lcd panel taking advantage of fluorescent lamp supplier
The main functionality of the Basic Input/Output System (BIOS) is to perform the initial hardware checks after the computer is powered on and start up the operating system.
Which of the acronyms listed below refers to a series of basic hardware diagnostic tests performed by the startup BIOS after the computer is powered on?
After replacing a modular hardware component inside computer case, the updated information about specific parameters of the new device can be stored in: (Select 2 answers)
After completing the initial diagnostics and assigning system resources, the startup BIOS program checks for information about secondary storage devices that might contain the OS. The list of devices and the order in which they should be checked can be found and arranged in the CMOS setup utility, and this option is commonly referred to as:
After launching Windows Virtual PC application technician receives error message stating that the Hardware-Assisted Virtualization (HAV) feature is not enabled on the computer. Which of the following steps might help in fixing this problem?
LED fluorescent lamp is the newest product line in the fluorescent family and is considered to be the final replacement for traditional fluorescent lamp. It is made up of white LED chip modules. Provided with the advantages of long life-span, radiation-free, energy saving, environmental friendly and stroboflash-free, LED fluorescent lamp is superior to other kinds of lamps.
Besides, the installation of LED fluorescent lamp is quite easy. Just to replace the original fluorescent lamp with the new LED one, and to take out the starter. What’s more, the electricity saving efficiency can reach as high as 50% compared to ordinary fluorescent lamp and the life span is more than 10 times than that of ordinary one, almost totally free of maintenance. LED fluorescent lamp is adaptive to be used in offices, factories, marketplaces, schools and houses and so on indoor spaces.
Traditional fluorescent lamp contains large amount of mercury vapor which will do harm to the environment if the lamp is broken up and the vapor volatilize into the atmosphere. On the contrary, LED fluorescent lamp does not contain mercury or lead, doing no harm to the environment. So, LED products are recognized to be the green lighting lamps in the 21st century.
Compared to traditional lamps which will generate a large amount of heat, LED lamps can directly make electric energy into light energy, causing less heat and no waste of the energy.
LED lamp will not produce any noise, enabling it to be a good choice for illumination application in high precision electrical instrument. It is also fit to be used in occasions like libraries, offices and so on.
Traditional fluorescent lamp uses alternating current, which will generate 100-120 times of stroboflash per second. As to LED fluorescent lamp, it can directly switch the alternating current into direct current, without causing any flickering, helpful to protect the eyes.
Traditional lamps will generate ultraviolet radiation, thus will attract mosquitoes to fly around the lamps. LED lamp doesn’t have this disadvantage, thus the indoor space will become cleaner.
Traditional fluorescent lamp should recur to rectifier to release high voltage to get brighten up. If the voltage fell, the lamp will went out. However, LED lamps can be lighted within a certain voltage range (80V-245V) and its brightness can be adjusted.
The power consumption for LED fluorescent lamp is lower than 1/3 of the traditional lamp’s consumption, and the life span for it is 10 times longer than that of traditional one. So there is no need to change the lamp for a long period of time, reducing the manpower and other costs.
LED lamp body is made by epoxy resin instead of glasses like other traditional lamps. So it is more rigid and safe. Even if falling to the floor, LED lamp will not be broken easily. Users can set their heart at rest when using LED lamps.
LCD Lighting manufactures miniature backlight lamps (CCFL) for liquid crystal displays (LCD) in laptop computer screens. Most computer screens are lit with built-in fluorescent tubes above, beside and sometimes behind the LCD. A white diffusion panel behind the LCD redirects and scatters the light evenly to ensure a uniform display, which is known as a backlight.
In general, miniature lamps are multi-bend in shape and are 2mm to 18mm in outside diameter (O.D.). LCD Lighting miniature lamps can replace multiple lamp designs with more efficient, single-lamp systems. These single-lamp systems provide a number of important benefits, including simplified wiring harnesses, reduced power requirements and enhanced durability.
LCDL can work with OEMs to make connections for their specific applications. Please visit or Lamp Sub-Assembly page for more information about our value-added solutions.
In order to access the backlight lamp leads, the rubber caps from both side of the lamp need to be removed. Wear rubber gloves to avoid touching the backlight lamp with bare fingers.
When it comes todisplay technologies such asprojectorsand panels, factors such as resolution and refresh rate are often discussed. But the underlying technology is equally, if not more, important. There are tons of different types of screens, from OLED and LED to TN, VA, and IPS. Learn about the various monitor and television types, from operation to pros and cons!
The most common form of monitor or TV on the market is LCD or Liquid Crystal Display. As the name suggests, LCDs use liquid crystals that alter the light to generate a specific colour. So some form of backlighting is necessary. Often, it’s LED lighting. But there are multiple forms of backlighting.
LCDs have utilized CCFLs or cold cathode fluorescent lamps. An LCD panel lit with CCFL backlighting benefits from extremely uniform illumination for a pretty even level of brightness across the entire screen. However, this comes at the expense of picture quality. Unlike an LED TV, cold cathode fluorescent lamp LCD monitors lack dimming capabilities. Since the brightness level is even throughout the entire array, a darker portion of scenes might look overly lit or washed out. While that might not be as obvious in a room filled with ambient light, under ideal movie-watching conditions, or in a dark room, it’s noticeable. LED TVs have mostly replaced CCFL.
An LCD panel is transmissive rather than emissive. Composition depends on the specific form of LCD being used, but generally, pixels are made up of subpixel layers that comprise the RGB (red-green-blue) colour spectrum and control the light that passes through. A backlight is needed, and it’s usually LED for modern monitors.
Please note that some of the mentioned types may be considered a sub-category of LCD TVs; therefore, some of the names may vary depending on the manufacturer and the market.
1)Film layer that polarizes light entering2)glass substrate that dictates the dark shapes when the LCD screen is on3)Liquid crystal layer4)glass substrate that lines up with the horizontal filter5)Horizontal film filter letting light through or blocking it6)Reflective surface transmitting an image to the viewer
While many newer TVs and monitors are marketed as LED TVs, it’s sort of the same as an LCD TV. Whereas LCD refers to a display type, LED points to the backlighting in liquid crystal display instead. As such, LED TV is a subset of LCD. Rather than CCFLs, LEDs are light-emitting diodes or semiconductor light sources which generate light when a current passes through.
LED TVs boast several different benefits. Physically, LED television tends to be slimmer than CCFL-based LCD panels, and viewing angles are generally better than on non-LED LCD monitors. So if you’re at an angle, the picture remains relatively clear nonetheless. LEDs are alsoextremely long-lasting as well as more energy-efficient. As such, you can expect a lengthy lifespan and low power draw. Chances are you’ll upgrade to a new telly, or an internal part will go out far before any LEDs cease functioning.
Please note that some of the mentioned types may be considered a sub-category of LED TVs; therefore, some of the names may vary depending on the manufacturer and the market.
Further segmenting LED TVs down, you"ll find TN panels. A TN or twisted nematic display is a type of LED TV that offers a low-cost solution with a low response time and low input lag.
These displays are known for their high refresh rates, ranging from 100Hz to 144Hz or higher. As a result, many monitors marketed towards gamers feature TN technology. The fast response time and low input lag make them ideal for fast-paced action and gaming. However, TN panels have some limitations.
They suffer from inferior colour reproduction, meaning that the colours they display may be less accurate and vibrant than other technologies. Additionally, they have poor viewing angles, meaning the picture quality can degrade when viewed from certain angles. This is due to the way the liquid crystal molecules point at the viewer and the orientation of the light polarizers at 90-degree angles.
Overall, while TN panels are an affordable and fast option, they may not be the best choice for those looking for accurate colour reproduction and wide viewing angles.
Like TN, IPS or In-plane Switching displays are a subset of LED panels. IPS monitors tend to boast accurate colour reproduction and great viewing angles. Price is higher than on TN monitors, but in-plane switching TVs generally feature a better picture when compared with twisted nematic sets. Latency and response time can be higher on IPS monitors meaning not all are ideal for gaming.
An IPS display aligns liquid crystals in parallel for lush colours. Polarizing filters have transmission axes aligned in the same direction. Because the electrode alignment differs from TN panels, black levels, viewing angles, and colour accuracy is much better. TN liquid crystals are perpendicular.
A VA or vertical alignment monitor is a type of LED monitor that features excellent contrast ratios, colour reproduction, and viewing angles. This is achieved by using crystals that are perpendicular to the polarizers at right angles, similar to the technology used in TN monitors. VA monitors are known for their deep blacks and vibrant colours, making them popular for media consumption and gaming.
They also have better viewing angles than TN monitors, meaning that the picture quality remains consistent when viewed from different angles. However, the response time of a VA monitor is not as fast as that of a TN monitor, which can be a concern for those looking to use the monitor for fast-paced action or gaming.
The pricing of VA monitors varies, but they are typically more expensive than TN monitors and less costly than IPS or OLED monitors. Overall, VA monitors are an excellent option for those looking for a balance between good picture quality and affordability.
A quantum dot LED TV or QLED is yet another form of LED television. But it’s drastically different from other LED variants. Whereas most LED panels use a white backlight, quantum dot televisions opt for blue lights. In front of these blue LEDs sits a thin layer of quantum dots. These quantum dots in a screen glow at specific wavelengths of colour, either red, green, or blue, therefore comprising the entire RGB (red-green-blue) colour spectrum required to create a colour TV image.
Quantum Dot TV (QD-TV): A type of television that uses quantum dots, also known as semiconductor nanocrystals, to produce more accurate and vibrant colours.
Please note that some of the mentioned types may be considered a sub-category of Quantum Dot TVs; therefore, some of the names may vary depending on the manufacturer and the market. Also, it"s worth mentioning that not all brands use the same technology. Some are using QD films or QD-LEDs, others are using QD-OLEDs, and the list could go on.
An OLED or organic light-emitting diode display isn’t another variation of LED. OLEDs use negatively and positively charged ions for illuminating individual pixels. By contrast, LCD/LED TVs use a backlight that can make an unwanted glow. In OLED display, there are several layers, including a substrate, an anode, a hole injection layer, a hole transport layer, an emissive layer, a blocking layer, an electron transport layer, and a cathode. The emissive layer, comprised of an electroluminescent layer of film, is nestled between an electron-injecting cathode and an electron removal layer, the anode. OLEDs benefit from darker blacks and eschew any unwanted screen glow. Because OLED panels are made up of millions of individual subpixels, the pixels themselves emit light, and it’s, therefore, an emissive display as opposed to a transmissive technology like LCD/LED panels where a backlight is required behind the pixels themselves.
The image quality is top-notch. OLED TVs feature superb local dimming capabilities. The contrast ratio is unrivalled, even by the best of QLEDs, since pixels not used may be turned off. There’s no light bleed, black levels are incredible, excellent screen uniformity, and viewing angles don’t degrade the picture. Unfortunately, this comes at a cost. OLEDs are pricey, and the image isn’t as bright overall when compared to LED panels. For viewing in a darkened room, that’s fine, but ambient lighting isn’t ideal for OLED use.
Please note that OLED technology can be applied to various displays and devices, and the list mentioned above may not be exhaustive. Also, some types may be considered a sub-category of OLED.
As you can see, a wide variety of displays are available on the market today, each with their unique advantages and disadvantages. While many monitors and TVs are referred to by various names, such as LED, IPS, VA, TN, or QLED, many are variations of LCD panels. The specific technology used in a display, such as the colour of backlighting and the alignment of pixels, plays a major role in determining the overall picture quality.
When choosing the right type of monitor or display for your needs, it"s important to consider all the options available and weigh the pros and cons of each one. This can include things like resolution, refresh rate, response time, colour accuracy, and more subjective factors like overall picture quality and viewing angles.
A vacuum fluorescent display (VFD) is a display device once commonly used on consumer electronics equipment such as video cassette recorders, car radios, and microwave ovens.
A VFD operates on the principle of cathodoluminescence, roughly similar to a cathode ray tube, but operating at much lower voltages. Each tube in a VFD has a phosphor-coated carbon anode that is bombarded by electrons emitted from the cathode filament.triode vacuum tube because it also has a mesh control grid.
Unlike liquid crystal displays, a VFD emits very bright light with high contrast and can support display elements of various colors. Standard illumination figures for VFDs are around 640 cd/m2 with high-brightness VFDs operating at 4,000 cd/m2, and experimental units as high as 35,000 cd/m2 depending on the drive voltage and its timing.Cadmium was commonly used in the phosphors of VFDs in the past, but the current RoHS-compliant VFDs have eliminated this metal from their construction, using instead phosphors consisting of a matrix of alkaline earth and very small amounts of group III metals, doped with very small amounts of rare earth metals.
VFDs can display seven-segment numerals, multi-segment alpha-numeric characters or can be made in a dot-matrix to display different alphanumeric characters and symbols. In practice, there is little limit to the shape of the image that can be displayed: it depends solely on the shape of phosphor on the anode(s).
The device consists of a hot cathode (filaments), grids and anodes (phosphor) encased in a glass envelope under a high vacuum condition. The cathode is made up of fine tungsten wires, coated by alkaline earth metal oxides (barium,electrons when heated to 650 °Cdiffused by the grids (made using Photochemical machining), which are made up of thin (50 micron thick) stainless steel.fluoresce, emitting light. Unlike the orange-glowing cathodes of traditional vacuum tubes, VFD cathodes are efficient emitters at much lower temperatures, and are therefore essentially invisible.graphite, which in turn is coated with phosphor. This transfers energy from the trace to the segment. The shape of the phosphor will determine the shape of the VFD"s segments. The most widely used phosphor is Zinc-doped copper-activated Zinc oxide,
The cathode wire to which the oxides are applied is made of tungsten or ruthenium-tungsten alloy. The oxides in the cathodes are not stable in air, so they are applied to the cathode as carbonates, the cathodes are assembled into the VFD, and the cathodes are heated by passing a current through them while inside the vacuum of the VFD to convert the carbonates into oxides.
The principle of operation is identical to that of a vacuum tube triode. Electrons can only reach (and "illuminate") a given plate element if both the grid and the plate are at a positive potential with respect to the cathode.multiplexed displays where the multiple grids and plates form a matrix, minimizing the number of signal pins required. In the example of the VCR display shown to the right, the grids are arranged so that only one digit is illuminated at a time. All of the similar plates in all of the digits (for example, all of the lower-left plates in all of the digits) are connected in parallel. One by one, the microprocessor driving the display enables a digit by placing a positive voltage on that digit"s grid and then placing a positive voltage on the appropriate plates. Electrons flow through that digit"s grid and strike those plates that are at a positive potential. The microprocessor cycles through illuminating the digits in this way at a rate high enough to create the illusion of all digits glowing at once via persistence of vision.
The extra indicators (in our example, "VCR", "Hi-Fi", "STEREO", "SAP", etc.) are arranged as if they were segments of an additional digit or two or extra segments of existing digits and are scanned using the same multiplexed strategy as the real digits. Some of these extra indicators may use a phosphor that emits a different color of light, for example, orange.
The light emitted by most VFDs contains many colors and can often be filtered to enhance the color saturation providing a deep green or deep blue, depending on the whims of the product"s designers. Phosphors used in VFDs are different from those in cathode-ray displays since they must emit acceptable brightness with only around 50 volts of electron energy, compared to several thousand volts in a CRT.
Besides brightness, VFDs have the advantages of being rugged, inexpensive, and easily configured to display a wide variety of customized messages, and unlike LCDs, VFDs are not limited by the response time of rearranging liquid crystals and are thus able to function normally in cold, even sub-zero, temperatures, making them ideal for outdoor devices in cold climates. Early on, the main disadvantage of such displays was their use of significantly more power (0.2 watts) than a simple LCD. This was considered a significant drawback for battery-operated equipment like calculators, so VFDs ended up being used mainly in equipment powered by an AC supply or heavy-duty rechargeable batteries.
During the 1980s, this display began to be used in automobiles, especially where car makers were experimenting with digital displays for vehicle instruments such as speedometers and odometers. A good example of these were the high-end Subaru cars made in the early 1980s (referred to by Subaru enthusiasts as a digi-dash, or digital dashboard). The brightness of VFDs makes them well suited for use in cars. The Renault Espace and older models of Scenic used VFD panels to show all functions on the dashboard including the radio and multi message panel. They are bright enough to read in full sunlight as well as dimmable for use at night. This panel uses four colors; the usual blue/green as well as deep blue, red and yellow/orange.
This technology was also used from 1979 to the mid-1980s in portable electronic game units. These games featured bright, clear displays but the size of the largest vacuum tubes that could be manufactured inexpensively kept the size of the displays quite small, often requiring the use of magnifying Fresnel lenses.LCD games could be manufactured for a fraction of the price, did not require frequent changes of batteries (or AC adapters) and were much more portable. Since the late 1990s, backlit color active-matrix LCD displays have been able to cheaply reproduce arbitrary images in any color, a marked advantage over fixed-color, fixed-character VFDs. This is one of the main reasons for the decline in popularity of VFDs, although they continue to be made. Many low-cost DVD players still feature VFDs.
From the mid-1980s onwards, VFDs were used for applications requiring smaller displays with high brightness specifications, though now the adoption of high-brightness organic light-emitting diodes (OLEDs) is pushing VFDs out of these markets.
Vacuum fluorescent displays were once commonly used as floor indicators for elevators by Otis Elevator Company worldwide and Montgomery Elevator Company in North America (the former from the early 1980s to the mid-2000s in the form of (usually two) 16-segment displays, and the latter from the mid 1980s to the mid 1990s in the form of (usually 3) 10x14 dot-matrix displays).
In addition to the widely used fixed character VFD, a graphic type made of an array of individually addressable pixels is also available. These more sophisticated displays offer the flexibility of displaying arbitrary images, and may still be a useful choice for some types of consumer equipment.
Several radio amateurs have experimented with the possibilities of using VFDs as triode amplifiers.Korg released the Nutube, an analogue audio amplifier component based on VFD technology. The Nutube is used in applications such as guitar amplifiers from Vox
Fading is sometimes a problem with VFDs. Light output drops over time due to falling emission and reduction of phosphor efficiency. How quickly and how far this falls depends on the construction and operation of the VFD. In some equipment, loss of VFD output can render the equipment inoperable. Fading can be slowed by using a display driver chip to lower the voltages necessary to drive a VFD. Fading can also occur due to evaporation and contamination of the cathode. Phosphors that contain sulfur are more susceptible to fading.
Of the three prevalent display technologies – VFD, LCD, and LED – the VFD was the first to be developed. It was used in early handheld calculators. LED displays displaced VFDs in this use as the very small LEDs used required less power, thereby extending battery life, though early LED displays had problems achieving uniform brightness levels across all display segments. Later, LCDs displaced LEDs, offering even lower power requirements.
The first VFD was the single indication DM160 by Philips in 1959. It could easily be driven by transistors, so was aimed at computer applications as it was easier to drive than a neon and had longer life than a light bulb. The 1967 Japanese single digit seven segment display in terms of anode was more like the Philips DM70 / DM71 Magic Eye as the DM160 has a spiral wire anode. The Japanese seven segment VFD meant that no patent royalties needed to be paid on desk calculator displays as would have been the case using Nixies or Panaplex neon digits. In the UK the Philips designs were made and marketed by Mullard (almost wholly owned by Philips even before WWII).
The Russian IV-15 VFD tube is very similar to the DM160. The DM160, DM70/DM71 and Russian IV-15 can (like a VFD panel) be used as triodes. The DM160 is thus the smallest VFD and smallest triode valve. The IV-15 is slightly different shape (see photo of DM160 and IV-15 for comparison).
Joseph A. Castellano (ed), Handbook of display technology, Gulf Professional Publishing, 1992 ISBN 0-12-163420-5 Chapter 7 Vacuum Fluorescent Displays pp. 163 and following
The present invention claims the benefit of Korean Patent Application No. 2005-0020939 filed in Korea on Mar. 14, 2005, which is hereby incorporated by reference. BACKGROUND OF THE INVENTION
The present invention relates to a fluorescent lamp, and more particularly, to a fluorescent lamp for a backlight unit in a liquid crystal display (LCD) device and a method of fabricating the fluorescent lamp.
With development of the information society, flat panel display (FPD) devices have been developed and widely utilized as substitutes for cathode ray tube (CRT) devices because the FPD devices have light weight, thin profile, and low power consumption characteristics. Generally, display devices are classified into emissive display devices and non-emissive display devices according to their ability for self-emission. The emissive display devices display images by taking advantage of their ability to self-emit light, whereas the non-emissive display devices require light sources since they do not emit light by themselves. For example, plasma display panel (PDP) devices, field emission display (FED) devices, and electroluminescent display (ELD) devices belong to the emissive display devices. The LCD devices, which are usually categorized as non-emissive display devices, are widely utilized in notebook and desktop computers because of their high resolution, capability of displaying color images, and high quality image display.
The LCD device includes an LCD module that is provided with an LCD panel for displaying images and a backlight unit for supplying light to the LCD panel. The LCD panel includes two substrates facing and spaced apart from each other, and a liquid crystal layer interposed therebetween. The liquid crystal layer includes liquid crystal molecules that have a dielectric constant and refractive index anisotropic characteristics because of their long, thin shapes. In addition, two electrodes for generating an electric field are formed on the two substrates, respectively. Accordingly, an orientation alignment of the liquid crystal molecules can be controlled by supplying a voltage to the two electric field generating electrodes, thereby changing transmittance of the LCD panel based on polarization properties of the liquid crystal molecules. However, the LCD panel belongs to a non-emissive-type display device, and needs an additional light source. Thus, the backlight unit is disposed under the LCD panel as the light source. In particular, the LCD panel displays images using light produced by the backlight unit.
In general, the backlight units are either edge-types or direct-types, according to the disposition of the light sources. As display areas of the LCD devices become increasingly large, the direct-type backlight units, including a plurality of light sources, are usually utilized to provide high brightness.
A fluorescent lamp, used as the light source of the backlight unit, is a cold cathode fluorescent lamp (CCFL). The CCFL includes a glass tube and an external electrode that extends from an end portion of the glass tube. However, with respect to a large size LCD panel, using the CCFL as an the edge-type backlight unit fails to provide adequate brightness because it fails to evenly distribute light to the large size LCD panel. On the other hand, the CCFL can be used as a direct-type connected as a parallel arrangement; however the CCFL is not driven using just one inverter. Thus, the number of the CCFLs restricts proper brightness of the LCD panel. Therefore, a reflector having a predetermined configuration is necessary, and a distance between a diffusion plate and the CCFL should be set long enough to obtain a uniform brightness, thereby causing an increase in the thickness of the LCD panel.
Accordingly, with respect to a large size LCD panel with high brightness and high efficiency, an external electrode fluorescent lamp (EEFL) is utilized to provide a long life and light weight for the LCD panel. The EEFL may be a belt type, a cap type or an expanded type. The expanded type EEFL includes a glass tube that has both end portions swelled out.
FIG. 1 is a schematic view illustrating a cold cathode fluorescent lamp (CCFL) according to the related art. FIG. 2 is a schematic view illustrating an external electrode fluorescent lamp (EEFL) according to the related art.
As shown in FIG. 1, a CCFL 5 includes a tube 1 filled with a discharge gas and a fluorescent material, an internal anode electrode 3aand an internal cathode electrode 3bin both inner edges of the tube 1, respectively. On the other hand, as shown in FIG. 2, an EEFL 15 includes a tube 10, an external anode electrode 13aand an external cathode electrode 13bthat cover both outer edges of the tube 10, respectively.
The CCFL 5 has a disadvantage in that if the CCFL 5 is turned on frequently, its lifetime may be reduced due to damage to the internal anode electrode 3aand the internal cathode electrode 3bexposed mercury (Hg) molecules. In addition, when the CCFL 5 is applied to the edge-type backlight unit, although the CCFL 5 itself has high brightness, brightness of the LCD panel utilizing the CCFL 5 is low. For this reason, the edge-type CCFL is undesirable for use in an LCD panel. Similarly, when the CCFL 5 is applied to the direct-type backlight, multiple CCFLs 5 are arranged in a row and cannot be driven by one inverter.
The EEFL 15 of FIG. 2 has higher brightness, higher efficiency, longer lifetime, and a slimmer profile in comparison with the CCFL 5 of FIG. 1. However, the external anode electrode 13aand the external cathode electrode 13bof the EEFL 15 should have a predetermined length so as to maintain a minimum energy to excite electrons. This results in difficulty obtaining a desired bezel portion.
Recently, the lamps of the EEFL 15 have not been connected in a row so that each lamp is connected to each inverter. Thus, a light intensity of the lamp may be independently controlled, but the total size of the LCD device is increased. As a result, it is difficult to provide an LCD device with light weight and a thin profile. SUMMARY OF THE INVENTION
Accordingly, the present invention is directed to a fluorescent lamp and a method of fabricating the same that substantially obviate one or more of the problems due to limitations and disadvantages of the related art.
An object of the present invention is to provide a fluorescent lamp and a method of fabricating the same that is capable of increasing an emitting efficiency.
Another object of the present invention is to provide a fluorescent lamp and a method of fabricating the same that is capable of extending the lifetime of electrodes in the fluorescent lamp.
Another object of the present invention is to provide a fluorescent lamp and a method of fabricating the same that is capable of obtaining a desired bezel portion.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, a fluorescent lamp includes a tube filled with a discharge gas and a fluorescent material, a first external electrode covering an outer edge of the tube, the first external electrode having a tetragonal cap-like shape, and a second external electrode on an outer surface of the tube, the second external electrode contacting the first external electrode.
In another aspect, a fluorescent lamp includes a tube filled with a discharge gas and a fluorescent material, the tube having a U-like shape, and a first external electrode covering an outer edge of the tube.
In another aspect, a method of fabricating a fluorescent lamp includes filling a tube with a discharge gas and a fluorescent material, forming a first external electrode covering an outer edge of the tube, the first external electrode having a tetragonal cap-like shape, and forming a second external electrode on an outer surface of the tube, the second external electrode contacting the first external electrode.
In another aspect, a method of fabricating a fluorescent lamp includes filling a tube with a discharge gas and a fluorescent material, the tube having a U-like shape, and forming a first external electrode covering an outer edge of the tube
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:
FIG. 3A is a schematic side view illustrating an external electrode fluorescent lamp (EEFL) according to one exemplary embodiment of the present invention;
FIG. 5 is a schematic cross-sectional view illustrating an EEFL further including a second external electrode having a line-like shape with respect to the U-shaped EEFL of FIG. 4 according to another exemplary embodiment of the present invention; and
FIG. 6 is a schematic view illustrating a U-shaped cold cathode fluorescent lamp (CCFL) having an external electrode of a line-like shape according to another exemplary embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
FIGS. 3A and 3B are schematic views illustrating an external electrode fluorescent lamp (EEFL) according to one exemplary embodiment of the present invention. FIG. 3A is a side view and FIG. 3B is a front view.
As shown in FIGS. 3A and 3B, an EEFL 120 includes a tube 117 filled with a discharge gas and a fluorescent material, a first external electrode 113 covering an outer edge of the tube 117, and a second external electrode 115 on an outer surface of the tube 117. More specifically, the first external electrode 113 has a tetragonal cap-like shape, and the second external electrode 115 contacts the first external electrode 113. For example, the first external electrode 113 includes a first external anode electrode 113aand a first external cathode electrode 113bdisposed on the outer edges of the tube 117, respectively.
Moreover, as shown in FIG. 3B, a point 119 is marked on a front surface of the first external electrode 113 to guide the front side of the first external electrode 113. The second external electrode 115 may be disposed on a side portion of the tube 117 of a non-emitting region (not shown) by reference to the point 119. Thus, the second external electrode 115 can be easily formed in the non-emitting region (not shown). More specifically, in comparison with the related art, this exemplary embodiment utilizing the second external electrode 115 in the EEFL 120 provides a higher emitting efficiency and smaller size of the first external electrode 113, thereby obtaining a satisfactory bezel margin region. In addition, the design feature of the first external electrode 113 can improve product yield depending on each work condition.
However, when the CCFL is utilized in the direct type backlight unit, a plurality of lamps and a respective plurality of inverters are necessary, thereby increasing the total size of the LCD using the CCFL device. Accordingly, in another exemplary embodiment according to the present invention, an EEFL includes a U-like shape to reduce the number of the lamps and inverters, as well as to reduce the manufacturing costs.
FIG. 4 is a schematic view illustrating a U-shaped EEFL according to another exemplary embodiment of the present invention. As shown in FIG. 4, a U-shaped EEFL 130 includes a tube 131 filled with a discharge gas and a fluorescent material, a first external electrode 135 including a first external anode electrode 135aand a first external cathode electrode 135b, and first and second lamp flips 137aand 137bapplying positive and negative voltages to the first external anode electrode 135aand the first external cathode electrode 135b, respectively.
In this exemplary embodiment, the tube 131 has a U-like shape. The first external electrode 135 having a cap-like shape covers outer edges of the tube 131. For example, the first external anode electrode 135aand the first external cathode electrode 135bare disposed on the outer edges of the tube 131 to arrange in a row. In addition, the first and second lamp flips 137aand 137bare arranged to contact the first external anode electrode 135aand the first external cathode electrode 135b, respectively. It is noted that each of the first external anode electrode 135aand the first external cathode electrode 135bis spaced apart from an opposite one of the first lamp flip 137aand the second lamp flip 137b. The first external electrode 135 may be selected from a group including at least silver (Ag), aluminum (Al), copper (Cu) and the like.
Forming the first external electrode 135, may include at least one of covering a metallic material on the tube 131, attaching a metallic tape, dipping an outer bending portion of the tube 131 into a metal solution and the like. Further, forming the first external anode electrode 135aand the first external cathode electrode 135bmay include bending a straight tube at a predetermined position or forming the first external electrode 135 on a desired position of the tube 131, so that the first external anode electrode 135aand the first external cathode electrode 135bhave different positions from each other by the first and the second lamp flips 137aand 137b.
The U-shaped EEFL 130 according to the exemplary embodiment can extend its lifetime without causing any damage to the first external electrode 135. In particular, it has an effect of using two straight lamps by one. Accordingly, when the U-shaped EEFL 130 is applied to the direct type backlight unit, the number of inverters and the number of lamps can be effectively reduced.
FIG. 5 is a schematic cross-sectional view illustrating an EEFL further including second external electrodes having line-like shapes with respect to the U-shaped EEFL of FIG. 4 according to another exemplary embodiment of the present invention. As shown in FIG. 5, an EEFL 130 includes a U-shaped tube 131 filled with a discharge gas and a fluorescent material, and a first external electrode 135. The first external electrode 135 includes a first external anode electrode 135aand a first external cathode electrode 135bthat have cap-like shapes and cover outer edges of the tube 131. Moreover, the EEFL 130 includes second external electrodes 133 contacting both of the first external anode electrode 135aand the first external cathode electrode 135balong a lengthwise direction of the tube 131. In this exemplary embodiment, the second external electrodes 133 are line-shaped and disposed in a side portion of the tube 131, so that the second external electrodes 133 do not occupy any emitting region of the EEFL 130. Herein, the line-shaped second external electrodes 133 may each be a straight line-shape, a curved line-shape, or the like. The length of the second external electrodes 133 is not limited within a range for maintaining a minimum energy capable of exciting electrons. Moreover, when a predetermined distance is set between the second external electrodes 133 that are connected to the different external electrodes 135aand 135b, overcharge due to collision between the second external electrodes 133 can be prevented.
As explained above, forming the first external electrode 135 may include steps of covering a metallic material on the tube 131, attaching a metallic tape, dipping the outer bending portion of the tube 131 into a metal solution, and the like. Similarly, forming the second external electrode 133 may include attaching a metallic tape with a straight type or dipping the EEFL into a metal solution, wherein the EEFL is covered by a tape, except for a region for forming the second external electrode 133. The tape should be removed from the EEFL after the process is finished. Moreover, in this exemplary embodiment, the size of the first external electrode 135 is reduced by extending the second external electrodes 133 therefrom, thereby obtaining a satisfactory bezel portion.
A distance between external electrodes 135aand 135bis closed by adding the line-shaped second external electrodes 133, thereby increasing electricity between the external anode electrode 135aand the external cathode electrode 135b. Moreover, brightness in a center portion of the fluorescent lamp is also increased by extending the second external electrodes 133 from the first external electrode 135. In addition, plasma ions are centered on the first external electrode 135, wherein the plasma ions can be distributed by extending the second external electrodes 133 from the first external electrode 135, thereby increasing the emitting efficiency of the EEFL 130.
FIG. 6 is a schematic view illustrating a U-shaped cold cathode fluorescent lamp (CCFL) having a line-shaped external electrode according to another exemplary embodiment of the present invention. As shown in FIG. 6, a U-shaped CCFL 140 includes a U-shaped tube 131 filled with a discharge gas and a fluorescent material, and an internal electrode 145 disposed in an inner edge of the tube 131. The internal electrode 145 includes an internal anode electrode 145aand an internal cathode electrode 145b.
The U-shaped CCFL 140 further includes an external electrode 143 disposed on an outer edge of the tube 131. The external electrode 143 has a line-like shape. More specifically, the external electrode 143 is formed in a non-emitting region (not shown) in a periphery region of the tube 131. The internal electrode 145 and the external electrode 143 are connected to each other as an alternating power-supply. In the CCFL 140 of this exemplary embodiment, the external electrode 143 is simultaneously formed with the internal electrode 145, so that a size that the discharge gas is charged with electricity can be widened, thereby increasing brightness of the CCFL 140.
The fluorescent lamp according to the exemplary embodiments of the present invention has advantages of improving the emitting efficiency and extending the lifetime of the electrodes. Moreover, it is possible to obtain a bezel portion having an enough margin and to improve work efficiency as well as product yield.
Although not shown, a method of fabricating a fluorescent lamp according to the present invention includes filling a tube with a discharge gas and a fluorescent material, forming a first external electrode covering an outer edge of the tube, forming the first external electrode having a tetragonal cap-like shape, and forming a second external electrode on an outer surface of the tube, the second external electrode contacting the first external electrode.
Another method of fabricating a fluorescent lamp includes filling a tube with a discharge gas and a fluorescent material, the tube having a U-like shape, and forming a first external electrode covering an outer edge of the tube.
The method includes forming a second external electrode contacting the first external electrode, wherein the first external electrode has a cap-like shape and the second external electrode has a line-like shape. The method includes forming an internal electrode in an inner edge of the tube, wherein the first external electrode has a line-like shape.
It will be apparent to those skilled in the art that various modifications and variations can be made in the fluorescent lamp and method of fabricating the same of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Flat panel displays are widely used in applications where the depth dimension of a cathode ray tube is determined to be excessive. A variety of flat panel display technologies have emerged each having unique advantages. Plasma panel, electrochromism, colloidal suspension, gas discharge and liquid crystallinity are but some of the emissive and non-emissive technologies used by flat panel display manufacturers. Non-emmissive flat panel displays, such as liquid crystal displays (LCDs) require a light source especially in low light or night usage. One such application that is becoming increasingly common is aircraft cockpit displays for avionics equipment. Although not constrained to avionic LCD applications the present invention will be described in terms of such usage. It is understood that the teachings of the present invention are not limited to avionic LCD applications but may be utilized by any flat panel display using backlighting.
The principle of operation of LCD"s is well known in the art but for purposes of understanding the background of the present invention, it can be stated that LCD"s operate by reducing the transmissibility of light through a thin layer of a liquid crystalline material when an electric field is applied. Since the effect is localized, shapes and characters can be drawn on an LCD by carefully controlling the application of the electric field. Unlike cathode ray tubes which LCD"s are replacing, LCD"s are not self-illuminating. Therefore, some sort of backlighting is required in order for LCD"s to be viewed.
Backlighting is conventionally accomplished by locating a fluorescent lamp device in a sealed cavity directly behind the LCD. The fluorescent lamp is generally comprised of an elongated bulb which may be "U", "N" or "M" shaped, as known in the prior art. The shape of the light source bears direct impact upon the light intensity across the LCD and just as importantly, inherent "dark spots" or areas of lower light intensity. Typically dark spots occur in close proximity to open locations in any given lighting configuration. For example, the top portion of the "U", formed by the gap between the upright members, would be an inherent dark spot in applications using such a U shaped bulb.
Accordingly, an apparatus for illuminating LCD applications of uniform or near uniform intensity across the entire viewing panel would be a significant improvement for such applications. The present invention discloses a variety of embodiments of such apparatus.
A circular shaped fluorescent lighting configuration that may be used with or without contoured lighting encasing that offers improved flat panel display illumination. The circular shaped lighting unit provides near uniform light intensity across the display by taking advantage of lower light intensity by bending the entire tube length at the time the light tube was formed. Additionally, an encasing mechanism larger in size in length and width than the display to be illuminated is also disclosed that contains additional contoured shaped reflective surfaces to increase the upward light intensity. The increased encasing dimensions also allows the use of a larger diameter fluorescent bulb.
It is therefore an object of the present invention to provide an apparatus for providing uniform and increased intensity lighting for flat panel display applications.
It is a feature of the present invention to provide a backlighted flat panel display application having a circular shaped lighting tube thereby eliminating prior art dark spots.
It is an additional feature of the present invention to provide a backlighted flat panel display application having a lighting encasement contoured in such a manner as to allow large diameter fluorescent tube to serve as the display light source.
It is an advantage of the present invention to provide a backlighted flat panel display application having near uniform lighting intensity across the display application.
It is another advantage of the present invention to provide a backlighted flat panel display application having fewer manufacturing Process steps and associated lower costs.
Referring now to the drawings wherein like items are referenced as such throughout, FIG. 1 illustrates an exploded isometric view of a representative flat panel assembly 5 as known in the prior art. A flat panel display, such as a liquid crystal display or LCD, serves as a top member for assembly 5. A multi-walled encasement 9, shown in FIG. 1 as a rectangular shaped structure, surrounds and supports fluorescent bulb 11. Encasement 9 is shown with opening 13 for accommodating electrical connections to bulb 11. The assembly may be held in place by a combination of adhesives, clips, screws or other suitable fastener means, as well known in the prior art.
The "U" shaped design of bulb 11 requires three separate bending steps during the fabrication process, each step composed of heating, bending and cooling. The bending is Performed at each open end of bulb 11 to direct the terminating ends through opening 13 and in forming the lower curved portion of the "U" shape of bulb 11. Display 7 suffers from lower light intensity in the general region located slightly offset the open portions of bulb 11. These low level light intensity areas or "dark spots" are the results in part of emmissive material coating on tube 11 thinning during the fabrication cycle.
FIG. 2 illustrates a top plan view of one embodiment of the present invention. A multi-walled encasement 20, is shown as being square shaped and having a bottom member 21 with an opening 22. A circular shaped fluorescent bulb 24 is contained within encasement 20 and has its electrical connections and ends directed through opening 22. It is understood that a flat panel display having length and width dimensions consistent with the bottom member 21 would be assembled as a top to encasement 20, although such display is not shown in FIG. 2.
In order to provide near uniformity of light to the companion display the diameter of bulb 24 may be derived by the equal area method described as follows:
Solving for R by equating A1 to A2 utilizing the above formulae allows one the opportunity to adjust any of the variables, length, width, radius or diameter, and determine the corresponding modifications to the dependent variables.
FIG. 3 illustrates a cross-sectional view of an alternate embodiment of the present invention. A multi-walled encasement 30 is shown enclosing and supporting a circular fluorescent bulb 32 which illuminates a flat panel display 34. As shown encasement 30 is comprised of four vertical members 31 (two of which are not shown) and bottom member 33. Each vertical member 31 has its portion nearest to display 34 acutely angled towards the display perimeter in such a manner so as to form an opening defining a flat panel display size smaller in length and width than bottom member 33. The inward sloping portion of members 31 provides increased reflected light towards the region illuminating display 34 and allows for use of a larger diameter bulb than would otherwise be possible. A larger diameter bulb offers longer bulb life and increased illumination intensity of the flat panel display.
It should also be noted that member 33 may have a conical protrusion 35 within the inside diameter of bulb 32 and extending towards the flat panel display. Cone 35 directs light towards display 34 with a minimum number of reflections. Although not shown, it is also understood that additional contouring of encasement 30 is possible so as to focus light generally or specifically to a localized region of display 34 as desired by the specific application of the display information. Use of contouring with cone 35 and circular bulb 32 is especially advantageous for flat panel displays that are used to illuminate circular pattern data, such as an aircraft heading indicator.
It is equally understood that the entire interior surface of encasement 20 and 30 may be coated with very high gloss white paint to enhance the reflective capabilities of the encasement and thus increase light intensity to the respective display.
While particular embodiments of the present invention have been shown and described, it should be clear that changes and modifications may be made to such embodiments without departing from the true scope and spirit of the invention. It is intended that the appended claims to cover all such changes and modifications.
An LED-backlit LCD is a liquid-crystal display that uses LEDs for backlighting instead of traditional cold cathode fluorescent (CCFL) backlighting.TFT LCD (thin-film-transistor liquid-crystal display) technologies as CCFL-backlit LCDs, but offer a variety of advantages over them.
While not an LED display, a television using such a combination of an LED backlight with an LCD panel is advertised as an LED TV by some manufacturers and suppliers.
The local dimming method of backlighting allows to dynamically control the level of light intensity of specific areas of darkness on the screen, resulting in much higher dynamic-contrast ratios, though at the cost of less detail in small, bright objects on a dark background, such as star fields or shadow details.
A 2016 study by the University of California (Berkeley) suggests that the subjectively perceived visual enhancement with common contrast source material levels off at about 60 LCD local dimming zones.
LED-backlit LCDs are not self-illuminating (unlike pure-LED systems). There are several methods of backlighting an LCD panel using LEDs, including the use of either white or RGB (Red, Green, and Blue) LED arrays behind the panel and edge-LED lighting (which uses white LEDs around the inside frame of the TV and a light-diffusion panel to spread the light evenly behind the LCD panel). Variations in LED backlighting offer different benefits. The first commercial full-array LED-backlit LCD TV was the Sony Qualia 005 (introduced in 2004), which used RGB LED arrays to produce a color gamut about twice that of a conventional CCFL LCD television. This was possible because red, green and blue LEDs have sharp spectral peaks which (combined with the LCD panel filters) result in significantly less bleed-through to adjacent color channels. Unwanted bleed-through channels do not "whiten" the desired color as much, resulting in a larger gamut. RGB LED technology continues to be used on Sony BRAVIA LCD models. LED backlighting using white LEDs produces a broader spectrum source feeding the individual LCD panel filters (similar to CCFL sources), resulting in a more limited display gamut than RGB LEDs at lower cost.
The evolution of energy standards and the increasing public expectations regarding power consumption made it necessary for backlight systems to manage their power. As for other consumer electronics products (e.g., fridges or light bulbs), energy consumption categories are enforced for television sets.
Using PWM (pulse-width modulation), a technology where the intensity of the LEDs are kept constant but the brightness adjustment is achieved by varying a time interval of flashing these constant light intensity light sources,
A first dynamic "local dimming" LED backlight was public demonstrated by BrightSide Technologies in 2003,Sony in September 2008 on the 40-inch (1,000 mm) BRAVIA KLV-40ZX1M (known as the ZX1 in Europe). Edge-LED lighting for LCDs allows thinner housing; the Sony BRAVIA KLV-40ZX1M is 1 cm thick, and others are also extremely thin.
LED-backlit LCDs have longer life and better energy efficiency than plasma and CCFL LCD TVs.mercury, an environmental pollutant, in their manufacture. However, other elements (such as gallium and arsenic) are used in the manufacture of the LED emitters; there is debate over whether they are a better long-term solution to the problem of screen disposal.
Because LEDs can be switched on and off more quickly than CCFLs and can offer a higher light output, it is theoretically possible to offer very high contrast ratios. They can produce deep blacks (LEDs off) and high brightness (LEDs on). However, measurements made from pure-black and pure-white outputs are complicated by edge-LED lighting not allowing these outputs to be reproduced simultaneously on screen.
Quantum dots are photoluminescent; they are useful in displays because they emit light in specific, narrow normal distributions of wavelengths. To generate white light best suited as an LCD backlight, parts of the light of a blue-emitting LED are transformed by quantum dots into small-bandwidth green and red light such that the combined white light allows a nearly ideal color gamut to be generated by the RGB color filters of the LCD panel. The quantum dors may be in a separate layer as a quantum dot enhacement film, or replace pigment-based green and red resists normally used in LCD color filters. In addition, efficiency is improved, as intermediate colors are no longer present and do not have to be filtered out by the color filters of the LCD screen. This can result in a display that more accurately renders colors in the visible spectrum. Companies developing quantum dot solutions for displays include Nanosys, 3M as a licensee of Nanosys, QD Vision of Lexington, Massachusetts, US and Avantama of Switzerland.Consumer Electronics Show 2015.quantum dot displays at CES 2017 and later formed the "QLED Alliance" with Hisense and TCL to market the technology.
Mini LED displays are LED-backlit LCDs with mini-LED–based backlighting supporting over a thousand full array local dimming (FALD) zones, providing deeper blacks and a higher contrast ratio.
LED backlights are often dimmed by applying pulse-width modulation to the supply current, switching the backlight off and on more quickly than the eye can perceive. If the dimming-pulse frequency is too low or the user is sensitive to flicker, this may cause discomfort and eyestrain similar to the flicker of CRT displays at lower refresh rates.
Competing display technologies for the best image performance; A.J.S.M. de Vaan; Journal of the society of information displays, Volume 15, Issue 9 September 2007 Pages 657–666; http://onlinelibrary.wiley.com/doi/10.1889/1.2785199/abstract?
Novitsky, Tom; Abbott, Bill (12 November 2007). "Driving LEDs versus CCFLs for LCD backlighting". EE Times. Archived from the original on 28 November 2010. Retrieved 21 November 2020.
Method of and device for generating an image having a desired brightness; D.A. Stanton; M.V.C. Stroomer; A.J.S.M. de Vaan; US patent USRE42428E; 7 June 2011; https://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=RE42428E
"Implementing directive 2005/32/EC of the European Parliament and of the Council with regard to ecodesign requirements for televisions", 2009; http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009R0642
Controlling Power Consumption for Displays With Backlight Dimming; Claire Mantel et al; Journal of Display Technology; Volume: 9, Issue: 12, Dec. 2013; https://ieeexplore.ieee.org/document/6520956
LCD Television Power Draw Trends from 2003 to 2015; B. Urban and K. Roth; Fraunhofer USA Center for Sustainable Energy Systems; Final Report to the Consumer Technology Association; May 2017; http://www.cta.tech/cta/media/policyImages/policyPDFs/Fraunhofer-LCD-TV-Power-Draw-Trends-FINAL.pdf Archived 1 August 2017 at the Wayback Machine
Do you wonder what’s better: fluorescent lights (including compact fluorescent lights, or CFLs) or light emitting diodes (LEDs)? Well here’s a head-to-head comparison of the two followed by an in-depth discussion of each technology in turn.
Fluorescent light bulbs are a specific type of gas-discharge light (also known as a high intensity discharge, HID, or arc light). CFL is an acronym that stands for compact fluorescent light. Standard fluorescent lights are available in tubes (generally 48 to 84 inches in length). CFLs are much smaller. They are still tubes but they are, as the name implies, “compact.” CFLs were designed to replace standard applications for incandescent bulbs as they are both more efficient and longer lasting.
Fluorescent bulbs produce light by converting ultraviolet emissions with a fluorescent coating on the inside of the tube. UV radiation is generated in the first place by an electrical charge that is run through the inert mercury glass internal to the bulb. The gas is excited by the electricity andreleases ultraviolet radiation as a consequence. Fluorescent lights require ignition, which is typically provided by a voltage pulse or a third electrode (an additional metal part) internal to the bulb. Starting is relatively simple with small tubes but can require significant voltage with larger lights.
Fluorescent light bulbs previously required a “warm-up” period in order to evaporate the internal gas into plasma, but now there are several near-instantaneous starting technologies for fluorescent light (those include “quick-start,” “instant start,” and “rapid-start”). Additionally, as the light heats up it requires additional voltage to operate. Voltage requirements in fluorescent bulbs are balanced by a ballast (a magnetic device in older bulbs and an electrical one in newer fluorescent technology). As the fluorescent light ages, more and more voltage is required to produce the same amount of light until eventually the voltage exceeds the fixed resistance provided by the ballast and the light goes out (fails). Fluorescent lights become less and less efficient over time because they must use more and more voltage to produce the same lumen output as the light degrades.
Fluorescent technology has been around for more than 100 years and it generally represents a high efficiency way