arduino 2.8 tft lcd touch shield library manufacturer

This is a versatile and Arduino/Seeeduino/Arduino Mega compatible resistive touch screen shield which can be used as display device, or sketch pad for user input/interface.
Compared with the previous version (2.8" TFT Touch Shield V1.0) we improved the screen driver with a professional chip (ILI9341) to provide the pin-saving SPI communication protocol without sacrificing the data transmission speed.
Circles isn"t the only thing our library can help you draw, we also have a lines, number, rectangle, and many more examples. Check those out as well to become a pro with the shield.
Function Description: The drawCircle function draws an empty circle with the center at the coordinates poX, and poY. The circle will be of radius r and the border color will be color. The color parameter is a 16-bit Red-Geen-Blue (RGB) integer, in the example code above the words YELLOW, CYAN, RED, and BLUE are defined as integers in the TFTv2.h file.
The TFT Touch Shield"s backlight is on by default since its control circuit is directly powered by the 5V pin. If, however, you wish to control the backlight"s on/off state using the Arduino Digital I/O pin 7, a simple modification will have to be made:
Now controlling the backlight"s state is as easy as controlling an LED, upload the following code to the Arduino board to see how to toggle the backlight every 500ms (1/2 second):
I still remember when I post my first Instructable post years ago, it"s a project about Arduino, I made a phone with Arduino. It"s called ArduinoPhone, even today I can get some comments from it, and I am glad to help others to make their own phone with Arduino.
Combining Arduino and other shield modules, we make a mobile phone named Arduino Phone. Meanwhile, we printed a shell for it with the 3D printer. Although it"s not such fine as you think, even a little bit clunky, it"s still very cool. That is the point this is a cell phone made by ourselves.
While, we can"t install Arduino Phone Apps limited by Arduino. So, if you want to play Angry Birds, then you need to do some big modifications on Arduino Phone. :)

I have bought "MCUFRIEND" 2.8 tft touch lcd and controller printed on it shows "ILI9338". Example given in this library are not working except for the basic one and it don"t even work with touch examples. After searching on google found out that "MCUFRIEND_kbv" library for debug. When i run "diagnose_tft_support" it shows following output. Also added "Read reg" after first output. Please Help !!!

Spice up your Arduino project with a beautiful touchscreen display shield with built in microSD card connection. This TFT display is 2.4" diagonal and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. As a bonus, this display has a optional capacitive touch panel and resistive touch panel with controller XPT2046 attached by default.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Due/Mega 2560).
This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library at the bottom of this page that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x,y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!
If you"ve had a lot of Arduino DUEs go through your hands (or if you are just unlucky), chances are you’ve come across at least one that does not start-up properly.The symptom is simple: you power up the Arduino but it doesn’t appear to “boot”. Your code simply doesn"t start running.You might have noticed that resetting the board (by pressing the reset button) causes the board to start-up normally.The fix is simple,here is the solution.

Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big (5" diagonal) bright (12 white-LED backlight) and colorfu 480x272 pixels with individual pixel control. As a bonus, this display has a optional resistive touch panel attached on screen by default.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Due/Mega 2560).
This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library at the bottom of this page that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x,y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!
For 5 inch screen,the high current is needed.But the current of arduino uno or arduino mega board is low, an external 5V power supply is needed. Refer to the image shows the external power supply position on shield ER-AS-RA8875.
If you"ve had a lot of Arduino DUEs go through your hands (or if you are just unlucky), chances are you’ve come across at least one that does not start-up properly.The symptom is simple: you power up the Arduino but it doesn’t appear to “boot”. Your code simply doesn"t start running.You might have noticed that resetting the board (by pressing the reset button) causes the board to start-up normally.The fix is simple,here is the solution.

TFT Touch Shield V2.0 is a resistive touch screen, compatible with Arduino/Seeeduino/Arduino Mega/SAMD21 platforms. It can be used as display device or sketch pad. Compared with the previous version, 2.8""TFT Touch Shield V1.0, we upgraded the screen driver to a more professional chip, ILI9341 driver, providing different pin-saving SPI communication without sacrificing the data transmitting speed. Due to the communication method change, programs developed for the original version are needed for modification before being transplanted to the new version. With a SD card module integrated on this shield, this shield reserves capability for other expansions of your project.
Click to download the Touch Screen Driver,then please click on below button to download the library and install it, if you don"t know how to install an Arduino library, please refer to the tutorial (HOW TO INSTALL AN ARDUINO LIBRARY).
We recommend using Seeed_Arduino_LCD with internal flash chips larger than 128k. If you have a smaller flash device, I recommend using the TFT_Touch_Shield_V2.
Step1. Download and Install Seeed_Arduino_LCD. if you don"t know how to install an Arduino library, please refer to the tutorial (HOW TO INSTALL AN ARDUINO LIBRARY).

Arduino 2.8"" TFT Touch Shield is an Arduino UNO/ Mega compatible multicolored TFT display with a touch-screen and SD card socket. It is available in an Arduino shield compatible pinout for attachment. The TFT driver is based on ILI9325DS with 8bit data and 4bit control interface.

I am trying to make a truly Universal Remote Control out of this mess. I just got the Arduino Uno & the Display and put it together and there are NO pins left to operate an IR LED.
Can this 2.8" elegoo display play video at all? I"m trying to make a unit that an older woman, in her 80"s can play a video on it, if I set it up correctly? This is for a really good cause, I desperately need help, this is super important. Helping elderly folks with modern technology is tough. But I really need it to be able to play a video off the SD card if possible. Any help would be super highly appreciated.ReplyUpvote
Hello,please post our code also ..the screen driver must be known and that info must be known in order to get these things to work correctly..you show your code and then the vid blurs..Someone needs to write a pdf teaching how ,what ,when and why concerning these screens I would gladly pay $10.00 and I am sure others would too.I have 3 different tftlcds only 1 works its for the mega and Bomer has a lib for it,I am really considering use of Nextion units from now on 4 pins easy programming but higher cost...also the small cell phone screens use spi mode and are real easy to set up and use
The program runs and nothing is displayed but a white screen. when I open the COM4 I see that when I hit the screen numbers appear to calibrate the screens position so it is registering but not showing up on the LCD. please help me before I pull all my hair out.1
I"m thinking I need an Arduino Mega to do what I want - a Universal Remote. Because after mounting the display there are NO pins left for anything else.0
Thank you for the instructable. I"v been trying to build a DIY smartphone but couldn"t get the code or libraries for the touch screen. Now i can finally build it. Thanks.0
I"m having issues getting this display to work on my Arduino 101 board with the libraries that are suggested - errors in compiling seem to indicate that the board type isn"t supported in the Adafruit_TFTLCD library. Here"s a representative error:
I finally got the touchscreen to work correct using your links to the libraries. Found out that this specific TFT display module uses pin 6 & 7 for touch sensor, instead of the standard 4 & 5.0
I never received a response on this, so went through the painful process of copying code from the video. It can be found here for others that might need it. Not that this has some minor changes, but is fully functional and I will continue to refine: https://github.com/siliconghost/Arduino_2.8in_TFT_wSD

Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big (2.8" diagonal) bright (4 white-LED backlight) and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. It has way more resolution than a black and white 128x64 display. As a bonus, this display has a resistive touchscreen attached to it already, so you can detect finger presses anywhere on the screen. (We also have a capacitive-touch version of this shield here)
We"ve updated our original v1 shield to an SPI display - its a tiny bit slower but uses a lot less pins and is now much easier to use with Mega & Leonardo. We also include an SPI touchscreen controller so you only need one additional pin to add a high quality touchscreen controller. Even with all the extras, the price is lower thanks to our parts sourcing & engineering skillz!
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Duemilanove/Diecimila). Solder three jumpers and you can use it at full speed on a Leonardo or Mega as well.
This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. This shield needs fewer pins than our v1 shield, so you can connect more sensors, buttons and LEDs: 5 SPI pins for the display, another pin for the SPI touchscreen controller and another pin for uSD card if you want to read images off of it.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x, y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!

Add some sizzle to your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection and acapacitivetouchscreen.Adafruit 2.8" TFT Touch Shield for Arduino w/Capacitive Touchis big (2.8" diagonal) bright (4 white-LED backlight) and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. It has way more resolution than a black and white 128x64 display. As a bonus, this display has a capacitive touchscreen attached to it already, so you can detect finger presses anywhere on the screen. It is a single-touch display.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Adafruit 2.8" TFT Touch Shield for Arduino w/Capacitive Touch works best with any classic Arduino (UNO/Duemilanove/Diecimila). Solder three jumpers and you can use it at full speed on a Leonardo or Mega as well.
The display uses digital pins 13-9. Touchscreen controller requires I2C pins SDA and SCL. microSD pin requires digital #4. That means you can use digital pins 2, 3, 5, 6, 7, 8 and analog 0-5. Pin 4 is available if not using the microSD

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
For this tutorial I composed three examples. The first example is distance measurement using ultrasonic sensor. The output from the sensor, or the distance is printed on the screen and using the touch screen we can select the units, either centimeters or inches.
The third example is a game. Actually it’s a replica of the popular Flappy Bird game for smartphones. We can play the game using the push button or even using the touch screen itself.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
Next we need to define the fonts that are coming with the libraries and also define some variables needed for the program. In the setup section we need to initiate the screen and the touch, define the pin modes for the connected sensor, the led and the button, and initially call the drawHomeSreen() custom function, which will draw the home screen of the program.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.
In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work you can check my particular tutorial. Here you can download that file:
Ms.Josey
Ms.Josey