arduino tft lcd gui price

New Launch intelligent C-Series 3.5 inch-10.1 inch TFT LCD Display Module SCBRHMI products has been conceived as TFT monitor & Touch controller. It includes processor, control program, driver, flash memory, RS232/ TTL /USB, touchscreen, power supply etcso it is a whole display system based on the powerful & easy operating system, which can be controlled by Any MCU. (Very suitable for your Arduino and Raspberry Pi projects.)
They can be used to perform all basic functions, such as text display, image display, curve display as well as touch function, Video & Audio function etc. It has free GUI design software to offer an easy way to create an intuitive and superb touch user interface even for beginners, the User Interface can be more abundant and various. And the 128M flash memory can store your data, configuration files, image file, font file, video file and audio file etc.
Included GUI Design Software Makes Programming Fast & Easy -Our HMI TFT LCD module is a whole display system that comes with no-cost GUI design software(STONE Designer).

Design your GUI with a drag & drop builder, then apply the same code to a wide range of displays, libraries and controllers with the cross-platform framework. Open source MIT license grants free commercial usage.
Raspberry Pi, Arduino, ATmega2560, ESP8266 / NodeMCU, ESP32, M5stack, Teensy 3 / T4, WIO Terminal, Feather M0 (Cortex-M0), nRF52 (Cortex-M4F), LINUX, Beaglebone Black, STM32, Due, etc.

The eGTT platform is a drag and drop GUI design software teamed up with rugged industrial feature rich line of full colour UART Embedded HMI TFT displays for medical, industrial or any personal project.
Design your GUI in hours, not days or weeks. Free lifetime support on both hardware and software. Contact us today for any custom or semi-custom requirements you may have.

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work you can check my particular tutorial. Here you can download that file:

Nextion is a Human Machine Interface (HMI) solution combining an onboard processor and memory touch display with Nextion Editor software for HMI GUI project development.
Using the Nextion Editor software, you can quickly develop the HMI GUI by drag-and-drop components (graphics, text, button, slider, etc.) and ASCII text-based instructions for coding how components interact on the display side.

This post is an introduction to the Nextion display with the Arduino. We’re going to show you how to configure the display for the first time, download the needed resources, and how to integrate it with the Arduino UNO board. We’ll also make a simple graphical user interface to control the Arduino pins.
Nextion is a Human Machine Interface (HMI) solution. Nextion displays are resistive touchscreens that makes it easy to build a Graphical User Interface (GUI). It is a great solution to monitor and control processes, being mainly applied to IoT applications.
To design the GUI, you use the Nextion Editor, in which you can add buttons, gauges, progress bars, text labels, and more to the user interface in an easy way. We have the 2.8” Nextion display basic model, that is shown in the following figure.
Connecting the Nextion display to the Arduino is very straightforward. You just need to make four connections: GND, RX, TX, and +5V. These pins are labeled at the back of your display, as shown in the figure below.
You can power up the Nextion display directly from the Arduino 5V pin, but it is not recommended. Working with insufficient power supply may damage the display. So, you should use an external power source. You should use a 5V/1A power adaptor with a micro USB cable. Along with your Nextion display, you’ll also receive a USB to 2 pin connector, useful to connect the power adaptor to the display.
The best way to get familiar with a new software and a new device is to make a project example. Here we’re going to create a user interface in the Nextion display to control the Arduino pins, and display data.
The user interface has two pages: one controls two LEDs connected to the Arduino pins, and the other shows data gathered from the DHT11 temperature and humidity sensor;
We won’t cover step-by-step how to build the GUI in the Nextion display. But we’ll show you how to build the most important parts, so that you can learn how to actually build the user interface. After following the instructions, you should be able to complete the user interface yourself.
All components have an attribute called objname. This is the name of the component. Give good names to your components because you’ll need them later for the Arduino code. Also note that each component has one id number that is unique to that component in that page. The figure below shows the objname and id for the slider.
You should trigger an event for the touchable components (the buttons and the slider) so that the Arduino knows that a component was touched. You can trigger events when you press or when you release a component.
Adding more pages to your GUI is really simple. On the top right corner, in the Page area, select the Add button to add a new page. A new page will be created. In this case, page1.
Notice that we have labels to hold the units like “ºC”, “ºF” and “%”, and empty labels that will be filled with the readings when we have our Arduino code running.
Once the GUI is ready, you need to write the Arduino code so that the Nextion can interact with the Arduino and vice-versa. Writing code to interact with the Nextion display is not straightforward for beginners, but it also isn’t as complicated as it may seem.
A good way to learn how to write code for the Arduino to interact with the Nextion display is to go to the examples folder in the Nextion library folder and explore. You should be able to copy and paste code to make the Arduino do what you want.
The first thing you should do is to take note of your components in the GUI that will interact with the Arduino and take note of their ID, names and page. Here’s a table of all the components the code will interact to (your components may have a different ID depending on the order you’ve added them to the GUI).
In this post we’ve introduced you to the Nextion display. We’ve also created a simple application user interface in the Nextion display to control the Arduino pins. The application built is just an example for you to understand how to interface different components with the Arduino – we hope you’ve found the instructions as well as the example provided useful.

Welcome to another Arduino video tutorial! In this video, we are going to take a first look at this 2.8” Color TFT Touch display! It is a big, low-cost touch display which is very easy to use. Without any further delay, let’s get started.
Hello guys, I am Nick and welcome to educ8s.tv a channel that is all about DIY electronics projects with Arduino, Raspberry Pi, ESP8266, ESP32 and other popular boards. If you are new here, welcome, be sure to subscribe and check the previous videos on the channel.
Today we are going to learn how to drive the 2.8” Touch display with the ILI9341 driver with an Arduino Uno and an ESP32 board. First of all, let’s take a close look at the display itself. The display is big, and it offers a resolution of 320×240 pixels. Compared to one of my favorites displays, the 1.8” Color TFT display you can see it a lot larger. The screen also offers touch functionality which is an added bonus and an SD card slot at the back. It uses the SPI interface, so the connection with the Arduino is very straightforward. The cost of the display is relatively low; it costs around 11$ which in my opinion is a fair price for what this display offers.
Another thing I like about this display is that it does not come as a shield like the touch display we were using so far. This way, we can connect the display to any board, the Arduino Pro mini, the STM32, the ESP8266 and the ESP32. This is very important because we now have a low-cost display that we can use with every board. Until now, the only touch display we could use with these boards were the Nextion displays which are more expensive, and to be honest even though I use them from time to time, I don’t really like them.
Now let’s see how to connect this display to an Arduino Uno. The first 9 pins of the display are the power pins and the SPI pins. So, if we connect only the first 9 pins of the display, we can use it as a regular display without touch functionality. The display uses 3.3-volt logic levels and unfortunately, it is not 5V tolerant. So, we need to use some 10K resistors if we want to drive it with a board that uses 5V logic levels like the Arduino Uno.
As you can see, we have connected Vcc to 5V of the Arduino Uno and the SPI pins of the display to the hardware SPI pins of the Arduino Uno. Let’s load a demo sketch now. As you can the 8bit Arduino Uno with only 2KBs of RAM can drive this big display! But as you can see it is very slow in updating the screen. It takes many seconds to update the whole screen which is a pity. It can display text with more speed though. It is obvious that the Arduino Uno is not enough to drive a display with such a high resolution. It is obvious that we need a more powerful board to drive this display effectively.
But can we build a useful project using this display? I wanted to find out, so I decided to build a simple real-time clock and temperature monitor. I added a DS3231 RTC module, and I modified the code of a previous project to use the new bigger display. You can find the code of the project in a link in the description below. The result is not that bad as the demo sketch. The project works fine, but of course, there is a small delay when the values on the screen are updated. In my opinion, this project demonstrates that we can use this display with an 8bit Arduino only on very simple projects that update the screen rarely.
Let’s now connect the display to an ESP32 board. If you are not familiar with it, the ESP32 is a very fast and inexpensive Arduino compatible board. I prepared a detailed review of this board a few months ago; you can watch it by clicking on the card here. Since the ESP32 board uses 3.3V logic levels, we don’t need any resistors to drive the display. So, if we don’t need the touch functionality, we connect the display according to this schematic diagram.
If we upload the same sketch that used before on the Arduino Uno, we can see the ESP32 is extremely fast. It can update the display, draw graphics and complete the demo sketch way faster than the Arduino Uno.
Let’s now see the software side of the project. In order to use this display with Arduino, we need to install the Adafruit ILI9341 driver and the familiar Adafruit GFX library if we don’t use the touch functionality. If we want to use the touch functionality, we have also to install the URtouch library. You can find links to all the libraries needed along with the code of the demo programs I showed you in the description below.

The IoD-09 modules feature a full colour 0.9” TFT LCD display. They are powered by the WiFi enabled ESP8266, which offers an array of functionality and options for any Designer / Integrator / User.
Ms.Josey
Ms.Josey