arduino 2.8 tft lcd code factory

SainSmart 2.8" TFT LCD Display is a LCD touch screen module. It has 40pins interface and SD card and Flash reader design. It is a powerful and mutilfunctional module for your project.The Screen include a controller ILI9325, it"s a support 8/16bit data interface , easy to drive by many MCU like arduino families,STM32 ,AVR and 8051. It is designed with a touch controller in it . The touch IC is XPT2046 , and touch interface is included in the 40 pins breakout. It is the version of product only with touch screen and touch controller.

Voltage type: 5v or 3v voltage input voltage,input is selectable. Because TFT can only work under 3.3 V voltage, so when the input voltage VIN is 5V, need through the 3.3 V voltage regulator IC step down to 3.3V , when the input voltage of 3.3 V, you need to use the zero resistance make J2 short , is equivalent to not through the voltage regulator IC for module and power supply directly.

arduino 2.8 tft lcd code factory

I struggled with a SainSmart 3.2 LCD and adapter card and then realized I had the libraries and examples in the wrong folders as well as the wrong model number. Using Sain Smart download (link below) or Henning"s code I had the same problems - because I was making the same mistakes. Here was my solution:

So, the new auto import puts libraries where they need to be. Using IDE Arduino 1.5.2 you can import the zip file ( Sketch|> Import Library|> Add Library...) the 32lcd.zip file from Sain Smart document needs to be renamed because it starts with a number so rename the zip to something like SS32lcd.zip. The automatic import of arduino 1.5.2 IDE will put the UTFT library files in the right place. You will still need to copy the example folder over to the example folder in the ....\arduino-1.5.2 IDE installed folder for them to show up in the File|>Examples|> menu. You can save your changes into your sketchbook and your customization will be preserved there.

Once you see how the auto library import install sets up the folders using the zip file you could use Henning"s rar files extracted and moved to the same places - I haven"t figured how to get the arduino import to accept a RAR file

arduino 2.8 tft lcd code factory

//Author Danny van den brande.#include "DHT.h"#include // Core graphics library#include // Hardware-specific library#include // BEGIN CLOCK#include //clock module DS1302#include //Need for clock module#define DS1302_SCLK_PIN 21// Arduino pin for the Serial Clock//PIN 21 (SCLK_PIN) = CLK on CLOCK and SCL on arduino#define DS1302_IO_PIN 20// Arduino pin for the Data I/O//PIN 20 (IO_PIN) = DAT on CLOCK and SDA on arduino#define DS1302_CE_PIN 19// Arduino pin for the Chip Enable//PIN 19 (CE_PIN) = RST on CLOCK and TX1 on arduino for this you can define any free Digital pin.#define bcd2bin(h,l) (((h)*10) + (l))#define bin2bcd_h(x) ((x)/10)#define bin2bcd_l(x) ((x)%10)#define DS1302_SECONDS 0x80#define DS1302_MINUTES 0x82#define DS1302_HOURS 0x84#define DS1302_DATE 0x86#define DS1302_MONTH 0x88#define DS1302_DAY 0x8A#define DS1302_YEAR 0x8C#define DS1302_ENABLE 0x8E#define DS1302_TRICKLE 0x90#define DS1302_CLOCK_BURST 0xBE#define DS1302_CLOCK_BURST_WRITE 0xBE#define DS1302_CLOCK_BURST_READ 0xBF#define DS1302_RAMSTART 0xC0#define DS1302_RAMEND 0xFC#define DS1302_RAM_BURST 0xFE#define DS1302_RAM_BURST_WRITE 0xFE#define DS1302_RAM_BURST_READ 0xFF#define DS1302_D0 0#define DS1302_D1 1#define DS1302_D2 2#define DS1302_D3 3#define DS1302_D4 4#define DS1302_D5 5#define DS1302_D6 6#define DS1302_D7 7#define DS1302_READBIT DS1302_D0// READBIT=1: read instruction// Bit for clock (0) or ram (1) area,// called R/C-bit (bit in address)#define DS1302_RC DS1302_D6// Seconds Register#define DS1302_CH DS1302_D7// 1 = Clock Halt, 0 = start// Hour Register#define DS1302_AM_PM DS1302_D5// 0 = AM, 1 = PM#define DS1302_12_24 DS1302_D7// 0 = 24 hour, 1 = 12 hour// Enable Register#define DS1302_WP DS1302_D7// 1 = Write Protect, 0 = enabled#define DS1302_ROUT0 DS1302_D0#define DS1302_ROUT1 DS1302_D1#define DS1302_DS0 DS1302_D2#define DS1302_DS1 DS1302_D2#define DS1302_TCS0 DS1302_D4#define DS1302_TCS1 DS1302_D5#define DS1302_TCS2 DS1302_D6#define DS1302_TCS3 DS1302_D7// Bit for reading (bit in address)#define DS1302_READBIT DS1302_D0// READBIT=1: read instruction#define DHTPIN 16// what pin we"re connected to#define DHTTYPE DHT11// DHT 11#define DS1302_READBIT DS1302_D0// READBIT=1: read instruction#define LCD_CS A3// Chip Select goes to Analog 3#define LCD_CD A2// Command/Data goes to Analog 2#define LCD_WR A1// LCD Write goes to Analog 1#define LCD_RD A0// LCD Read goes to Analog 0#define LCD_RESET A4// Can alternately just connect to Arduino"s reset pin// Assign human-readable names to some common 16-bit color values:#define BLACK 0x0000#define BLUE 0x001F#define RED 0xF800#define GREEN 0x07E0#define CYAN 0x07FF#define MAGENTA 0xF81F#define YELLOW 0xFFE0#define WHITE 0xFFFF// OBJECTS LCD ET DHTAdafruit_TFTLCD tft(LCD_CS, LCD_CD, LCD_WR, LCD_RD, LCD_RESET);DHT dht(DHTPIN, DHTTYPE);float hprev, tprev, hicprev;int moisture = 0;int moisture1 = 0;int moisture2 = 0;int moisture3 = 0;int moisture4 = 0;int moisture5 = 0;int sensorValue1;int sensorValue2;int sensorValue3;int sensorValue4;int sensorValue5;int sensorValue;int relay = 35;int relay1 = 36;int relay2 = 37;int relay3 = 38;int relay4 = 39;int relay5 = 40;// Structure for the first 8 registers.// These 8 bytes can be read at once with// the "clock burst" command.// Note that this structure contains an anonymous union.// It might cause a problem on other compilers.typedef struct ds1302_struct{uint8_t Seconds:4; // low decimal digit 0-9uint8_t Seconds10:3; // high decimal digit 0-5uint8_t CH:1; // CH = Clock Haltuint8_t Minutes:4;uint8_t Minutes10:3;uint8_t reserved1:1;union{struct{uint8_t Hour:4;uint8_t Hour10:2;uint8_t reserved2:1;uint8_t hour_12_24:1; // 0 for 24 hour format} h24;struct{uint8_t Hour:4;uint8_t Hour01:1;uint8_t AM_PM:1; // 0 for AM, 1 for PMuint8_t reserved2:1;uint8_t hour_12_24:1; // 1 for 12 hour format} h12;};uint8_t Date:4; // Day of month, 1 = first dayuint8_t Date10:2;uint8_t reserved3:2;uint8_t Month:4; // Month, 1 = Januaryuint8_t Month10:1;uint8_t reserved4:3;uint8_t Day:3; // Day of week, 1 = first day (any day)uint8_t reserved5:5;uint8_t Year:4; // Year, 0 = year 2000uint8_t Year10:4;uint8_t reserved6:7;uint8_t WP:1; // WP = Write Protect};void setup(){ds1302_struct rtc;Serial.begin(9600);// Serial.println(F("BLUECORE TECH"));pinMode (relay, OUTPUT);pinMode (relay1, OUTPUT);pinMode (relay2, OUTPUT);pinMode (relay3, OUTPUT);pinMode (relay4, OUTPUT);pinMode (relay5, OUTPUT);// digitalWrite (relay, HIGH);#ifdef USE_ADAFRUIT_SHIELD_PINOUT// Serial.println(F("Using Adafruit 2.8\" TFT Arduino Shield Pinout"));#else// Serial.println(F("Using Adafruit 2.8\" TFT Breakout Board Pinout"));#endif// Serial.print("TFT size is "); Serial.print(tft.width()); Serial.print("x"); Serial.println(tft.height());//tft.reset();uint16_t identifier = tft.readID();if(identifier == 0x9325) {// Serial.println(F("Found ILI9325 LCD driver"));} else if(identifier == 0x9327) {// Serial.println(F("Found ILI9327 LCD driver"));} else if(identifier == 0x9328) {// Serial.println(F("Found ILI9328 LCD driver"));} else if(identifier == 0x7575) {// Serial.println(F("Found HX8347G LCD driver"));} else if(identifier == 0x9341) {// Serial.println(F("Found ILI9341 LCD driver"));} else if(identifier == 0x8357) {// Serial.println(F("Found HX8357D LCD driver"));} else if(identifier == 0x0154) {// Serial.println(F("Found S6D0154 LCD driver"));}tft.begin(identifier);iniText();dht.begin();//CLOCK MODULE START// Start by clearing the Write Protect bit// Otherwise the clock data cannot be written// The whole register is written,// but the WP-bit is the only bit in that register.DS1302_write (DS1302_ENABLE, 0);// Disable Trickle Charger.DS1302_write (DS1302_TRICKLE, 0x00);// Remove the next define,// after the right date and time are set.// #define SET_DATE_TIME_JUST_ONCE //= 300)digitalWrite (relay, HIGH); //TURN ON/OFF OFF RELAY 0 for watering pumpelsedigitalWrite (relay, LOW);//SENSOR 1 set your sensor here!}// OPTIONAL SENSORS PLACES FOR VALUES ON SCREEN BEGINif (sensorValue) {tft.setTextSize(2);tft.setCursor(98, 127);tft.setTextColor(GREEN);tft.fillRect(93,117,67,34,BLACK);tft.println (moisture1/1.01);if (sensorValue1 >= 300)digitalWrite (relay1, HIGH); //TURN ON/OFF OFF RELAY 1 for watering pumpelsedigitalWrite (relay1, LOW);//SENSOR 2 set your sensor here!}if (sensorValue) {tft.setTextSize(2);tft.setCursor(98, 164);tft.setTextColor(GREEN);tft.fillRect(93,154,67,34,BLACK);tft.println (moisture2/1.01);if (sensorValue2 >= 300)digitalWrite (relay2, HIGH); //TURN ON/OFF OFF RELAY 2 for watering pumpelsedigitalWrite (relay2, LOW);//SENSOR 3 set your sensor here!} // BEGIN SECTION 2 - right sectionif (sensorValue) {tft.setCursor(10,60);tft.setTextSize(2);//tft.println ("BODEM VOCHT%");tft.setCursor(256, 90);tft.setTextColor(GREEN);tft.fillRect(250,80,67,34,BLACK);tft.println (moisture3/1.01);if (sensorValue3 >= 300)digitalWrite (relay3, HIGH); //TURN ON/OFF OFF RELAY 3 for watering pumpelsedigitalWrite (relay3, LOW);//SENSOR 4 set your sensor here!}if (sensorValue) {tft.setCursor(10,60);tft.setTextSize(2);//tft.println ("BODEM VOCHT%");tft.setCursor(256, 127);tft.setTextColor(GREEN);tft.fillRect(250,117,67,34,BLACK);tft.println (moisture4/1.01);if (sensorValue4 >= 300)digitalWrite (relay4, HIGH); //TURN ON/OFF OFF RELAY 4 for watering pumpelsedigitalWrite (relay4, LOW);//SENSOR 5 set your sensor here!}if (sensorValue) {tft.setCursor(10,60);tft.setTextSize(2);//tft.println ("BODEM VOCHT%");tft.setCursor(256, 164);tft.setTextColor(GREEN);tft.fillRect(250,154,67,34,BLACK);tft.println (moisture5/1.01);if (sensorValue5 >= 300)digitalWrite (relay5, HIGH); //TURN ON/OFF OFF RELAY 5 for watering pumpelsedigitalWrite (relay5, LOW);//SENSOR 6 set your sensor here!}// OPTIONAL SENSORS PLACES ON SCREEN ENDif (hprev != h) {tft.setCursor(10, 25);tft.setTextSize(3);tft.setTextColor(CYAN);tft.fillRect(3,25,103,25,BLACK);tft.print(h);hprev = h;}if (tprev != t) {tft.setCursor(118, 25);tft.setTextSize(3);tft.setTextColor(RED);tft.fillRect(111,25,101,25,BLACK);tft.print(t);tprev = t;}if (hicprev != hic) {tft.setCursor(225, 25);tft.setTextSize(3);tft.setTextColor(YELLOW);tft.fillRect(217,25,100,25,BLACK);tft.print(hic);hicprev = hic;}ds1302_struct rtc;char buffer[80]; // the code uses 70 characters.// Read all clock data at once (burst mode).DS1302_clock_burst_read( (uint8_t *) &rtc);//+++++++++++ BEGIN TEXT CLOCK TEXT+++++++++++tft.setTextSize(2);tft.setTextColor(GREEN);tft.setCursor(13, 220);tft.fillRect(3,215,115,25,BLACK);sprintf( buffer, "%02d:%02d:%02d ", \bcd2bin( rtc.h24.Hour10, rtc.h24.Hour), \bcd2bin( rtc.Minutes10, rtc.Minutes), \bcd2bin( rtc.Seconds10, rtc.Seconds));tft.print(buffer);tft.setTextSize(1);tft.setTextColor(BLACK);tft.setCursor(127, 218);tft.fillRect(122,215,195,25,GREEN);sprintf(buffer, "%d,%d," \"Dag %d van week,%d", \bcd2bin( rtc.Date10, rtc.Date), \bcd2bin( rtc.Month10, rtc.Month), \rtc.Day, \2000 + bcd2bin( rtc.Year10, rtc.Year));tft.println( buffer);tft.setTextSize(1);tft.setTextColor(BLACK);tft.setCursor(127, 230);// tft.fillRect(122,215,194,25,GREEN);sprintf(buffer, "%d,%d," \"Day %d of week,%d", \bcd2bin( rtc.Month10, rtc.Month), \bcd2bin( rtc.Date10, rtc.Date), \rtc.Day, \2000 + bcd2bin( rtc.Year10, rtc.Year));tft.println( buffer);//+++++++++++ EINDE CLOCK +++++++++++if(timeStatus() != timeSet) {tft.setTextSize(1.5);tft.setTextColor(BLACK);tft.setCursor(28, 198);///ERROR TEXT need to be coded correctlytft.fillRect(3,191,157,19,RED);//tft.print(F("CLOCK ERROR: SYNC!"));// return micros() - start;delay(1000);}}unsigned long iniText() {// unsigned long start = micros();tft.fillScreen(BLACK);tft.setRotation(3);tft.setTextSize(1);tft.setTextColor(WHITE);tft.setCursor(15,5);tft.println("Humidity %");tft.setCursor(119,10);tft.println("Temperature oC");tft.setCursor(235,5);tft.println("Heat Index"); //Gevoels temperatuurtft.setCursor(122,2);tft.println ("BlueCore TECH"); //Put your NAME here COMPANY NAMEtft.setCursor(190,198);tft.println ("ArduinoSensors.NL"); //Put your NAME here COMPANY NAME website//TEXT SENSORStft.setCursor(10,90);tft.setTextColor(WHITE);tft.println ("SENSOR:1");tft.setCursor(10,127);tft.println ("SENSOR:2");tft.setCursor(10,164);tft.println ("SENSOR:3");tft.setCursor(170,90);tft.println ("SENSOR:4");tft.setCursor(170,127);tft.println ("SENSOR:5");tft.setCursor(170,164);tft.println ("SENSOR:6");// end TEXT SENSORS//Interface DESIGN BEGINtft.fillRect(0,0,345,1,WHITE); //Top line header whitetft.fillRect(0,19,345,2,WHITE); //Top line header 2 whitetft.fillRect(0,20,345,5,BLACK); //Top line header blacktft.fillRect(106,0,5,50,WHITE); //center vertical line header lefttft.fillRect(212,0,5,50,WHITE); //center vertical line header righttft.fillRect(0,50,345,5,WHITE); //bottom line header.tft.fillRect(160,78,5,135,WHITE);//center vertical linetft.fillRect(317,0,5,240,WHITE);//center vertical line righttft.fillRect(0,0,3,240,WHITE);//center vertical line lefttft.fillRect(0,210,345,5,WHITE);//BOTTOM LINE Footertft.fillRect(118,215,4,25,WHITE);//BOTTOM LINE Footer2 vertical smalltft.fillRect(0,210,345,5,WHITE);//BOTTOM LINE Footertft.fillRect(0,78,345,2,WHITE);//top line center screentft.fillRect(0,115,345,2,WHITE);//line 2 center screentft.fillRect(0,152,345,2,WHITE);//line 3 center screentft.fillRect(0,189,345,2,WHITE);//line 4 center screen//Interface DESIGN END// return micros() - start;}void DS1302_clock_burst_read( uint8_t *p)///BEGIN CLOCK MODULE PART2{int i;_DS1302_start();// Instead of the address,// the CLOCK_BURST_READ command is issued// the I/O-line is released for the data_DS1302_togglewrite( DS1302_CLOCK_BURST_READ, true);for( i=0; i<8; i++){*p++ = _DS1302_toggleread();}_DS1302_stop();}// --------------------------------------------------------// DS1302_clock_burst_write//// This function writes 8 bytes clock data in burst mode// to the DS1302.//// This function may be called as the first function,// also the pinMode is set.//void DS1302_clock_burst_write( uint8_t *p){int i;_DS1302_start();// Instead of the address,// the CLOCK_BURST_WRITE command is issued.// the I/O-line is not released_DS1302_togglewrite( DS1302_CLOCK_BURST_WRITE, false);for( i=0; i<8; i++){// the I/O-line is not released_DS1302_togglewrite( *p++, false);}_DS1302_stop();}// --------------------------------------------------------// DS1302_read//// This function reads a byte from the DS1302// (clock or ram).//// The address could be like "0x80" or "0x81",// the lowest bit is set anyway.//// This function may be called as the first function,// also the pinMode is set.//uint8_t DS1302_read(int address){uint8_t data;// set lowest bit (read bit) in addressbitSet( address, DS1302_READBIT);_DS1302_start();// the I/O-line is released for the data_DS1302_togglewrite( address, true);data = _DS1302_toggleread();_DS1302_stop();return (data);}// --------------------------------------------------------// DS1302_write//// This function writes a byte to the DS1302 (clock or ram).//// The address could be like "0x80" or "0x81",// the lowest bit is cleared anyway.//// This function may be called as the first function,// also the pinMode is set.//void DS1302_write( int address, uint8_t data){// clear lowest bit (read bit) in addressbitClear( address, DS1302_READBIT);_DS1302_start();// don"t release the I/O-line_DS1302_togglewrite( address, false);// don"t release the I/O-line_DS1302_togglewrite( data, false);_DS1302_stop();}// --------------------------------------------------------// _DS1302_start//// A helper function to setup the start condition.//// An "init" function is not used.// But now the pinMode is set every time.// That"s not a big deal, and it"s valid.// At startup, the pins of the Arduino are high impedance.// Since the DS1302 has pull-down resistors,// the signals are low (inactive) until the DS1302 is used.void _DS1302_start( void){digitalWrite( DS1302_CE_PIN, LOW); // default, not enabledpinMode( DS1302_CE_PIN, OUTPUT);digitalWrite( DS1302_SCLK_PIN, LOW); // default, clock lowpinMode( DS1302_SCLK_PIN, OUTPUT);pinMode( DS1302_IO_PIN, OUTPUT);digitalWrite( DS1302_CE_PIN, HIGH); // start the sessiondelayMicroseconds( 4); // tCC = 4us}// --------------------------------------------------------// _DS1302_stop//// A helper function to finish the communication.//void _DS1302_stop(void){// Set CE lowdigitalWrite( DS1302_CE_PIN, LOW);delayMicroseconds( 4); // tCWH = 4us}// --------------------------------------------------------// _DS1302_toggleread//// A helper function for reading a byte with bit toggle//// This function assumes that the SCLK is still high.//uint8_t _DS1302_toggleread( void){uint8_t i, data;data = 0;for( i = 0; i <= 7; i++){// Issue a clock pulse for the next databit.// If the "togglewrite" function was used before// this function, the SCLK is already high.digitalWrite( DS1302_SCLK_PIN, HIGH);delayMicroseconds( 1);// Clock down, data is ready after some time.digitalWrite( DS1302_SCLK_PIN, LOW);delayMicroseconds( 1); // tCL=1000ns, tCDD=800ns// read bit, and set it in place in "data" variablebitWrite( data, i, digitalRead( DS1302_IO_PIN));}return( data);}// --------------------------------------------------------// _DS1302_togglewrite//// A helper function for writing a byte with bit toggle//// The "release" parameter is for a read after this write.// It will release the I/O-line and will keep the SCLK high.//void _DS1302_togglewrite( uint8_t data, uint8_t release){int i;for( i = 0; i <= 7; i++){// set a bit of the data on the I/O-linedigitalWrite( DS1302_IO_PIN, bitRead(data, i));delayMicroseconds( 1); // tDC = 200ns// clock up, data is read by DS1302digitalWrite( DS1302_SCLK_PIN, HIGH);delayMicroseconds( 1); // tCH = 1000ns, tCDH = 800nsif( release && i == 7){// If this write is followed by a read,// the I/O-line should be released after// the last bit, before the clock line is made low.// This is according the datasheet.// I have seen other programs that don"t release// the I/O-line at this moment,// and that could cause a shortcut spike// on the I/O-line.pinMode( DS1302_IO_PIN, INPUT);// For Arduino 1.0.3, removing the pull-up is no longer needed.// Setting the pin as "INPUT" will already remove the pull-up.// digitalWrite (DS1302_IO, LOW); // remove any pull-up}else{digitalWrite( DS1302_SCLK_PIN, LOW);delayMicroseconds( 1); // tCL=1000ns, tCDD=800ns}}///////////////////////////// END CLOCK MODULE part 2}

arduino 2.8 tft lcd code factory

ER-TFT028A3-4 is 240x320 dots 2.8" color tft lcd module display with ST7789V controller and optional capacitive touch panel and 4-wire resistive touch panel,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.It supports 8080 8-bit,9-bit,16-bit,18-bit parallel,3-wire,4-wire serial spi interface. FPC with zif connector is easily to assemble or remove.Lanscape mode is also available.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 2.8"TFT Touch Shield with Libraries, Examples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.

arduino 2.8 tft lcd code factory

In electronics world today, Arduino is an open-source hardware and software company, project and user community that designs and manufactures single-board microcontrollers and microcontroller kits for building digital devices. Arduino board designs use a variety of microprocessors and controllers. The boards are equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to various expansion boards (‘shields’) or breadboards (for prototyping) and other circuits.

The boards feature serial communications interfaces, including Universal Serial Bus (USB) on some models, which are also used for loading programs. The microcontrollers can be programmed using the C and C++ programming languages, using a standard API which is also known as the “Arduino language”. In addition to using traditional compiler toolchains, the Arduino project provides an integrated development environment (IDE) and a command line tool developed in Go. It aims to provide a low-cost and easy way for hobbyist and professionals to create devices that interact with their environment using sensors and actuators. Common examples of such devices intended for beginner hobbyists include simple robots, thermostats and motion detectors.

In order to follow the market tread, Orient Display engineers have developed several Arduino TFT LCD displays and Arduino OLED displays which are favored by hobbyists and professionals.

The sizes are 0.96” (160×80), 1.13” (240×135), 1.3” ((240×240), 1.33” (128×128), 1.54” (240×240), 1.77” (128×160), 2.0” (240×320), 2.3” (320×240), 2.4” (240×320), 2.8” (240×320), 3.2” (240×320).

Although Orient Display provides many standard small size OLED, TN and IPS Arduino TFT displays, custom made solutions are provided with larger size displays or even with capacitive touch panel.

arduino 2.8 tft lcd code factory

This is a 2.8” TFT Resistive Touchscreen Display. The module, with a resolution of 320x240, adopts ILI9341 as driver IC and SPI (4-line) communication mode. The board integrates touch chip XPT2046, which converts the touch data collected by the AD to SPI data. The module also integrates an SD card slot allowing you to easily read the full-color bitmap. There are two modes of wiring supplied, normal pin header wiring and GDI. The latter one requires to work with a main controller board with a GDI interface (e.g. FireBeetle-M0). You can use it with only one FPC line plugging in, which reduces the complexity of the wiring. Furthermore, it features high resolution, wide viewing angle, and simple wiring, which can be used in all sorts of display applications, such as, IoT controlling device, game console, desktop event notifier, touch interface, etc.