connecting tft lcd screen to via hdmi computer quotation

Displaytech HDMI conversion boards easily interface HDMI into an RGB or LVDS TFT display. The HDMI conversion boards have been developed to provide an all-in-one solution - simply connect your single-board computer and supply the Displaytech conversion board with 5V power.
These TFT LCD display modules feature an HDMI receiver and provide RGB or LVDS display data for Raspberry Pi, Beagle Bone, or any other single board computer (SBC) application that supplies an HDMI video input.

New HDMI-interface display can be easily connected to Raspberry Pi or other mini computers. This is an archive article published 06/22/2017. Some information may no longer be up to date and in line with the current state. Please contact us in case of interest.
HDMI (high definition multimedia interface) can be nowadays found on the output of every PC and mainly – also on the output of several industrial mini PC and embedded systems.
Display can be usually connected to a small SBC (single board computer) in various ways, but why not use the simplest one? SBCs with Android OS usually contain HW and SW resources to make a display connected through HDMI work by the Plug´n´Play method.
From this point of view, it´s only gratifying that the display producers’ offer is getting better in this field as shown by the new display WF50B from company Winstar. It is a 5“ display with HDMI interface (TFP401 controller), decent 800x480 px resolution and a resistive touch panel (with USB interface). Version with a capacitive touch panel is in development.
The display WF50BTIFGDHTX has a 40-pin connector (header), HDMI connector and it´s also possible to buy optional HDMI connector WWHDMI-00# for a direct connection to Raspberry Pi.
When you issue article on your website, please give its source: https://www.soselectronic.com/articles/winstar/tft-display-winstar-wf50b-with-hdmi-interface-can-be-connected-to-almost-anything-2009

This 24-bit true color TFT display module has built-in HDMI compatibility for a streamlined connection between devices with fewer cables. Assembled to the display, the custom PCB provides the user an all-in-one, plug-and-play HDMI + USB touch solution and is attached to a steel mounting bracket for easy, secure installation. Included on-board this module is a Texas Instruments TFP401A HDMI/DVI receiver and a high brightness LED driver with PWM. Whether you need a display for your Raspberry Pi/BeagleBone Black application, a Windows/Windows embedded PC monitor, or a touchscreen HMI for your Linux or other embedded system, this display offers a solution. The LCD has a high resolution 800X480 screen with IPS technology, which delivers superior image quality, accurate color reproduction, and high contrast ratio at every angle. This Liquid Crystal Display is RoHS compliant and has a USB-HID capacitive touch panel with no requirement for external driver installation.
Adjust the length, position, and pinout of your cables or add additional connectors. Get a cable solution that’s precisely designed to make your connections streamlined and secure.
Enhance your user experience with capacitive or resistive touch screen technology. We’ll adjust the glass thickness or shape of the touch panel so it’s a perfect fit for your design.
Choose from a wide selection of interface options or talk to our experts to select the best one for your project. We can incorporate HDMI, USB, SPI, VGA and more into your display to achieve your design goals.
Equip your display with a custom cut cover glass to improve durability. Choose from a variety of cover glass thicknesses and get optical bonding to protect against moisture and debris.

All the accessories listed below tier pricing need to pay.We won"t deliver until you select. Power adaptor should be 12V/2000mA in output and center pin for positive voltage and the outer shield for negative voltage.The temperature for controller RTD2660 would increase during working.That"s normal phenomenon,not quality problem.
ER-TFTV050-1 is 480x272 Pixels 5" color tft lcd module display with hdmi,vga,video,av signal driver board,optional 4-wire resistive touch panel with USB driver board and cable, optional capacitive touch panel with USB controller board and cable, optional remote control
,superior display quality,super wide view angle.It can be used in any embedded systems,car,industrial device,security and hand-held equipment which requires display in high quality and colorful video It"s also ideal for raspberry pi by HDMI.

All the accessories listed below tier pricing need to pay.We won"t deliver until you select. Power adaptor should be 12V/2000mA in output and center pin for positive voltage and the outer shield for negative voltage.The temperature for controller RTD2660 would increase during working.That"s normal phenomenon,not quality problem.
ER-TFTV080-2 is 800x600 dots 8"color tft lcd module display with HDMI,VGA,Video signal driver board,optional 8 inch 4-wire resistive touch panel, touch panel usb port controller board,remote control,superior display quality,super wide view angle.It can be used in any embedded systems,car,industrial device,security and hand-held equipment which requires display in high quality and colorful video. It"s also ideal for Raspberry Pi by HDMI.

Came across the post, Connect Raspberry Pi with TFT LCD Display. It talks about from install Raspbian, set up screen resolution, install touch support driver to add on-screen keyboard.

A thin-film-transistor liquid-crystal display (TFT LCD) is a variant of a liquid-crystal display that uses thin-film-transistor technologyactive matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven (i.e. with segments directly connected to electronics outside the LCD) LCDs with a few segments.
In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968. In 1971, Lechner, F. J. Marlowe, E. O. Nester and J. Tults demonstrated a 2-by-18 matrix display driven by a hybrid circuit using the dynamic scattering mode of LCDs.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).active-matrix liquid-crystal display (AM LCD) using CdSe TFTs in 1974, and then Brody coined the term "active matrix" in 1975.high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.
The liquid crystal displays used in calculators and other devices with similarly simple displays have direct-driven image elements, and therefore a voltage can be easily applied across just one segment of these types of displays without interfering with the other segments. This would be impractical for a large display, because it would have a large number of (color) picture elements (pixels), and thus it would require millions of connections, both top and bottom for each one of the three colors (red, green and blue) of every pixel. To avoid this issue, the pixels are addressed in rows and columns, reducing the connection count from millions down to thousands. The column and row wires attach to transistor switches, one for each pixel. The one-way current passing characteristic of the transistor prevents the charge that is being applied to each pixel from being drained between refreshes to a display"s image. Each pixel is a small capacitor with a layer of insulating liquid crystal sandwiched between transparent conductive ITO layers.
The circuit layout process of a TFT-LCD is very similar to that of semiconductor products. However, rather than fabricating the transistors from silicon, that is formed into a crystalline silicon wafer, they are made from a thin film of amorphous silicon that is deposited on a glass panel. The silicon layer for TFT-LCDs is typically deposited using the PECVD process.
Polycrystalline silicon is sometimes used in displays requiring higher TFT performance. Examples include small high-resolution displays such as those found in projectors or viewfinders. Amorphous silicon-based TFTs are by far the most common, due to their lower production cost, whereas polycrystalline silicon TFTs are more costly and much more difficult to produce.
The twisted nematic display is one of the oldest and frequently cheapest kind of LCD display technologies available. TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Modern, high end consumer products have developed methods to overcome the technology"s shortcomings, such as RTC (Response Time Compensation / Overdrive) technologies. Modern TN displays can look significantly better than older TN displays from decades earlier, but overall TN has inferior viewing angles and poor color in comparison to other technology.
Most TN panels can represent colors using only six bits per RGB channel, or 18 bit in total, and are unable to display the 16.7 million color shades (24-bit truecolor) that are available using 24-bit color. Instead, these panels display interpolated 24-bit color using a dithering method that combines adjacent pixels to simulate the desired shade. They can also use a form of temporal dithering called Frame Rate Control (FRC), which cycles between different shades with each new frame to simulate an intermediate shade. Such 18 bit panels with dithering are sometimes advertised as having "16.2 million colors". These color simulation methods are noticeable to many people and highly bothersome to some.gamut (often referred to as a percentage of the NTSC 1953 color gamut) are also due to backlighting technology. It is not uncommon for older displays to range from 10% to 26% of the NTSC color gamut, whereas other kind of displays, utilizing more complicated CCFL or LED phosphor formulations or RGB LED backlights, may extend past 100% of the NTSC color gamut, a difference quite perceivable by the human eye.
The transmittance of a pixel of an LCD panel typically does not change linearly with the applied voltage,sRGB standard for computer monitors requires a specific nonlinear dependence of the amount of emitted light as a function of the RGB value.
In-plane switching was developed by Hitachi Ltd. in 1996 to improve on the poor viewing angle and the poor color reproduction of TN panels at that time.
Initial iterations of IPS technology were characterised by slow response time and a low contrast ratio but later revisions have made marked improvements to these shortcomings. Because of its wide viewing angle and accurate color reproduction (with almost no off-angle color shift), IPS is widely employed in high-end monitors aimed at professional graphic artists, although with the recent fall in price it has been seen in the mainstream market as well. IPS technology was sold to Panasonic by Hitachi.
In 2004, Hydis Technologies Co., Ltd licensed its AFFS patent to Japan"s Hitachi Displays. Hitachi is using AFFS to manufacture high end panels in their product line. In 2006, Hydis also licensed its AFFS to Sanyo Epson Imaging Devices Corporation.
Less expensive PVA panels often use dithering and FRC, whereas super-PVA (S-PVA) panels all use at least 8 bits per color component and do not use color simulation methods.BRAVIA LCD TVs offer 10-bit and xvYCC color support, for example, the Bravia X4500 series. S-PVA also offers fast response times using modern RTC technologies.
When the field is on, the liquid crystal molecules start to tilt towards the center of the sub-pixels because of the electric field; as a result, a continuous pinwheel alignment (CPA) is formed; the azimuthal angle rotates 360 degrees continuously resulting in an excellent viewing angle. The ASV mode is also called CPA mode.
A technology developed by Samsung is Super PLS, which bears similarities to IPS panels, has wider viewing angles, better image quality, increased brightness, and lower production costs. PLS technology debuted in the PC display market with the release of the Samsung S27A850 and S24A850 monitors in September 2011.
TFT dual-transistor pixel or cell technology is a reflective-display technology for use in very-low-power-consumption applications such as electronic shelf labels (ESL), digital watches, or metering. DTP involves adding a secondary transistor gate in the single TFT cell to maintain the display of a pixel during a period of 1s without loss of image or without degrading the TFT transistors over time. By slowing the refresh rate of the standard frequency from 60 Hz to 1 Hz, DTP claims to increase the power efficiency by multiple orders of magnitude.
Due to the very high cost of building TFT factories, there are few major OEM panel vendors for large display panels. The glass panel suppliers are as follows:
External consumer display devices like a TFT LCD feature one or more analog VGA, DVI, HDMI, or DisplayPort interface, with many featuring a selection of these interfaces. Inside external display devices there is a controller board that will convert the video signal using color mapping and image scaling usually employing the discrete cosine transform (DCT) in order to convert any video source like CVBS, VGA, DVI, HDMI, etc. into digital RGB at the native resolution of the display panel. In a laptop the graphics chip will directly produce a signal suitable for connection to the built-in TFT display. A control mechanism for the backlight is usually included on the same controller board.
The low level interface of STN, DSTN, or TFT display panels use either single ended TTL 5 V signal for older displays or TTL 3.3 V for slightly newer displays that transmits the pixel clock, horizontal sync, vertical sync, digital red, digital green, digital blue in parallel. Some models (for example the AT070TN92) also feature input/display enable, horizontal scan direction and vertical scan direction signals.
New and large (>15") TFT displays often use LVDS signaling that transmits the same contents as the parallel interface (Hsync, Vsync, RGB) but will put control and RGB bits into a number of serial transmission lines synchronized to a clock whose rate is equal to the pixel rate. LVDS transmits seven bits per clock per data line, with six bits being data and one bit used to signal if the other six bits need to be inverted in order to maintain DC balance. Low-cost TFT displays often have three data lines and therefore only directly support 18 bits per pixel. Upscale displays have four or five data lines to support 24 bits per pixel (truecolor) or 30 bits per pixel respectively. Panel manufacturers are slowly replacing LVDS with Internal DisplayPort and Embedded DisplayPort, which allow sixfold reduction of the number of differential pairs.
Backlight intensity is usually controlled by varying a few volts DC, or generating a PWM signal, or adjusting a potentiometer or simply fixed. This in turn controls a high-voltage (1.3 kV) DC-AC inverter or a matrix of LEDs. The method to control the intensity of LED is to pulse them with PWM which can be source of harmonic flicker.
The bare display panel will only accept a digital video signal at the resolution determined by the panel pixel matrix designed at manufacture. Some screen panels will ignore the LSB bits of the color information to present a consistent interface (8 bit -> 6 bit/color x3).
With analogue signals like VGA, the display controller also needs to perform a high speed analog to digital conversion. With digital input signals like DVI or HDMI some simple reordering of the bits is needed before feeding it to the rescaler if the input resolution doesn"t match the display panel resolution.
The statements are applicable to Merck KGaA as well as its competitors JNC Corporation (formerly Chisso Corporation) and DIC (formerly Dainippon Ink & Chemicals). All three manufacturers have agreed not to introduce any acutely toxic or mutagenic liquid crystals to the market. They cover more than 90 percent of the global liquid crystal market. The remaining market share of liquid crystals, produced primarily in China, consists of older, patent-free substances from the three leading world producers and have already been tested for toxicity by them. As a result, they can also be considered non-toxic.
Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.
Richard Ahrons (2012). "Industrial Research in Microcircuitry at RCA: The Early Years, 1953–1963". 12 (1). IEEE Annals of the History of Computing: 60–73. Cite journal requires |journal= (help)
K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. AIP. 37 (1): 1079–82. doi:10.1889/1.2433159. S2CID 129569963.
Kim, Sae-Bom; Kim, Woong-Ki; Chounlamany, Vanseng; Seo, Jaehwan; Yoo, Jisu; Jo, Hun-Je; Jung, Jinho (15 August 2012). "Identification of multi-level toxicity of liquid crystal display wastewater toward Daphnia magna and Moina macrocopa". Journal of Hazardous Materials. Seoul, Korea; Laos, Lao. 227–228: 327–333. doi:10.1016/j.jhazmat.2012.05.059. PMID 22677053.

To provide you more detailed instruction, you can also click ASUS Youtube video link below to know more about Troubleshooting for No display on LCD Monitor
Make sure if the operating system had entered hibernation,sleep or power-save mode. Press any key (Enter key / Power key) or move the mouse to wake it up.
Check if the signal cable (VGA / DVI / HDMI / DisplayPort) is wellconnected , and confirmed another end of the output cable has been firmly connected to computer input port (graphics card). Unplug and plug 2-terminals again to ensure all pins aren"t bent.
Check if the signal cable (VGA / DVI / HDMI / DisplayPort) is wellconnected and confirmed another end of the output cable has been firmly connected to computer input port (graphics card). Unplug and plug 2-terminals again to ensure all the pins aren"t bent.
If the model had attached with the power supply (AC-adapter), make sure the power supply has connected to the screen. Please check if the light of power supply is ON. If the light is NOT ON, change another power supply to test.
Are there any regional differences inpower specifications thatASUS LCD monitor supported (for example: If monitor was bought in Taiwan, can it be used in China or other countries?)
ASUS LCD monitor can support power specification: AC 100-240V. As long as within this voltage range, the display can work properly. However, please be noted that if you bought a monitor from another region, the power cord is not necessarily compatible to power outlet. Customer should replace the appropriate power cord or plug adapter in order to ensure normal power supply of the display.

Display size, contrast, color, brightness, resolution, and power are key factors in choosing the right display technology for your application. However, making the right choice in how you feed the information to the display is just as vital, and there are many interface options available.
All displays work in a similar manner. In a very basic explanation, they all have many rows and columns of pixels driven by a controller that communicates with each pixel to emit the brightness and color needed to make up the transmitted image. In some devices, the pixels are diodes that light up when current flows (PMOLEDs and AMOLEDs), and in other electronics, the pixel acts as a shutter to let some of the light from a backlight visible. In all cases, a memory array stores the image information that travels to the display through an interface.
According to Wikipedia, "an interface is a shared boundary across which two separate components of a computer system exchange information. The exchange can be between software, computer hardware, peripheral devices, humans, and combinations of these. Some computer hardware devices such as a touchscreen can both send and receive data through the interface, while others such as a mouse or microphone may only provide an interface to send data to a given system.” In other words, an interface is something that facilitates communication between two objects. Although display interfaces serve a similar purpose, how that communication occurs varies widely.
Serial Peripheral Interface (SPI) is a synchronous serial communication interface best-suited for short distances. It was developed by Motorola for components to share data such as flash memory, sensors, Real-Time Clocks, analog-to-digital converters, and more. Because there is no protocol overhead, the transmission runs at relatively high speeds. SPI runs on one master (the side that generates the clock) with one or more slaves, usually the devices outside the central processor. One drawback of SPI is the number of pins required between devices. Each slave added to the master/slave system needs an additional chip select I/O pin on the master. SPI is a great option for small, low-resolution displays including PMOLEDs and smaller LCDs.
Philips Semiconductors invented I2C (Inter-integrated Circuit) or I-squared-C in 1982. It utilizes a multi-master, multi-slave, single-ended, serial computer bus system. Engineers developed I2C for simple peripherals on PCs, like keyboards and mice to then later apply it to displays. Like SPI, it only works for short distances within a device and uses an asynchronous serial port. What sets I2C apart from SPI is that it can support up to 1008 slaves and only requires two wires, serial clock (SCL), and serial data (SDA). Like SPI, I2C also works well with PMOLEDs and smaller LCDs. Many display systems transfer the touch sensor data through I2C.
RGB is used to interface with large color displays. It sends 8 bits of data for each of the three colors, Red Green, and Blue every clock cycle. Since there are 24 bits of data transmitted every clock cycle, at clock rates up to 50 MHz, this interface can drive much larger displays at video frame rates of 60Hz and up.
Low-Voltage Differential Signaling (LVDS) was developed in 1994 and is a popular choice for large LCDs and peripherals in need of high bandwidth, like high-definition graphics and fast frame rates. It is a great solution because of its high speed of data transmission while using low voltage. Two wires carry the signal, with one wire carrying the exact inverse of its companion. The electric field generated by one wire is neatly concealed by the other, creating much less interference to nearby wireless systems. At the receiver end, a circuit reads the difference (hence the "differential" in the name) in voltage between the wires. As a result, this scheme doesn’t generate noise or gets its signals scrambled by external noise. The interface consists of four, six, or eight pairs of wires, plus a pair carrying the clock and some ground wires. 24-bit color information at the transmitter end is converted to serial information, transmitted quickly over these pairs of cables, then converted back to 24-bit parallel in the receiver, resulting in an interface that is very fast to handle large displays and is very immune to interference.
Mobile Industry Processor Interface (MIPI) is a newer technology that is managed by the MIPI Alliance and has become a popular choice among wearable and mobile developers. MIPI uses similar differential signaling to LVDS by using a clock pair and one to eight pairs of data called lanes. MIPI supports a complex protocol that allows high speed and low power modes, as well as the ability to read data back from the display at lower rates. There are several versions of MIPI for different applications, MIPI DSI being the one for displays.
To give an example, a small monochrome PMOLED with a resolution of 128 x 128 contains 16,384 individual diodes. A still image of various diodes carrying current represents a frame. A frame rate is the number of times that a picture needs refreshing. Most videos have a frame rate of 60 fps (frames per second), which means that it is updated 60 times every second.
Take the same PMOLED display with the 128 x 128 resolution and 16,384 separate diodes; it requires information as to when and how brightly to illuminate each pixel. For a display with only 16 shades, it takes 4 bits of data. 128 x 128 x 4 = 65,536 bits for one frame. Now multiply it by the 60Hz, and you get a bandwidth of 4 megabits/second for a small monochrome display.

Unused electronics are the bane of the modern life. Perfectly functional gadgets sit quietly in a corner of the store room, doing nothing. If you"re wondering what to do with old computer monitors, here are a few easy ideas to repurpose unused screens.
In this guide, it doesn"t matter if your old monitor is still working or not. Even if it isn"t, you can use its parts to make a great new gadget. From turning it into a super-tiny computer or dashboard to refashioning into a smart mirror, here are some of the most productive ways to repurpose a computer monitor.
The Raspberry Pi 4 is an incredible device. While it has a wide range of uses, at its core, it is a tiny, low-cost, full-fledged computer. And that means your old monitor can be turned into a PC for less than $60.
Perhaps the best thing to do with an old flat-screen monitor is a DIY DAKboard. The DAKboard is a LCD wall display that shows the current time, weather forecast, calendar events, stock quotes, fitness data, and news headlines. It"s all displayed on a soothing photo. You could buy an official DAKboard, but the makers themselves have shown how to build your own wall display with a Raspberry Pi. when you can build one for far less money and a little geeky fun, the choice is obvious.
Attach your old monitor to a Pi and it can be put in your kitchen as a recipe and video source. Make a Pi-based retro video game console as a treat for your kid (or the kid in you).
Sometimes, you"re working on something private in an open office, or browsing certain *cough* sites *cough* at home. You can"t have your colleagues or kids see what"s on the screen. To keep snooping eyes at bay, make a "your-eyes-only" monitor from an old one.
To anyone else, it is going to look like a blank white monitor with nothing on it. But wearing a special pair of spectacles, you"ll be able to see things on it like a regular monitor. It"s magic! It"s a tough process, but dimovi"s guide at Instructables is thorough and precise.
Basically, you will be cutting out the polarizing film of the old LCD monitor. This film will then be put on a simple pair of glasses. Now your screen appears white, but the glasses can "see" the content. It"s one of the best ways to keep prying eyes out of your PC.
The reason you should use an old computer monitor is that things can go wrong. You will be disassembling and then reassembling the monitor, along with cutting out the anti-glare and polarizing films. You"ll also need to separate the polarizing film from the anti-glare one.
If you have a broken old LCD monitor, it can be re-purposed into a usable mirror; but if you have a working old LCD monitor, adding a Raspberry Pi can turn it into a smart magic mirror!
You can choose from different Raspberry Pi smart magic mirror projects, but for our money, go with the MagicMirror². It"s the original, most popular, and perhaps now the easiest way to build a smart mirror. It comes with a clock, calendar, weather forecast, and news feed.
If you"re on a tight budget for a first-time DIY project, consider the $100 smart mirror. It"s not the best version of turning an LCD monitor into a smart mirror, but you"ll get the basic features and not spend a bomb.
If you have the space available, the best thing you can do with an extra monitor is to boost your productivity with a dual-monitor setup. A second monitor has many potential purposes, such as extended screen space, a dashboard for your social media or news updates, or a dedicated video conferencing screen.
All desktop operating systems support the ability to use dual monitors. It"s pretty easy to setup dual monitors on Windows, and you can then customize how you use the two spaces. To connect two monitors, you will likely need a graphics card with multiple HDMI ports, or use an HDMI and a VGA port on desktops.
Make it a dedicated screen for Nintendo Wii:The Nintendo Wii can connect to a VGA monitor, so if you don"t have a Wii, buy one. In fact, buy a used one, they"re pretty cheap on Craigslist.
Like any gadget, monitors have a limited shelf life. If you"re looking to upgrade, you now have a few ideas of what to do with your old monitor. And that age should influence which project you chose. For example, given the effort involved in building a smart mirror, don"t go with a screen that"s already shown signs of trouble. The Raspberry Pi-based projects are usually the easiest to keep changing.
In fact, if you have an old monitor and old PC parts, you can repurpose the whole PC. You can turn it into a home security system, a home server or media center, or try other unique creative projects.

The TD-45-22 is the largest industrial touchscreen monitor in this series with a 21.5” LCD display. This monitor can be panel mounted into a cutout in an enclosure or it can be mounted to an arm, stand, or hung on a surface. When panel mounted, the front bezel is IP66 rated and protected from liquids and dust. The TD-45-22 can be can be connected to a fanless box PC, for a rugged, long-life solution, or to another touchscreen PC, where it can operate as a cloned or extended display. The same model is available in screen sizes down to 7" to meet the needs of most applications. These industrial touchscreen monitors may be mounted into control cabinets, integrated onto an OEM machine, or used in a manufacturing environment.

【Plug and Play】 No driver needed.You don"t need to install any driver and just connect the HDMI port and Micro USB port from display to your device.Backlight can be turned off to lower power consumption.
【Strong System Compatible】Support Windows operating systems,Mas OS and other systems.When works with Raspberry Pi, supports Raspbian/Ubuntu MATE/Lubuntu/Snappy Ubuntu Core/Kali/OSMC/Retropie/WIN10 IOT, driver free; When work as a computer monitor, supports Windows XP/10/8/7 and Mas OS
【Five-points Touch】Capacitive touch control and Five-points Touch.It has vertical and horizontal image flip function.Equipping with HDMI & Earphone Jack & 2x Micro USB port support.Connect the screen to other device via HDMI interface and power it via Micro USB.
【Widely Application】This touch display can be used for security monitors and other multi-purpose displays, network player boxes, raspberry pi, HD DVR, high-end instruments,extended laptop monitors.
Ms.Josey
Ms.Josey