is tft display easier to see in the sun quotation

Before answering the questions below, it would be helpful to provide a simple overview of how a TFT LCD works. Every monitor or touchscreen computer includes an LCD panel. The LCD panel is the component that you are viewing at this very moment. This panel includes a thin layer of TFT LCD pixels, where each pixel includes a red, blue, and green rectangle. You can actually see the individual pixels on a display if you place a drop of water on it. The drop will magnify the pixel area and reveal a pixel with a red, blue, and green rectangle. Each red, blue, and green rectangle is a small lens that can be adjusted to allow varying amounts of light to pass through. The colors you see on your screen are determined by how much light is passing through each adjustable red, green, and blue element of each pixel.

The light that you see does not come from the pixels themselves, but from the backlight behind the pixels, which is a series of carefully placed LEDs that emit white light that projects through the LCD pixels. You cannot see the individual backlight LEDs when you look at your monitor, because there is layer of light diffusing material between the LED backlight and the LCD pixel layer. The light diffusing material scatters the light from each individual backlight LED, so they do not show up as bright spots on your monitor.

To summarize, the three layers of an LCD panel are the TFT LCD pixel layer, the diffuser layer, and the LED backlight layer. Note that some LCDs have edge-lit backlighting, but there is no need to go into detail about this, as the same principles apply. That completes LCD panel course 101. Now, what makes a display sunlight readable?

There are two general ways to make an LCD brighter and therefore readable in sunlight. The first and simplest way is to increase the brightness of the backlight. LCD brightness is measured in Nits. Typical LCD panels have a screen brightness between 250 Nits to 450 Nits. LCD brightness of 800 Nits or higher is generally considered sunlight readable, but most sunlight readable displays are 1000 nits. Increasing the brightness of the LCD panel backlight is the most common method of making an LCD panel sunlight readable. Most of Teguar’s industrial panel PCs and touchscreen monitors are available with this type of high brightness LCD.

Another way to make an LCD sunlight readable is to change the diffuser material between the LED backlight and the LCD pixels to a “transflective” material. The transflective material is similar to reflective sunglasses or a one way window, where the shiny side is facing the LCD surface. When transflective material is used, the sunlight entering the LCD panel travels through the pixels, bounces off the transflective material, and is reflected back through the pixels to your eyes. In this case, the sunlight has much less of an impact on viewability than a traditional LCD panel, as the sunlight is reflecting back through the LCD pixels and contributing to the LCD brightness. One drawback of transflective diffuser LCDs is that they don’t allow for as much of the backlight to pass through the diffuser material, so in low light conditions the LCD does not appear as bright. Transflective diffuser LCDs are not as common as high brightness backlight LCDs.

Optical bonding improves viewability of touchscreen PCs in sunlight or other high-bright environments. In a touchscreen computer, the touchscreen sensor and the LCD panel are separate components. The touchscreen is mounted in front of the LCD surface and there is a small air gap between these two components. When sunlight passes through the touchscreen layer, some amount of the light is reflected between the LCD surface and the touchscreen; this reflection reduces LCD viewability.

Optical bonding is a process where a clear adhesive gel is placed between the LCD to the touchscreen. The gel hardens and bonds the touchscreen to the LCD to eliminate the air gap, improving contrast and clarity. Optical bonding is available on many of Teguar’s touchscreen computers and industrial monitors.

The brightness of a sunlight readable display may be overwhelming at night, when there is little or no ambient light. Most industrial computers with sunlight readable LCDs are available with an optional auto-dimming feature. With this feature, an ambient light sensor on the front bezel measures incoming light and adjusts the backlight brightness to match the current light conditions. This is typically a requirement for industrial touchscreen computers that are used in both sunlight and moonlight.

Sunlight also comes with a high amount of UV radiation that can damage the components used in touch screens. PCAP touch screens resist UV damage better than Resistive, but even a PCAP screen must be protected from too much UV exposure. Teguar computers are best suited for environments that provide some level of shade, such as a roof or overhang above the computer, or a structure that blocks the screen from direct exposure to the sun. Most outdoor computer manufactures, Teguar included, will offer a specialized shroud/hood that mounts directly to the unit to provide some level of shade.

Most of our products can handle a few hours of direct sun exposure per day, but full exposure to direct sunlight will cause damage to most touch screens in around 1 year. Contact a knowledgeable Teguar sales rep to discuss the details of your own environment and we can help determine the best solution.

Touchscreen computers in vehicles commonly require high brightness LCDs, because of the ambient sunlight coming through the windows. Sunlight readable LCDs are also used in many indoor applications surrounded by windows, such as air traffic control centers, railroad cars, marine vessels, agriculture machinery, and public kiosks.

is tft display easier to see in the sun quotation

IPS (In-Plane Switching) lcd is still a type of TFT LCD, IPS TFT is also called SFT LCD (supper fine tft ),different to regular tft in TN (Twisted Nematic) mode, theIPS LCD liquid crystal elements inside the tft lcd cell, they are arrayed in plane inside the lcd cell when power off, so the light can not transmit it via theIPS lcdwhen power off, When power on, the liquid crystal elements inside the IPS tft would switch in a small angle, then the light would go through the IPS lcd display, then the display on since light go through the IPS display, the switching angle is related to the input power, the switch angle is related to the input power value of IPS LCD, the more switch angle, the more light would transmit the IPS LCD, we call it negative display mode.

The regular tft lcd, it is a-si TN (Twisted Nematic) tft lcd, its liquid crystal elements are arrayed in vertical type, the light could transmit the regularTFT LCDwhen power off. When power on, the liquid crystal twist in some angle, then it block the light transmit the tft lcd, then make the display elements display on by this way, the liquid crystal twist angle is also related to the input power, the more twist angle, the more light would be blocked by the tft lcd, it is tft lcd working mode.

A TFT lcd display is vivid and colorful than a common monochrome lcd display. TFT refreshes more quickly response than a monochrome LCD display and shows motion more smoothly. TFT displays use more electricity in driving than monochrome LCD screens, so they not only cost more in the first place, but they are also more expensive to drive tft lcd screen.The two most common types of TFT LCDs are IPS and TN displays.

is tft display easier to see in the sun quotation

There are more and more TFT displays used in outdoor applications, such as automobile display, digital signage and kiosks. High ambient light in outdoor environment often causes wash-out image and renders the screen not readable. Readability & sustainability of TFT  display under direct sunlight is becoming vital. Topway Display has been developing sunlight readable LCD display solution for years. The company understands the ins and outs of sunlight readable TFT LCD.

Visibility is the ease with which a viewer can detect an object, or in more scientific term: the relationship between luminance contrast and human eye’s threshold. Therefore, the higher an object’s contrast is, the better is its visibility.

For an LCD to be readable in outdoor environment with very bright ambient light, the LCD screen’s brightness needs to exceed the intensity of light that is reflected from the display surface. To be comfortably viewed by human eyes, the LCD’s brightness needs to exceed its reflected light by a factor of 2.5 at minimum. Naturally, to make an LCD sunlight readable, we can work on two areas, increasing brightness or reducing reflectance.

On a clear day in direct sunlight, the ambient brightness is about 6000 cd/m2. And a typical TFT LCD with touch screen reflects about 14% of ambient light, which is around 840 cd/m2. These days, most LCD displays use LED backlight as light source. It is not too difficult to increase an LCD’s brightness to 800 ~ 1000 Nits, to overpower the bright reflected sunlight. Thus, you have a sunlight readable TFT LCD.

However, this method requires more backlight LEDs and/or higher driving current. The drawbacks are high power consumption, more heat dissipation, increased product size and shorter LED backlight lifespan. Apparently, increasing backlight to make TFT LCD sunlight-readable is not a very good solution.

Transflective TFT LCD is a TFT LCD with both transmissive and reflective characteristics. A partially reflective mirror layer is added between LCD and backlight. This change turns part of the reflected ambient light into LCD’s light source, increasing the TFT display’s brightness. However, transflective TFT LCD is more expensive than transmissive one. At the same time, the partially reflective mirror layer will block some of the backlight, making it not ideal in indoor or low ambient light environment.

What causes light reflection? When light traveling in one transparent medium encounters a boundary with another transparent medium, a portion of the light bounces off the border. Through the simplest version of Fresnel’s equation, we can calculate the amount of reflected light.

The total reflectance on a TFT LCD with touch panel is the sum of reflected light on any interface where two materials meet. As an example, between polarizer and display glass, the difference in index of refractions for the two materials is very small, around 0.1. So the reflected light on this interface is only 0.1%. As Fresnel’s equation points out, we should focus reflection reduction on air interfaces. For air, its index of refraction is 1; for glass, it is 1.5. And that results in a reflectance of 4.5%. Therefore, the three air interfaces contribute majority of TFT LCD’s reflectance, at about 13%.

The quick and easiest thing we can do to reduce air-glass interface reflectance is to use an Anti-Reflection and Anti-Glare film or apply AR coating. An external film with AR properties not only reduces reflected light, but also brings other benefits.

For food industry application, shattered glass is a serious problem. An LCD screen with external film solves this issue nicely. As for automotive applications, in an accident, broken LCD with top AR film won’t produce sharp edge glass that could harms auto occupant. Nevertheless, a top film always reduces TFT LCD’s surface hardness. And it is susceptible to scratches. On the other hand, AR coating retains LCD’s hardness and touch performance. But it comes with a bigger price tag.

Another quick and easy way to tackle reflectance is to affix a linear polarizer on the top of TFT screen. When ambient light gets to the top polarizer, only half of the light passes through. Which results in reflection light cutting to half. This is a very low cost way to increase TFT LCD’s contrast, such that making it more sunlight readable.

Laminating a circular polarizer in TFT LCD will get rid of a lot of reflectance. That is because when ambient light passes through circular polarizer it gets circularly polarized. And when it is reflected, the polarization direction flips by 180 degrees. So when reflected light comes back to the circular polarizer, nothing goes through to viewer’s eyes.

This method is very effective for an LCD display with resistive touch panel. We know resistive touch LCD has two air gaps: air gap between two ITO layers and air gap between touch panel and LCD display. Reflectance caused by the two air gaps is very high. Applying circular polarizer blocks off most of the reflected light, and makes the LCD display sunlight readable.

The disadvantage of such solution is its cost. Since we need not only a circular polarizer, but also a retarder film on the top of LCD display, making sure light originates from within LCD is not blocked by external circular polarizer.

Add AR films on both interfaces of internal air gap. The add-ons can reduce this area’s reflection from 8.5% to 2%. And since the AR films are not outside facing, they are much cheaper than the one used outside. Keeping the air gap also retains the ease of service, in case either touch panel or LCD display needs to be repaired.

The most effective way is to eliminate air gap totally, by using optical bonding. In plain language, we fill air gap with special optical adhesive, to smooth out the area’s refraction index differences. Such that reflectance caused by internal air gap drops from 8.5% to 0.5%. Optical bonding is expensive but effective way to improve TFT LCD sunlight readability. It enhances durability and resistance to impact. Moreover, no air gap means no moisture condensation and fogging.

There are many ways to make TFT LCDsunlight readable. They all have their own pros and cons. With 20+ years" LCD design and manufacturing experience, Topway knows how to create the best sunlight readable TFT LCD for challenging environments. Leave us a message and let"s start the conversation of creating suitable sunlight readable TFT LCD for your project.

is tft display easier to see in the sun quotation

In order to keep this display in production over the long term, we are revising it to the CFA240320E0-024SN. Any backorders placed now will be fulfilled with the new part when it becomes available. Please contact support@crystalfontz.com with any questions.

This TFT EVE module simplifies development with this 2.4" Full-Color TFT Display. The EVE FT811 chip controls the display using a display list to easily display complex graphics. The display is sunlight readable, full color, and has a wide viewing angle, so it"s a great choice for inside or outside.

The PCB handles the TFT display backlight voltage, making this display module perfect for hand-held applications. Read more about how the EVE chip can help your product development on our blog.

For more detailed information on EVE, see the FTDI FT81x Datasheet. Further information including programming examples, interface design software, and more can be found on FTDI’s website here:https://www.ftdichip.com/Support/Utilities.htm.

The board is being revised to support a different NXP processor as the helper processor on the board. This will not affect the functionality of the module and is a drop-in replacement.

Due to the ongoing worldwide component shortage, we are unable to source the current processor until 2023. Instead of having a year-long lead time for our product, we are designing in a readily available processor.

is tft display easier to see in the sun quotation

Do you need a display with beautiful graphics and touch capabilities in a tough environment? This resistive touch IPS EVE TFT module is a fantastic choice. The BT817 EVE chip helps simplify sending complex graphics to the display and also handles the touchscreen sensing and communication to the host. Read more about the benefits of an EVE module.

is tft display easier to see in the sun quotation

This 800x480 resolution LCD TFT is equipped with a powerful backlight, providing visibility in bright lighting conditions including the direct sun. The 24-bit sunlight readable display has RGB interface and allows optimal viewing up to 70° from any direction. The Liquid Crystal Display has a built-in ILI6122 controller, FFC connection, is RoHS compliant and has a 10-point mulit-touch capacitive touchscreen.

Adjust the length, position, and pinout of your cables or add additional connectors. Get a cable solution that’s precisely designed to make your connections streamlined and secure.

Enhance your user experience with capacitive or resistive touch screen technology. We’ll adjust the glass thickness or shape of the touch panel so it’s a perfect fit for your design.

Choose from a wide selection of interface options or talk to our experts to select the best one for your project. We can incorporate HDMI, USB, SPI, VGA and more into your display to achieve your design goals.

Equip your display with a custom cut cover glass to improve durability. Choose from a variety of cover glass thicknesses and get optical bonding to protect against moisture and debris.

is tft display easier to see in the sun quotation

Made primarily for outdoor use, SVD Digital Signage combines familiarity with groundbreaking innovation. It has no backlight, using only sunlight to illuminate the display image in full color and HD resolution. Because we"ve eliminated the backlight, the display consumes up to 95% less power than other technologies and can be powered by a 12V battery. Weighing in at just 15 lbs, our RLCD Digital Signage is incredibly lightweight and portable. The HDMI port allows for fast and easy connection and updates.

is tft display easier to see in the sun quotation

degrees. So, in this range we are safe, we can go very low with the temperature, and it will not become solid, and we can go very high with the temperature up to 110 degrees and it will not become isotropic.

Maybe you have even seen some displays that were used outdoors and sometimes they become black. We call that the blackening effect. If they become black, that means the crystals become isotropic. You can sometimes see that the part of the display is black or sometimes the whole display becomes black, depending on the temperature. The good thing is that it is not damaging the display, so once the temperature drops it goes back to the nematic phase and the display is working again, but in a high temperature you cannot see anything on the display, it is not working.

On the picture above, we have an example from a data sheet of a display with high temperatures. As we said it’s a liquid crystal from -40 to +110 degrees, and this is the latest technology. But you need to be careful! This is only about the surface of a display, the TFT glass itself. If we have the sunlight going to the display it can increase the temperature of the whole display as a module.

For the whole display module, the operating temperature range can be as low as 0 to +50 degrees or -20 to 70 degrees. We can have two operating temperatures, that means if we use the display outdoors, we are safe from the sunlight, the surface of the display can go very high, but we need to control the ambient temperature inside the display housing to not go too high. +50 or +70 will be maximum, usually we need fans to remove the heat from inside. Typically, in our case we have a computer inside and we have more devices that cannot work at high temperatures like +100 degrees, so we control the temperature anyway. So, the temperature cannot be too high inside and for sure cannot be that high as a liquid crystal itself can withstand, which is +110 degrees.

And that will be all in this article about contrast, brightness, and temperatures. Just one more thing: if you are planning on buying a laptop today, you can find brightness in the specification. Look at this number because this will determine how good your laptop will be outdoors. There are laptops on the market today that will have 1000 candelas or even more. If you are looking for a new device my recommendation also goes for mobile phones. Low brightness mobile phones can have 300, maybe 500 candelas, but nowadays the standard will be around 1000 candelas, but there are phones on the market that already have 1500 or even 1800 candelas. That means if you are in the sunlight you will still be able to see the image clearly. Of course, the battery will be drained faster, but sometimes it is not so important, maybe you just want to check something quickly, to read something and you want to have a clear image just be aware that this number is pretty important when you buy new devices!

is tft display easier to see in the sun quotation

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

is tft display easier to see in the sun quotation

Display size, contrast, color, brightness, resolution, and power are key factors in choosing the right display technology for your application. However, making the right choice in how you feed the information to the display is just as vital, and there are many interface options available.

All displays work in a similar manner. In a very basic explanation, they all have many rows and columns of pixels driven by a controller that communicates with each pixel to emit the brightness and color needed to make up the transmitted image. In some devices, the pixels are diodes that light up when current flows (PMOLEDs and AMOLEDs), and in other electronics, the pixel acts as a shutter to let some of the light from a backlight visible. In all cases, a memory array stores the image information that travels to the display through an interface.

According to Wikipedia, "an interface is a shared boundary across which two separate components of a computer system exchange information. The exchange can be between software, computer hardware, peripheral devices, humans, and combinations of these. Some computer hardware devices such as a touchscreen can both send and receive data through the interface, while others such as a mouse or microphone may only provide an interface to send data to a given system.” In other words, an interface is something that facilitates communication between two objects. Although display interfaces serve a similar purpose, how that communication occurs varies widely.

Serial Peripheral Interface (SPI) is a synchronous serial communication interface best-suited for short distances. It was developed by Motorola for components to share data such as flash memory, sensors, Real-Time Clocks, analog-to-digital converters, and more. Because there is no protocol overhead, the transmission runs at relatively high speeds. SPI runs on one master (the side that generates the clock) with one or more slaves, usually the devices outside the central processor. One drawback of SPI is the number of pins required between devices. Each slave added to the master/slave system needs an additional chip select I/O pin on the master. SPI is a great option for small, low-resolution displays including PMOLEDs and smaller LCDs.

Philips Semiconductors invented I2C (Inter-integrated Circuit) or I-squared-C in 1982. It utilizes a multi-master, multi-slave, single-ended, serial computer bus system. Engineers developed I2C for simple peripherals on PCs, like keyboards and mice to then later apply it to displays. Like SPI, it only works for short distances within a device and uses an asynchronous serial port. What sets I2C apart from SPI is that it can support up to 1008 slaves and only requires two wires, serial clock (SCL), and serial data (SDA). Like SPI, I2C also works well with PMOLEDs and smaller LCDs. Many display systems transfer the touch sensor data through I2C.

RGB is used to interface with large color displays. It sends 8 bits of data for each of the three colors, Red Green, and Blue every clock cycle. Since there are 24 bits of data transmitted every clock cycle, at clock rates up to 50 MHz, this interface can drive much larger displays at video frame rates of 60Hz and up.

Low-Voltage Differential Signaling (LVDS) was developed in 1994 and is a popular choice for large LCDs and peripherals in need of high bandwidth, like high-definition graphics and fast frame rates. It is a great solution because of its high speed of data transmission while using low voltage. Two wires carry the signal,  with one wire carrying the exact inverse of its companion. The electric field generated by one wire is neatly concealed by the other, creating much less interference to nearby wireless systems. At the receiver end, a circuit reads the difference (hence the "differential" in the name) in voltage between the wires. As a result, this scheme doesn’t generate noise or gets its signals scrambled by external noise. The interface consists of four, six, or eight pairs of wires, plus a pair carrying the clock and some ground wires. 24-bit color information at the transmitter end is converted to serial information, transmitted quickly over these pairs of cables, then converted back to 24-bit parallel in the receiver, resulting in an interface that is very fast to handle large displays and is very immune to interference.

Mobile Industry Processor Interface (MIPI) is a newer technology that is managed by the MIPI Alliance and has become a popular choice among wearable and mobile developers. MIPI uses similar differential signaling to LVDS by using a clock pair and one to eight pairs of data called lanes. MIPI supports a complex protocol that allows high speed and low power modes, as well as the ability to read data back from the display at lower rates. There are several versions of MIPI for different applications, MIPI DSI being the one for displays.

Display components stretch the limitations of bandwidth. For perspective, the most common internet bandwidth in a residential home runs on average at around 20 megabits per second or 20 billion 1s and 0s per second. Even small displays can require 4MB per second, which is a lot of data in what is often a tightly constrained physical space.

To give an example, a small monochrome PMOLED with a resolution of 128 x 128 contains 16,384 individual diodes. A still image of various diodes carrying current represents a frame. A frame rate is the number of times that a picture needs refreshing. Most videos have a frame rate of 60 fps (frames per second), which means that it is updated 60 times every second.

Take the same PMOLED display with the 128 x 128 resolution and 16,384 separate diodes; it requires information as to when and how brightly to illuminate each pixel. For a display with only 16 shades, it takes 4 bits of data. 128 x 128 x 4 = 65,536 bits for one frame. Now multiply it by the 60Hz, and you get a bandwidth of 4 megabits/second for a small monochrome display.

is tft display easier to see in the sun quotation

I have the same question as Pieter. From the ST7282 datasheet, it is not possible to send any commands or change any registers without using the serial interface, and that serial interface is not provided on the 40-pin flex.

Even if this is true, there are still ST7282 registers that users might want to change. For example, on pages 39-40 of the datasheet, I see registers for setting brightness, contrast, and gamma. These will not be accessible.

Is there a demo of this display to prove that it actually works? Because leaving out the serial interface seems like it might have been a mistake made by the designers. I just want to make sure that this module actually functions.

> Regarding the software part,there is no need to make the setting for any registers as all of them are default value and doesn"t support to change, you just need to make the setting for VSYNC,HSYNC,DCLK Period, DCLK Frequency in your initialization code and you could get the parameters from ST7282 datasheet page 60.

is tft display easier to see in the sun quotation

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

is tft display easier to see in the sun quotation

At Display Technology we understand that each market sector has different requirements, therefore we pick our suppliers based on what our customers want. But, there is a common process and thought strategy used, when picking each supplier.

We aim to offer TFT LCD displays of the best quality for the price, and where we can secure a continuity of supply. The quality of products reflects on our business, and so we do not want to be linked to inferior quality stock. We also understand that there is a certain amount of development time, approvals and cost if a product changes.

With every development we look at the impact and consult with our clients the best route forward in order to meet requirements. When we choose a partner, unlike some TFT display suppliers, we do not just add on without understanding how the range fits within our business model. It is also important that we can add value to a suppliers range for an improved solution for the end customer.

We know all our TFT monitors will require support from other components within our range, including touch screens, interface cards or backlight controllers. Therefore we endeavour to fully test new panels for compatibility prior to releasing onto the market.