM32 F1-series. The summary for this series is:
The distinguishing feature for this series is presence of four fast, 12-bit, simultaneous sampling ADCs (multiplexer to over 30 channels), and four matched, 8 MHz bandwidth op-amps with all pins exposed and additionally internal PGA (Programmable Gain Array) network. The exposed pads allow for a range of analog signal conditioning circuits like band-pass filters, anti-alias filters, charge amplifiers, integrators/differentiators, "instrumentation" high-gain differential inputs, and other. This eliminates need for external op-amps for many applications. The built-in two-channel DAC has arbitrary waveform as well as a hardware-generated waveform (sine, triangle, noise etc.) capability. All analog devices can be completely independent, or partially internally connected, meaning that one can have nearly everything that is needed for an advanced measurement and sensor interfacing system in a single chip.
The four ADCs can be simultaneously sampled making a wide range of precision analog control equipment possible. It is also possible to use a hardware scheduler for the multiplexer array, allowing good timing accuracy when sampling more than 4 channels, independent of the main processor thread. The sampling and multiplexing trigger can be controlled from a variety of sources including timers and built-in comparators, allowing for irregular sampling intervals where needed.
The op-amps inputs feature 2-to-1 analog multiplexer, allowing for a total of eight analog channels to be pre-processed using the op-amp; all the op-amp outputs can be internally connected to ADCs.
The STM32 F2-series of STM32 microcontrollers based on the ARM Cortex-M3 core. It is the most recent and fastest Cortex-M3 series. The F2 is pin-to-pin compatible with the STM32 F4-series. The summary for this series is:
The STM32 F1-series was the first group of STM32 microcontrollers based on the ARM Cortex-M3 core and considered their mainstream ARM microcontrollers. The F1-series has evolved over time by increasing CPU speed, size of internal memory, variety of peripherals. There are five F1 lines: Connectivity (STM32F105/107), Performance (STM32F103), USB Access (STM32F102), Access (STM32F101), Value (STM32F100). The summary for this series is:
The STM32 G4-series is a next generation of Cortex-M4F microcontrollers aiming to replace F3 series, offering the golden mean in productivity and power efficiency, e.g. better power efficiency and performance compared to the older F3/F4 series and higher performance compared to ultra low power L4 series, integrated several hardware accelerators.
The STM32 G0-series is a next generation of Cortex-M0/M0+ microcontrollers for budget market segment, offering the golden mean in productivity and power efficiency, e.g. better power efficiency and performance compared to the older F0 series and higher performance compared to ultra low power L0 series
The STM32 L4+-series is expansion of STM32L4-series of ultra-low power microcontrollers, providing more performance, more embedded memory and richer graphics and connectivity features while keeping ultra-low-power capability.
The STM32 L1-series was the first group of STM32 microcontrollers with a primary goal of ultra-low power usage for battery-powered applications. The summary for this series is:
The STM32 L0-series is the first group of STM32 microcontrollers based on the ARM Cortex-M0+ core. This series targets low power applications. The summary for this series is:
NUCLEO-G431KB board for STM32G431KB6U MCU with 170 MHz Cortex-M4F core, 128 KB flash (HW ECC), 16 KB SRAM (HW parity), 6 KB SRAM, 10 KB CCM SRAM, STLINK-V3E.
NUCLEO-L412KB board for STM32L412KBU6 MCU with 80 MHz Cortex-M4F core, 128 KB flash (HW ECC), 32 KB SRAM, 8 KB SRAM (HW parity), external quad-SPI memory interface.
NUCLEO-L432KC board for STM32L432KCU6 MCU with 80 MHz Cortex-M4F core, 256 KB flash (HW ECC), 48 KB SRAM, 16 KB SRAM (HW parity), external quad-SPI memory interface.
Low power ICs are L053, L073, L152, L433, L452, L452, L476. Mainstream ICs are F030, F070, F072, F091, F103, F302, F303, F334, G070, G071, G0B1, G431, G474, G491. High performance ICs are F401, F410, F411, F446.
NUCLEO-F303RE board for STM32F303RET6 MCU with 72 MHz Cortex-M4F core, 512 KB flash, 32 KB SRAM, 48 KB SRAM (HW parity), external static memory interface.
NUCLEO-F446RE board for STM32F446RET6 MCU with 180 MHz Cortex-M4F core, 512 KB flash, 128 KB SRAM, external quad-SPI memory interface, external flexible memory interface.
NUCLEO-L433RC-P board for STM32L433RCT6P MCU with 80 MHz Cortex-M4F core, 256 KB flash (HW ECC), 48 KB SRAM, 16 KB SRAM (HW parity), external quad-SPI memory interface, SMPS power.
NUCLEO-L452RE-P board for STM32L452RET6P MCU with 80 MHz Cortex-M4F core, 512 KB flash (HW ECC), 128 KB SRAM, 32 KB SRAM (HW parity), external quad-SPI memory interface, SMPS power.
NUCLEO-L452RE board for STM32L452RET6 MCU with 80 MHz Cortex-M4F core, 512 KB flash (HW ECC), 128 KB SRAM, 32 KB SRAM (HW parity), external quad-SPI memory interface.
NUCLEO-L476RG board for STM32L476RGT6 MCU with 80 MHz Cortex-M4F core, 1024 KB flash (HW ECC), 96 KB SRAM, 32 KB SRAM (HW parity), external quad-SPI memory interface, external static memory interface.
Low power ICs are L496, L496-P, L4A6, L4R5, L4R5-P. Mainstream IC is F303. High performance ICs are F207, F412, F413, F429, F439, F446, F722, F746, F756, F767, H743.
NUCLEO-F207ZG board for STM32F207ZGT6 MCU with 120 MHz Cortex-M3 core, 1024 KB flash (HW ECC), 128 KB SRAM, 4 KB battery-back SRAM, external static memory interface, ethernet.
NUCLEO-F303ZE board for STM32F303ZET6 MCU with 72 MHz Cortex-M4F core, 512 KB flash (HW ECC), 32 KB SRAM, 48 KB SRAM (HW parity), external static memory interface.
NUCLEO-F412ZG board for STM32F412ZGT6 MCU with 100 MHz Cortex-M4F core, 1024 KB flash, 256 KB SRAM, external quad-SPI memory interface, external static memory interface.
NUCLEO-F429ZI board for STM32F429ZIT6 MCU with 180 MHz Cortex-M4F core, 2048 KB flash, 256 KB SRAM, 4 KB battery-back SRAM, external flexible memory interface, ethernet.
NUCLEO-F439ZI board for STM32F439ZIT6 MCU with 180 MHz Cortex-M4F core, 2048 KB flash, 256 KB SRAM, 4 KB battery-back SRAM, external flexible memory interface, ethernet, cryptographic acceleration.
NUCLEO-F446ZE board for STM32F446ZET6 MCU with 180 MHz Cortex-M4F core, 512 KB flash, 128 KB SRAM, 4 KB battery-back SRAM, external quad-SPI memory interface, external flexible memory interface.
NUCLEO-F746ZG board for STM32F746ZGT6 MCU with 216 MHz Cortex-M7F core (4 KB data cache, 4 KB instruction cache), 1024 KB flash, 336 KB SRAM, 4 KB battery-back SRAM, 1 KB OTP, external quad-SPI memory interface, external flexible memory interface, ethernet.
NUCLEO-F767ZI board for STM32F767ZIT6 MCU with 216 MHz Cortex-M7F-DP core (16 KB data cache, 16 KB instruction cache), 2048 KB flash, 528 KB SRAM, 4 KB battery-back SRAM, external quad-SPI memory interface, external flexible memory interface, ethernet.
The following Discovery evaluation boards are sold by STMicroelectronics to provide a quick and easy way for engineers to evaluate their microcontroller chips. These kits are available from various distributors for less than US$20. The STMicroelectronics evaluation product licence agreement forbids their use in any production system or any product that is offered for sale.
Each board includes an on-board ST-LINK for programming and debugging via a Mini-B USB connector. The power for each board is provided by a choice of the 5 V via the USB cable, or an external 5 V power supply. They can be used as output power supplies of 3 V or 5 V (current must be less than 100 mA). All Discovery boards also include a voltage regulator, reset button, user button, multiple LEDs, SWD header on top of each board, and rows of header pins on the bottom.
A discovery board for STM32F429ZIT6 microcontroller with 180 MHz ARM Cortex-M4F core, 2048 KB flash, 256 KB RAM, 4 KB battery-backed RAM in LQFP144 package.
This board includes an integrated ST-LINK/V2 debugger via Mini-B USB connector, 8 MB SDRAM (IS42S16400J), 2.4-inch 320x200 TFT LCD color display (SF-TC240T), touchscreen controller (STMPE811), gyroscope (L3GD20), 2 user LEDs, user button, reset button, Full-Speed USB OTG to second Micro-AB USB connector, and two 32x2 male pin headers.
A discovery board for STM32F407VGT6 microcontroller with 168 MHz ARM Cortex-M4F core, 1024 KB flash, 192 KB RAM, 4 KB battery-backed RAM in LQFP100 package.
A discovery board for STM32L152RBT6 microcontroller with 32 MHz ARM Cortex-M3 core, 128 KB flash (with ECC), 16 KB RAM, 4 KB EEPROM (with ECC) in LQFP64 package.
A discovery board for STM32L152RCT6 microcontroller with 32 MHz ARM Cortex-M3 core, 256 KB flash (with ECC), 32 KB RAM, 8 KB EEPROM (with ECC) in LQFP64 package.
A discovery board for STM32L100RCT6 microcontroller with 32 MHz ARM Cortex-M3 core, 256 KB flash (with ECC), 16 KB RAM, 4 KB EEPROM (with ECC) in LQFP64 package.
A ready-to-use Java development kits for its STM32 microcontrollers. The STM3220G-JAVA Starter Kit combines an evaluation version of IS2T"s MicroEJ® Software Development Kit (SDK) and the STM32F2 series microcontroller evaluation board providing everything engineers need to start their projects.
MicroEJ provides extended features to create, simulate, test and deploy Java applications in embedded systems. Support for Graphical User Interface (GUI) development includes a widget library, design tools including storyboarding, and tools for customizing fonts.STM32F205VGT6J.
A prototyping environment for a variety of STM32 variants, which allows users to create their applications using an application programming interface (API) to implement device peripherals and a range of evaluation features on the EvoPrimer base including TFT color touchscreen, graphical user interface, joy stick, codec-based audio, SD card, IrDA and standard peripherals such as USB, USART, SPI, I2C, CAN, etc.
The EvoPrimer base includes a device programming and application debugging interface and comes with a Raisonance software tool set for coding, compiling and debugging the user"s application.
Simulink, by MathWorks provides model-based design solutions to design embedded systems. The Embedded Coder Support Package for STMicroelectronics Discovery Boards and the Simulink Coder Support Package for STMicroelectronics Nucleo Boards provide parameter tuning, signal monitoring and one-click deployment of Simulink algorithms to STM32 boards with access to peripherals like ADC, PWM, GPIOs, I²C, SPI, SCI, TCP/IP, UDP, etc.
The amount of documentation for all ARM chips can be daunting, especially for newcomers. As microprocessors have increased in capability and complexity, the documentation has grown. The total documentation for all ARM chips consists of documents from the IC manufacturer (STMicroelectronics) and documents from CPU core vendor (ARM Holdings).
A typical top-down documentation tree is: manufacturer website, manufacturer marketing slides, manufacturer datasheet for the exact physical chip, manufacturer detailed reference manual that describes common peripherals and aspects of a physical chip family, ARM core generic user guide, ARM core technical reference manual, ARM architecture reference manual that describes the instruction set(s).
STMicroelectronics has additional documents, such as: evaluation board user manuals, application notes, getting started guides, software library documents, errata, and more. See External Links section for links to official STM32 and ARM documents.
µC/TCP-IP: The Embedded Protocol Stack for the STMicroelectronics STM32F107; 1st Edition; Christian Légaré; Micrium; 824 pages; 2010; ISBN 978-0-9823375-0-9.
STM32F429 Discovery is a development board provided by STMicroelectronics. It has extremely powerful microcontroller STM32F429ZIT6 with 32bit arm cortex M4 and hardware floating point.
STM32 is mainly used as products for professional developers, which requires certain professional knowledge, but at the same time, it is relatively complicated to write code to realize functions. For example, the serial port outputs a simple string. For Arduino, it may start from a new project and it can be realized with 10 lines of code. However, if you use STM32 development tools such as Keil, it may require hundreds of lines of code or more.
Of course, if you have the ability, you can make contact with both. Generally, you can master the basic features of Arduino in less than a week. If you need it in the future, you can freely transplant the Arduino code to MCU platforms such as STM32.
In fact, the two are actually aimed at slightly different directions. Arduino is the choice of general electronics hobbyists and DIY, while STM32 is often used for the development and manufacturing of actual products.
The STM32F429 Discovery kit (32F429IDISCOVERY) allows users to easily develop applications with the STM32F429 high-performance MCUs with ARM®Cortex®-M4 core.
It includes an ST-LINK/V2-B embedded debug tool, a 2.4" QVGA TFT LCD, an external 64-Mbit SDRAM, an ST MEMS gyroscope, a USB OTG micro-AB connector, LEDs and push-buttons.
ForTechnical Documentation,Software & Development Tools,Hardware Resources, view the 32F429IDISCOVERY official page on www.st.com to get more information:http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/LN1199/PF259090