super ips lcd2 vs tft lcd manufacturer

If you want to buy a new monitor, you might wonder what kind of display technologies I should choose. In today’s market, there are two main types of computer monitors: TFT LCD monitors & IPS monitors.

The word TFT means Thin Film Transistor. It is the technology that is used in LCD displays.  We have additional resources if you would like to learn more about what is a TFT Display. This type of LCDs is also categorically referred to as an active-matrix LCD.

These LCDs can hold back some pixels while using other pixels so the LCD screen will be using a very minimum amount of energy to function (to modify the liquid crystal molecules between two electrodes). TFT LCDs have capacitors and transistors. These two elements play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy while still generating vibrant, consistent images.

Industry nomenclature: TFT LCD panels or TFT screens can also be referred to as TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology.

IPS (in-plane-switching) technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but has more enhanced features and more widespread usability.

These LCD screens offer vibrant color, high contrast, and clear images at wide viewing angles. At a premium price. This technology is often used in high definition screens such as in gaming or entertainment.

Both TFT display and IPS display are active-matrix displays, neither can’t emit light on their own like OLED displays and have to be used with a back-light of white bright light to generate the picture. Newer panels utilize LED backlight (light-emitting diodes) to generate their light hence utilizing less power and requiring less depth by design. Neither TFT display nor IPS display can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to produce the color consumers see. If you use a magnifier to inspect your monitor, you will see RGB color in each pixel. With an on/off switch and different level of brightness RGB, we can get many colors.

Winner. IPS TFT screens have around 0.3 milliseconds response time while TN TFT screens responds around 10 milliseconds which makes the latter unsuitable for gaming

Winner. the images that IPS displays create are much more pristine and original than that of the TFT screen. IPS displays do this by making the pixels function in a parallel way. Because of such placing, the pixels can reflect light in a better way, and because of that, you get a better image within the display.

As the display screen made with IPS technology is mostly wide-set, it ensures that the aspect ratio of the screen would be wider. This ensures better visibility and a more realistic viewing experience with a stable effect.

Winner. While the TFT LCD has around 15% more power consumption vs IPS LCD, IPS has a lower transmittance which forces IPS displays to consume more power via backlights. TFT LCD helps battery life.

Normally, high-end products, such as Apple Mac computer monitors and Samsung mobile phones, generally use IPS panels. Some high-end TV and mobile phones even use AMOLED (Active Matrix Organic Light Emitting Diodes) displays. This cutting edge technology provides even better color reproduction, clear image quality, better color gamut, less power consumption when compared to LCD technology.

This kind of touch technology was first introduced by Steve Jobs in the first-generation iPhone. Of course, a TFT LCD display can always meet the basic needs at the most efficient price. An IPS display can make your monitor standing out.

super ips lcd2 vs tft lcd manufacturer

Steven Van Slyke and Ching Wan Tang pioneered the organic OLED at Eastman Kodak in 1979. The first OLED product was a display for a car stereo, commercialized by Pioneer in 1997. Kodak’s EasyShare LS633 digital camera, introduced in 2003, was the first consumer electronic product incorporating a full-color OLED display. The first television featuring an OLED display, produced by Sony, entered the market in 2008. Today, Samsung uses OLEDs in all of its smartphones, and LG manufactures large OLED screens for premium TVs. Other companies currently incorporating OLED technology include Apple, Google, Facebook, Motorola, Sony, HP, Panasonic, Konica, Lenovo, Huawei, BOE, Philips and Osram. The OLED display market is expected to grow to $57 billion in 2026.

An AMOLED display consists of an active matrix of OLED pixels generating light (luminescence) upon electrical activation that have been deposited or integrated onto a thin-film transistor (TFT) array, which functions as a series of switches to control the current flowing to each individual pixel.

Typically, this continuous current flow is controlled by at least two TFTs at each pixel (to trigger the luminescence), with one TFT to start and stop the charging of a storage capacitor and the second to provide a voltage source at the level needed to create a constant current to the pixel, thereby eliminating the need for the very high currents required for PMOLED.

TFT backplane technology is crucial in the fabrication of AMOLED displays. In AMOLEDs, the two primary TFT backplane technologies, polycrystalline silicon (poly-Si) and amorphous silicon (a-Si), are currently used offering the potential for directly fabricating the active-matrix backplanes at low temperatures (below 150 °C) onto flexible plastic substrates for producing flexible AMOLED displays. Brightness of AMOLED is determined by the strength of the electron current. The colors are controlled by the red, green and blue light emitting diodes.  It is easier to understand by thinking of each pixel is independently colored, mini-LED.

IPS technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but with more enhanced features and more widespread usability compared with the older generation of TN type TFT screen (normally used for low-cost computer monitors). Actually, it is called super TFT.  IPS LCD display consists of the following high-end features. It has much wider viewing angles, more consistent, better color in all viewing directions, it has higher contrast, faster response time. But IPS screens are not perfect as their higher manufacturing cost compared with TN TFT LCD.

Utilizing an electrical charge that causes the liquid crystal material to change their molecular structure allowing various wavelengths of backlight to “pass-through”. The active matrix of the TFT display is in constant flux and changes or refreshes rapidly depending upon the incoming signal from the control device.

super ips lcd2 vs tft lcd manufacturer

IPS (In-Plane Switching) lcd is still a type of TFT LCD, IPS TFT is also called SFT LCD (supper fine tft ),different to regular tft in TN (Twisted Nematic) mode, theIPS LCD liquid crystal elements inside the tft lcd cell, they are arrayed in plane inside the lcd cell when power off, so the light can not transmit it via theIPS lcdwhen power off, When power on, the liquid crystal elements inside the IPS tft would switch in a small angle, then the light would go through the IPS lcd display, then the display on since light go through the IPS display, the switching angle is related to the input power, the switch angle is related to the input power value of IPS LCD, the more switch angle, the more light would transmit the IPS LCD, we call it negative display mode.

The regular tft lcd, it is a-si TN (Twisted Nematic) tft lcd, its liquid crystal elements are arrayed in vertical type, the light could transmit the regularTFT LCDwhen power off. When power on, the liquid crystal twist in some angle, then it block the light transmit the tft lcd, then make the display elements display on by this way, the liquid crystal twist angle is also related to the input power, the more twist angle, the more light would be blocked by the tft lcd, it is tft lcd working mode.

A TFT lcd display is vivid and colorful than a common monochrome lcd display. TFT refreshes more quickly response than a monochrome LCD display and shows motion more smoothly. TFT displays use more electricity in driving than monochrome LCD screens, so they not only cost more in the first place, but they are also more expensive to drive tft lcd screen.The two most common types of TFT LCDs are IPS and TN displays.

super ips lcd2 vs tft lcd manufacturer

As you might already be aware, there’s a large variety of versatile digital display types on the market, all of which are specifically designed to perform certain functions and are suitable for numerous commercial, industrial, and personal uses. The type of digital display you choose for your company or organization depends largely on the requirements of your industry, customer-base, employees, and business practices. Unfortunately, if you happen to be technologically challenged and don’t know much about digital displays and monitors, it can be difficult to determine which features and functions would work best within your professional environment. If you have trouble deciphering the pros and cons of using TFT vs. IPS displays, here’s a little guide to help make your decision easier.

TFT stands for thin-film-transistor, which is a variant of liquid crystal display (LCD). TFTs are categorized as active matrix LCDs, which means that they can simultaneously retain certain pixels on a screen while also addressing other pixels using minimal amounts of energy. This is because TFTs consist of transistors and capacitors that respectively work to conserve as much energy as possible while still remaining in operation and rendering optimal results. TFT display technologies offer the following features, some of which are engineered to enhance overall user experience.

The bright LED backlights that are featured in TFT displays are most often used for mobile screens. These backlights offer a great deal of adaptability and can be adjusted according to the visual preferences of the user. In some cases, certain mobile devices can be set up to automatically adjust the brightness level of the screen depending on the natural or artificial lighting in any given location. This is a very handy feature for people who have difficulty learning how to adjust the settings on a device or monitor and makes for easier sunlight readability.

One of the major drawbacks of using a TFT LCD instead of an IPS is that the former doesn’t offer the same level of visibility as the latter. To get the full effect of the graphics on a TFT screen, you have to be seated right in front of the screen at all times. If you’re just using the monitor for regular web browsing, for office work, to read and answer emails, or for other everyday uses, then a TFT display will suit your needs just fine. But, if you’re using it to conduct business that requires the highest level of colour and graphic accuracy, such as completing military or naval tasks, then your best bet is to opt for an IPS screen instead.

Nonetheless, most TFT displays are still fully capable of delivering reasonably sharp images that are ideal for everyday purposes and they also have relatively short response times from your keyboard or mouse to your screen. This is because the pixel aspect ration is much narrower than its IPS counterpart and therefore, the colours aren’t as widely spread out and are formatted to fit onto the screen. Primary colours—red, yellow, and blue—are used as the basis for creating brightness and different shades, which is why there’s such a strong contrast between different aspects of every image. Computer monitors, modern-day HD TV screens, laptop monitors, mobile devices, and even tablets all utilize this technology.

IPS (in-plane-switching) technology is almost like an improvement on the traditional TFT display module in the sense that it has the same basic structure, but with slightly more enhanced features and more widespread usability. IPS LCD monitors consist of the following high-end features.

IPS screens have the capability to recognize movements and commands much faster than the traditional TFT LCD displays and as a result, their response times are infinitely faster. Of course, the human eye doesn’t notice the difference on separate occasions, but when witnessing side-by-side demonstrations, the difference is clear.

Wide-set screen configurations allow for much wider and versatile viewing angles as well. This is probably one of the most notable and bankable differences between TFT and IPS displays. With IPS displays, you can view the same image from a large variety of different angles without causing grayscale, blurriness, halo effects, or obstructing your user experience in any way. This makes IPS the perfect display option for people who rely on true-to-form and sharp colour and image contrasts in their work or daily lives.

IPS displays are designed to have higher transmittance frequencies than their TFT counterparts within a shorter period of time (precisely 1 millisecond vs. 25 milliseconds). This speed increase might seem minute or indecipherable to the naked eye, but it actually makes a huge difference in side-by-side demonstrations and observations, especially if your work depends largely on high-speed information sharing with minimal or no lagging.

Just like TFT displays, IPS displays also use primary colours to produce different shades through their pixels. The main difference in this regard is the placement of the pixels and how they interact with electrodes. In TFT displays, the pixels run perpendicular to one another when they’re activated by electrodes, which creates a pretty sharp image, but not quite as pristine or crisp as what IPS displays can achieve. IPS display technologies employ a different configuration in the sense that pixels are placed parallel to one another to reflect more light and result in a sharper, clearer, brighter, and more vibrant image. The wide-set screen also establishes a wider aspect ratio, which strengthens visibility and creates a more realistic and lasting effect.

When it comes to deciphering the differences between TFT vs. IPS display technologies and deciding which option is best for you and your business, the experts at Nauticomp Inc. can help. Not only do we offer a wide variety of computer displays, monitors, and screen types, but we also have the many years of experience in the technology industry to back up our recommendations and our knowledge. Our top-of-the-line displays and monitors are customized to suit the professional and personal needs of our clients who work across a vast array of industries. For more information on our high-end displays and monitors, please contact us.

super ips lcd2 vs tft lcd manufacturer

A wide variety of 4.3 ips lcd options are available to you, such as original manufacturer, odm and retailer.You can also choose from tft, ips and standard 4.3 ips lcd,

super ips lcd2 vs tft lcd manufacturer

Have you ever wondered what is the difference between LCD and OLED type of screens? What are each pros and cons? Why Samsung is mainly preferring “AMOLED”, whereas HTC swears on LCD type of display? Well, I hope we can work this through and help you choose what kind of display is best for your eyes!

When talking about display technology, essentially there are two types for smartphone market. In one corner there is LCD (liquid crystal display) and on the other hand we have OLED (organic light emitting diode) display technology.

This is the most common type of display in mobile world. We have different types of liquid crystal displays (LCD). From cheap, low budget display technologies with dull colours and poor viewing angles, to high end ones, capable of presenting extremely vivid, natural colours with wide viewing angles. It all comes down to money and effort manufacturers put into the display.

I would say HTC is the master of LCD type of displays. They constantly shock us with better and better displays. I remember when HTC One X came out. It was the best display on mobile device to that date, hands down! It was simply gorgeous. Colours were extremely vivid, viewing angles were incredibly wide, it was (is) bright and outdoor visibility was good too.

You see, there are many factors that come to account when talking about displays. It’s not just the pixels that matter when talking about a quality display. Usually when buying a new phone, if we take a deeper look into phone specs (what we should always do) we get additional info about display. We can stumble upon some fancy abbreviations like: TFT LCD, IPS LCD, S-LCD, SUPER LCD, SUPER LCD 2 etc… Those are all liquid crystal displays. Let’s take a look at each one of them and share a few words.

TFT LCD: stands for: “thin film transistor liquid crystal display”. Like TFD, it is an active-matrix technology. That means that each pixel has a transistor turning it on and off individually, making it very responsive. It’s cons are poor viewing angles and outdoor visibility under direct sunlight. They ought to consume more power, meaning they are less battery friendly. Because of low manufacturing costs, those are mainly seen on low budget phones to mid range ones.

IPS LCD: stands for: “in-plane switching LCD”. It’s a big step up from TFT screens. Viewing angles are wider, outdoor visibility is better and it should consumes less power. Production cost  is a little higher, that is why we encounter them in high end phones like previously mentioned HTC One X, HTC One, Sony Xperia phones, LG high end phones and so on. Even Iphone uses this type in their “Retina” displays. IPS screens feature 2 transistors per pixel as opposed to the TFT ones that have only one.

Super LCD(SLCD): Is mostly used by HTC and are made by S-LCD Corporation and some by Sony. It’s suppose to be an advanced version of LCD display. It differs from regular LCD by removed gap between glass and display panel, making better viewing angles, less glare and nicer look (picture appears closer to you, feels more natural and warmer).

Super LCD2:Is again updated version with minor changes. Manufacturers also like to change names to attract us buyers, even though there weren’t any milestone changes…

LCD needs a backlight, because it does not produce light itself. So, the first element is light source of plain white light, evenly distributed across the whole panel. Than, there are two polarised films positioned at a 90 degree angle to each other. Normally, light does not pass through because it is stopped by either of the two polarised panels.

To turn the sub-pixel on, no electric charge is required. If we want to turn it off, a charge is released, causing liquid crystals to straighten out – align, and no light can pass. You might ask yourself why isn’t this making LCD screens more power effective if no current is needed for crystals to be twisted, causing light to pass through. Well the problem is with the back panel that is constantly shining no matter how many pixels are actually turned on, which leads us to LCD’s biggest rival and that is OLED display.

Organic light emitting diode (OLED) displays on the other hand, do not need a backlight panel, but instead, pixels themselves act as a light source. This type of display has one great advantage over LCD, and that is the way black colour is presented. Unlike LCD screen that needs a whole backlit panel to be lit up (even with “black pixels”), OLED panel simply shuts those black pixels off . That is why OLED displays have those deep blacks and high contrast colour ratio.

With OLED displays, the same goes as with LCDs. There are various types and consequently, quality ranges. In this display world, Samsung wears the crown, I’d say. They are also the biggest OLED display manufacturer

When looking for OLED displays you will probably come across these abbreviations: OLED, AMOLED, SUPER AMOLED, SUPER AMOLED PLUS. Let’s explain those in a few words

Super AMOLED:Samsung upgraded it’s AMOLED screen type by removing that extra touch-sensitive layer. With Super AMOLED screens, they managed to integrate touch sensor on display panel itself, making it even thinner than before, less power hungry, touch sensitivity is more accurate and viewing angles are even better.

Actually, working principle of these displays is a bit more complicated than LCD ones. It involves radiation, delocalization (moving) of pi electrons from highest occupied molecular state to lowest unoccupied molecular state of organic semiconductors and so on, so I didn’t care to dig too deep but it goes something like this;

New Samsung’s flagships possess this kind of matrix because as said above, OLED displays tend to image burn. What that essentially means is that pixels die – get burned. To check if your phones has some, you can use testers from Google Play, which fill the entire screen with red, blue and green colour (immersive mode – full screen). You can also apply white through entire screen to see if there are any burns. It is common for it to happen on areas that are persistent, such as “status bar” on top or navigation bar on the bottom. If we apply a white colour through entire screen and still see a grayish shadow where status bar usually is, that means you have a screen burn. People who text a lot have said that even keyboard can be faintly visible.

Well, here is an example. We have a Samsung Galaxy S2 and a screen burn is visible. LCD screen pixels burn as well, to be clear, it’s just its lifespan is much longer.

Below we have 3 different display matrixes. First is from Galaxy Note 3, which uses PentileMatrix where there are double as much green subpixels as there are red and blue (they do it because blue ones are the ones that get burned easiest). Samsung used new arrangement with this one, as seen from the picture, subpixels are diamondly shaped. Secondly we have LCD display from HTC One X and lastly again AMOLED display from Nexus One. Not all AMOLED screens have Pentile Matrix arrangement. Super Amoled from Galaxy S2 for example uses standard RGB configuration.

Basically in terms of picture quality both can be fairly equally good. Both, Samsung Note’s Super AMOLED display and HTC One’s Super LCD 2 are a joy to watch (I am just using those as example phones through the article, which doesn’t mean Sony, LG or any other manufacturer has any worse displays). You’ll get a crisp looking picture, with good colour presentation and bright display for outdoor visibility. Differences are not astronomical.

While manufacturers are constantly improving their screens, it is sometimes hard to follow the track which one is better. In the end it all comes down to personal preferences. Some like vibrant colours that AMOLED is able to deliver, for others it feels over saturated and prefer more natural colours LCD is famous for. Again some like deeper blacks while others browse on internet a lot and prefer whiter whites.

super ips lcd2 vs tft lcd manufacturer

The tried and trusted TFT is the display of choice for most industrial designs, but it does have its limitations in viewability and colour vibrancy. But what about the relatively new technology, IPS (in plane switching) which has turned the TFT into a super-TFT? What are the benefits and drawbacks of each?

IPS derives its name from the fact that the liquid-crystal molecules are aligned in parallel with the glass plates, whereas the TN principle adopted in conventional TFT displays is based on perpendicular alignment of the molecules. In an IPS display, the crystals remain oriented in parallel whether the pixel is turned on or off.

A TFT display is a form of Liquid Crystal Displaywith thin film transistors for controlling the image formation. The TFT technology works by controlling brightness in red, green and blue sub-pixels through transistors for each pixel on the screen. The pixels themselves do not produce light; instead, the screen uses a backlight for illumination. Discover our TFT Products

Because the pixels block light when in the off state (the opposite situation to conventional TFT), IPS TFT exhibits high contrast and the background is true black when the display is powered down.

Display choice really does depend on your application, end user and environment. It may be a higher-grade IPS is needed to satisfy outdoor requirements, or a lower cost standard TFT display is sufficient. Before you make your choice, why speak with us and we will be happy to talk you through your options.

super ips lcd2 vs tft lcd manufacturer

This 1.44 inch TFT LCD display panel module model adopts TN type square LCD with 128*128 resolution. CTP (Capacity Touch Panel) and RTP can be added according to user requirements. Based on the square characteristic and low price of this 1.44-inch LCD module, it is especially suitable for smart wear (watch) devices and various instrument display. We can guarantee a stable supply of this LCD screen module throughout the life cycle of your product.