4.5 inch qhd tft display in stock
The Transmissive polarizer is best used for displays that run with the backlight on all the time. This polarizer provides the brightest backlight possible. If you have a need for a bright backlight with lower power drain, transmissive is a good choice for this TFT LCD.
TheCapacitive touch panel is activated with anything containing an inductive load such as a finger or stylus. It allows for multi-touch options. When using the capacitive touch screen, the display needs a separate controller to interface with the touch panel. The display for capacitive touch is brighter since the touch panel is transparent.
Focus LCDs can provide many accessories to go with your display. If you would like to source a connector, cable, test jig or other accessory preassembled to your LCD (or just included in the package), our team will make sure you get the items you need.Get in touch with a team member today to accessorize your display!
Focus Display Solutions (aka: Focus LCDs) offers the original purchaser who has purchased a product from the FocusLCDs.com a limited warranty that the product (including accessories in the product"s package) will be free from defects in material or workmanship.
TheTransmissive polarizeris best used for displays that run with the backlight on all the time. This polarizer provides the brightest backlight possible. If you have a need for a bright backlight with lower power drain, transmissive is a good choice for this TFT LCD display.
Focus LCDs can provide many accessories to go with your display. If you would like to source a connector, cable, test jig or other accessory preassembled to your LCD (or just included in the package), our team will make sure you get the items you need.Get in touch with a team member today to accessorize your display!
Focus Display Solutions (aka: Focus LCDs) offers the original purchaser who has purchased a product from the FocusLCDs.com a limited warranty that the product (including accessories in the product"s package) will be free from defects in material or workmanship.
Tianma Microelectronics Co., Ltd. (hereafter called TIANMA) TM045XDHP01 is a 4.5 inch diagonal a-Si TFT-LCD display panel product, with an integral WLED backlight system, without backlight driver, without touch screen. It features an operating temperature range of -20 ~ 70°C , a storage temperature range of -30 ~ 80°C . It"s general features are summarized by Panelook in the following: Portrait type, WLED Backlight, 6/8 bit . Based on its features, Panelook recommend that this model be applied to Mobile Phone etc.Built-in NT35516 driver IC. According to the information stored in Panelook this model mass production on Q3, 2012, Now this model is discontinued. There are 0 items stock and 0 suppliers of this model on Panelook. We inputted this model"s specification on Jul 18 2017 for the first time, and the latest update on Nov 20 2019. If you want to embed TM045XDHP01 LCM in your future product, Panelook strongly recommend that you should contact with TIANMA or it"s distributor to learn lateast production and specification detail. The TM045XDHP01 production status marked on Panelook.com is for reference only and should not be used as the basis for the user"s decision making. All specification details are inputted by Panelook engineers according to datasheet, but we cannot guarantee the spec listed is right.
CTIA 2013 seems to be dedicated to some of the lesser-known names in the US wireless industry, so it"s fit that Chinese manufacturer Coolpad should take advantage of the situation to steal the show. Indeed, we were able to take a look at the phone maker"s upcoming stateside model, the lower-end Quattro II 4G. In the past year, its predecessor cranked out roughly a million units on MetroPCS, and Coolpad is hoping to build upon that success to get a foothold in the US. This sequel, which offers stock Android 4.1.2 with a 4.5-inch qHD TFT display, 1.2GHz dual-core Qualcomm MSM8930 chip, 5MP rear camera and VGA front-facing cam, 1GB RAM, 4GB internal storage and a 1,800mAh battery, isn"t going to satisfy the tastebuds of power users or high-end flagship seekers, but it"s a quality option for those who aren"t planning to spend a ton of money on a decent handset. Given the intended audience, the device is perfectly solid with reasonable performance; we appreciated the company"s use of a textured back cover. One nitpick: despite our best efforts to get rid of fingerprints, smudges remained with no hope of removal in sight.
Not least, we also got a sneak peek at the Coolpad 8920, which was released in China this past month and is the first TDD-LTE / FDD-LTE hybrid phone in China. The 8920 is designed primarily for China Mobile and China Unicom, but the five-mode, ten-band device also uses 900/1800/1900 GSM/ EDGE/HSPA+. The stock Android 4.1 device has a little more premium feel than the Quattro series, with a glossy white plastic casing (it"s also available in black, we"re told) that feels a little slippery in the hand. The build quality is a little above average: it doesn"t feel cheap at all, but it"s also not as solid as many of the flagships we"re used to handling. Specwise, it offers a 1.7GHz quad-core Snapdragon S4 Pro, 1GB RAM, 5-inch 720p display, 8MP rear camera and 3,000mAh removable battery. We have galleries of both devices above the break for you, if you didn"t already check it out.
The choice of tft lcd monitors for your business is simple. Ifft customers want to be in the office or at work, they will need to create a new plan for the job. Check out the best Tft lcd monitors for your business at Alibaba.com.@@@@@
The built-in tft lcd monitor is a cheap and easy-to-use option for your customers. Consider stocking up on wholesale tft lcd monitors for your retail store.
The graphics display resolution is the width and height dimension of an electronic visual display device, measured in pixels. This information is used for electronic devices such as a computer monitor. Certain combinations of width and height are standardized (e.g. by VESA) and typically given a name and an initialism that is descriptive of its dimensions. A graphics display resolution can be used in tandem with the size of the graphics display to calculate pixel density. An increase in the pixel density often correlates with a decrease in the size of individual pixels on a display.
The favored aspect ratio of mass-market display industry products has changed gradually from 4:3, then to 16:10, then to 16:9, and is now changing to 18:9 for smartphones.cathode ray tube (CRT). The 16:10 aspect ratio had its largest use in the 1995–2010 period, and the 16:9 aspect ratio tends to reflect post-2010 mass-market computer monitor, laptop, and entertainment products displays. On CRTs, there was often a difference between the aspect ratio of the computer resolution and the aspect ratio of the display causing non-square pixels (e.g. 320 × 200 or 1280 × 1024 on a 4:3 display).
The 4:3 aspect ratio was common in older television cathode ray tube (CRT) displays, which were not easily adaptable to a wider aspect ratio. When good quality alternate technologies (i.e., liquid crystal displays (LCDs) and plasma displays) became more available and less costly, around the year 2000, the common computer displays and entertainment products moved to a wider aspect ratio, first to the 16:10 ratio. The 16:10 ratio allowed some compromise between showing older 4:3 aspect ratio broadcast TV shows, but also allowing better viewing of widescreen movies. However, around the year 2005, home entertainment displays (i.e., TV sets) gradually moved from 16:10 to the 16:9 aspect ratio, for further improvement of viewing widescreen movies. By about 2007, virtually all mass-market entertainment displays were 16:9. In 2011, 1920 × 1080 (Full HD, the native resolution of Blu-ray) was the favored resolution in the most heavily marketed entertainment market displays. The next standard, 3840 × 2160 (4K UHD), was first sold in 2013.
Also in 2013, displays with 2560 × 1080 (aspect ratio 64:27 or 2.370, however commonly referred to as "21:9" for easy comparison with 16:9) appeared, which closely approximate the common CinemaScope movie standard aspect ratio of 2.35–2.40. In 2014, "21:9" screens with pixel dimensions of 3440 × 1440 (actual aspect ratio 43:18 or 2.38) became available as well.
The computer display industry maintained the 16:10 aspect ratio longer than the entertainment industry, but in the 2005–2010 period, computers were increasingly marketed as dual-use products, with uses in the traditional computer applications, but also as means of viewing entertainment content. In this time frame, with the notable exception of Apple, almost all desktop, laptop, and display manufacturers gradually moved to promoting only 16:9 aspect ratio displays. By 2011, the 16:10 aspect ratio had virtually disappeared from the Windows laptop display market (although Mac laptops are still mostly 16:10, including the 2880 × 1800 15" Retina MacBook Pro and the 2560 × 1600 13" Retina MacBook Pro). One consequence of this transition was that the highest available resolutions moved generally downward (i.e., the move from 1920 × 1200 laptop displays to 1920 × 1080 displays).
All standard HD resolutions share a 16∶9 aspect ratio, although some derived resolutions with smaller or larger ratios also exist. Most of the narrower resolutions are only used for storing, not for displaying videos.
nHD (ninth HD) is a display resolution of 640 × 360 pixels, which is exactly one-ninth of a Full HD (1080p) frame and one-quarter of a HD (720p) frame. Pixel doubling (vertically and horizontally) nHD frames will form one 720p frame and pixel tripling nHD frames will form one 1080p frame.
One drawback of this resolution regarding encoding is that the number of lines is not an even multiple of 16, which is a common macroblock size for video codecs. Video frames encoded with 16×16 pixel macroblocks would be padded to 640 × 368 and the added pixels would be cropped away at playback. H.264 codecs have this padding and cropping ability built-in as standard. The same is true for qHD and 1080p but the relative amount of padding is more for lower resolutions such as nHD.
To avoid storing the eight lines of padded pixels, some people prefer to encode video at 624 × 352, which only has one stored padded line. When such video streams are either encoded from HD frames or played back on HD displays in full-screen mode (either 720p or 1080p) they are scaled by non-integer scale factors. True nHD frames on the other hand has integer scale factors, for example Nokia 808 PureView with nHD display.
One of the few tabletop TVs to use this as its native resolution was the Sony XEL-1. Similar to DVGA, this resolution became popular for high-end smartphone displays in early 2011. Mobile phones including the Jolla, Sony Xperia C, HTC Sensation, Motorola Droid RAZR, LG Optimus L9, Microsoft Lumia 535 and Samsung Galaxy S4 Mini have displays with the qHD resolution, as does the PlayStation Vita portable game system.
This resolution is often referred to as p (which stands for progressive scan and is important for transmission formats) is irrelevant for labeling digital display resolutions. When distinguishing 1280 × 720 from 1920 × 1080, the pair has sometimes been labeled HD1 or HD-1 and HD2 or HD-2, respectively.
QHD (Quad HD), WQHD (Wide Quad HD),1440p,2560 × 1440 pixels in a 16:9 aspect ratio. The name QHD reflects the fact that it has four times as many pixels as HD (720p). It is also commonly called WQHD, to emphasize it being a wide resolution, although that is technically unnecessary, since the HD resolutions are all wide. One advantage of using "WQHD" is avoiding confusion with qHD with a small q (960 × 540).
The 27-inch version of the Apple Cinema Display monitor introduced in July 2010 has a native resolution of 2560 × 1440, as does its successor, the 27-inch Apple Thunderbolt Display.
The resolution is also used in portable devices. In September 2012, Samsung announced the Series 9 WQHD laptop with a 13-inch 2560 × 1440 display.LG announced a 5.5-inch QHD smartphone display, which was used in the LG G3.Vivo announced a smartphone with a 2560 × 1440 display.Galaxy Note 4,GoogleMotorolaNexus 6HTC 10, the Lumia 950, and the Galaxy S6
This resolution has a 16:9 aspect ratio, and is exactly four times as many pixels as the 1600 × 900 HD+ resolution. It has been referred to as WQXGA+,QHDQHD+
This resolution is equivalent to QHD (2560 × 1440) extended in width by 34%, giving it an aspect ratio of 43:18 (2.38:1, or 21.5:9; commonly marketed as simply "21:9"). The first monitor to support this resolution was the 34-inch LG 34UM95-P.UW-QHD to describe this resolution.
This resolution is equivalent to two Full HD (1920 × 1080) displays side by side or one vertical half of a 4K UHD (3840 × 2160) display. It has an aspect ratio of 32:9 (3.5:1), close to the 3.6:1 ratio of IMAX UltraWideScreen 3.6. Samsung monitors at this resolution contain built-in firmware to divide the screen into two 1920 × 1080 screens, or one 2560 × 1080 and one 1280 × 1080 screen.
This resolution has a 12:5 aspect ratio (2.4:1, or 21.6:9; commonly marketed as simply "21:9"). It is equivalent to WQXGA (2560 × 1600) extended in width by 50%, or 4K UHD (3840 × 2160) reduced in height by 26%. This resolution is commonly encountered in cinematic 4K content that has been cropped vertically to a widescreen 2.4:1 aspect ratio. The first monitor to support this resolution was the 37.5-inch LG 38UC99-W. Other vendors followed, with Dell U3818DW, HP Z38c, and Acer XR382CQK. This resolution is referred to as UW4K, WQHD+,UWQHD+, or QHD+,
3840 × 2160 was chosen as the resolution of the UHDTV1 format defined in SMPTE ST 2036-1,4K UHDTV system defined in ITU-R BT.2020UHD-1 broadcast standard from DVB.Ultra HD display.QFHD (Quad Full HD).
The first commercial displays capable of this resolution include an 82-inch LCD TV revealed by Samsung in early 2008,PPI 4K IPS monitor for medical purposes launched by Innolux in November 2010.Toshiba announced the REGZA 55x3,
DisplayPort supports 3840 × 2160 at 30Hz in version 1.1 and added support for up to 75Hz in version 1.2 (2009) and 120Hz in version 1.3 (2014),HDMI added support for 3840 × 2160 at 30Hz in version 1.4 (2009)Hz in version 2.0 (2013).
When support for 4K at 60Hz was added in DisplayPort 1.2, no DisplayPort timing controllers (TCONs) existed which were capable of processing the necessary amount of data from a single video stream. As a result, the first 4K monitors from 2013 and early 2014, such as the Sharp PN-K321, Asus PQ321Q, and Dell UP2414Q and UP3214Q, were addressed internally as two 1920 × 2160 monitors side by side instead of a single display and made use of DisplayPort"s Multi-Stream Transport (MST) feature to multiplex a separate signal for each half over the connection, splitting the data between two timing controllers.Asus PB287Q no longer rely on MST tiling technique to achieve 4K at 60Hz,
This resolution is equivalent to 4K UHD (3840 × 2160) extended in width by 33%, giving it a 64:27 aspect ratio (2.370 or 21.3:9, commonly marketed as simply "21:9") and 11,059,200 total pixels. It is exactly double the size of 2560 × 1080 in both dimensions, for a total of four times as many pixels. The first displays to support this resolution were 105-inch televisions, the LG 105UC9 and the Samsung UN105S9W.5120 × 2160 monitor, the 34WK95U,5K2K WUHD.
This resolution, commonly referred to as 5K or 5K × 3K, has a 16:9 aspect ratio and 14,745,600 pixels. Although it is not established by any of the UHDTV standards, some manufacturers such as Dell have referred to it as UHD+.QHD (2560 × 1440) in both dimensions for a total of four times as many pixels, and is 33% larger than 4K UHD (3840 × 2160) in both dimensions for a total of 1.77 times as many pixels. The line count of 2880 is also the least common multiple of 480 and 576, the scanline count of NTSC and PAL, respectively. Such a resolution can vertically scale SD content to fit by natural numbers (6 for NTSC and 5 for PAL). Horizontal scaling of SD is always fractional (non-anamorphic: 5.33...5.47, anamorphic: 7.11...7.29).
DisplayPort version 1.3 added support for 5K at 60Hz over a single cable, whereas DisplayPort1.2 was only capable of 5K at 30Hz. Early 5K 60Hz displays such as the Dell UltraSharp UP2715K and HP DreamColor Z27q that lacked DisplayPort1.3 support required two DisplayPort1.2 connections to operate at 60Hz, in a tiled display mode similar to early 4K displays using DP MST.
DisplayPort1.3, finalized by VESA in late 2014, added support for 7680 × 4320 at 30Hz (or 60Hz with Y′CBCR 4:2:0 subsampling). VESA"s Display Stream Compression (DSC), which was part of early DisplayPort1.3 drafts and would have enabled 8K at 60Hz without subsampling, was cut from the specification prior to publication of the final draft.
DSC support was reintroduced with the publication of DisplayPort1.4 in March 2016. Using DSC, a "visually lossless" form of compression, formats up to 7680 × 4320 (8K UHD) at 60Hz with HDR and 30bit/px color depth are possible without subsampling.
Quarter-QVGA (QQVGA or qqVGA) denotes a resolution of 160 × 120 or 120 × 160 pixels, usually used in displays of handheld devices. The term Quarter-QVGA signifies a resolution of one fourth the number of pixels in a QVGA display (half the number of vertical and half the number of horizontal pixels) which itself has one fourth the number of pixels in a VGA display.
Half-QVGA denotes a display screen resolution of 240 × 160 or 160 × 240 pixels, as seen on the Game Boy Advance. This resolution is half of QVGA, which is itself a quarter of VGA, which is 640 × 480 pixels.
Quarter VGA (QVGA or qVGA) is a popular term for a computer display with 320 × 240 display resolution. QVGA displays were most often used in mobile phones, personal digital assistants (PDA), and some handheld game consoles. Often the displays are in a "portrait" orientation (i.e., taller than they are wide, as opposed to "landscape") and are referred to as 240 × 320.
The name comes from having a quarter of the 640 × 480 maximum resolution of the original IBM Video Graphics Array display technology, which became a de facto industry standard in the late 1980s. QVGA is not a standard mode offered by the VGA BIOS, even though VGA and compatible chipsets support a QVGA-sized Mode X. The term refers only to the display"s resolution and thus the abbreviated term QVGA or Quarter VGA is more appropriate to use.
While QVGA is a lower resolution than VGA, at higher resolutions the "Q" prefix commonly means quad(ruple) or four times higher display resolution (e.g., QXGA is four times higher resolution than XGA). To distinguish quarter from quad, lowercase "q" is sometimes used for "quarter" and uppercase "Q" for "Quad", by analogy with SI prefixes like m/M and p/P, but this is not a consistent usage.
Wide QVGA or WQVGA is any display resolution having the same height in pixels as QVGA, but wider. This definition is consistent with other "wide" versions of computer displays.
WQVGA has also been used to describe displays that are not 240 pixels high, for example, Sixteenth HD1080 displays which are 480 pixels wide and 270 or 272 pixels high. This may be due to WQVGA having the nearest screen height.
Video Graphics Array (VGA) refers specifically to the display hardware first introduced with the IBM PS/2 line of computers in 1987.D-subminiature VGA connector, or the 640 × 480 resolution itself. While the VGA resolution was superseded in the personal computer market in the 1990s and the SEGA Dreamcast in 1998,
Wide VGA or WVGA, sometimes just WGA is any display resolution with the same 480-pixel height as VGA but wider, such as 720 × 480 (3:2 aspect ratio), 800 × 480 (5:3), 848 × 480, 852 × 480, 853 × 480, or 854 × 480 (≈16:9).
It is a common resolution among LCD projectors and later portable and hand-held internet-enabled devices (such as MID and Netbooks) as it is capable of rendering websites designed for an 800 wide window in full page-width. Examples of hand-held internet devices, without phone capability, with this resolution include: Spice stellar nhance mi-435, ASUS Eee PC 700 series, Dell XCD35, Nokia 770, N800, and N810.
FWVGA is an abbreviation for Full Wide Video Graphics Array which refers to a display resolution of 854 × 480 pixels. 854 × 480 is approximately the 16:9 aspect ratio of anamorphically "un-squeezed" NTSC DVD widescreen video and is considered a "safe" resolution that does not crop any of the image. It is called Full WVGA to distinguish it from other, narrower WVGA resolutions which require cropping 16:9 aspect ratio high-definition video (i.e. it is full width, albeit with a considerable reduction in size).
In 2010, mobile phones with FWVGA display resolution started to become more common. A list of mobile phones with FWVGA displays is available. In addition, the Wii U GamePad that comes with the Nintendo Wii U gaming console includes a 6.2-inch FWVGA display.
Super Video Graphics Array, abbreviated to Super VGA or SVGA, also known as Ultra Video Graphics Array,Ultra VGA or UVGA, is a broad term that covers a wide range of computer display standards.
Examples of devices that use DVGA include the Meizu MX mobile phone and the Apple iPhone 4 and 4S with the iPod Touch 4, where the screen is called the "Retina Display".
The wide version of SVGA is known as WSVGA (Wide Super VGA or Wide SVGA), featured on Ultra-Mobile PCs, netbooks, and tablet computers. The resolution is either 1024 × 576 (aspect ratio 16:9) or 1024 × 600 (128:75) with screen sizes normally ranging from 7 to 10 inches. It has full XGA width of 1024 pixels.
Although digital broadcast content in former PAL/SECAM regions has 576 active lines, several mobile TV sets with a DVB-T2 tuner use the 600-line variant with a diameter of 7, 9 or 10 inches (18 to 26 cm).
The Extended Graphics Array (XGA) is an IBM display standard introduced in 1990. Later it became the most common appellation of the 1024 × 768 pixels display resolution, but the official definition is broader than that.
Wide XGA (WXGA) is a set of non-standard resolutions derived from the XGA display standard by widening it to a widescreen aspect ratio. WXGA is commonly used for low-end LCD TVs and LCD computer monitors for widescreen presentation. The exact resolution offered by a device described as "WXGA" can be somewhat variable owing to a proliferation of several closely related timings optimised for different uses and derived from different bases.
When referring to televisions and other monitors intended for consumer entertainment use, WXGA is generally understood to refer to a resolution of 1366 × 768,1024 × 768 pixels, 4:3 aspect) extended to give square pixels on the increasingly popular 16:9 widescreen display ratio without having to effect major signalling changes other than a faster pixel clock, or manufacturing changes other than extending panel width by one third. As 768 is not divisible by 9, the aspect ratio is not quite 16:9 – this would require a horizontal width of 13651⁄3 pixels. However, at only 0.05%, the resulting error is insignificant.
In 2006, 1366 × 768 was the most popular resolution for liquid crystal display televisions (versus XGA for Plasma TVs flat panel displays);1920 × 1080.
A common variant on this resolution is 1360 × 768, which confers several technical benefits, most significantly a reduction in memory requirements from just over to just under 1MB per 8-bit channel (1366 × 768 needs 1024.5KB per channel; 1360 × 768 needs 1020KB; 1MB is equal to 1024KB), which simplifies architecture and can significantly reduce the amount–and speed–of VRAM required with only a very minor change in available resolution, as memory chips are usually only available in fixed megabyte capacities. For example, at 32-bit color, a 1360 × 768 framebuffer would require only 4MB, whilst a 1366 × 768 one may need 5, 6 or even 8MB depending on the exact display circuitry architecture and available chip capacities. The 6-pixel reduction also means each line"s width is divisible by 8 pixels, simplifying numerous routines used in both computer and broadcast/theatrical video processing, which operate on 8-pixel blocks. Historically, many video cards also mandated screen widths divisible by 8 for their lower-color, planar modes to accelerate memory accesses and simplify pixel position calculations (e.g. fetching 4-bit pixels from 32-bit memory is much faster when performed 8 pixels at a time, and calculating exactly where a particular pixel is within a memory block is much easier when lines do not end partway through a memory word), and this convention persisted in low-end hardware even into the early days of widescreen, LCD HDTVs; thus, most 1366-width displays also quietly support display of 1360-width material, with a thin border of unused pixel columns at each side. This narrower mode is of course even further removed from the 16:9 ideal, but the error is still less than 0.5% (technically, the mode is either 15.94:9.00 or 16.00:9.04) and should be imperceptible.
When referring to laptop displays or independent displays and projectors intended primarily for use with computers, WXGA is also used to describe a resolution of 1280 × 800 pixels, with an aspect ratio of 16:10.both dimensions vs. the old standard (especially useful in portrait mode, or for displaying two standard pages of text side by side), a perceptibly "wider" appearance and the ability to display 720p HD video "native" with only very thin letterbox borders (usable for on-screen playback controls) and no stretching. Additionally, like 1360 × 768, it required only 1000KB (just under 1MB) of memory per 8-bit channel; thus, a typical double-buffered 32-bit colour screen could fit within 8MB, limiting everyday demands on the complexity (and cost, energy use) of integrated graphics chipsets and their shared use of typically sparse system memory (generally allocated to the video system in relatively large blocks), at least when only the internal display was in use (external monitors generally being supported in "extended desktop" mode to at least 1600 × 1200 resolution). 16:10 (or 8:5) is itself a rather "classic" computer aspect ratio, harking back to early 320 × 200 modes (and their derivatives) as seen in the Commodore 64, IBM CGA card and others. However, as of mid-2013, this standard is becoming increasingly rare, crowded out by the more standardised and thus more economical-to-produce 1366 × 768 panels, as its previously beneficial features become less important with improvements to hardware, gradual loss of general backwards software compatibility, and changes in interface layout. As of August 2013, the market availability of panels with 1280 × 800 native resolution had been generally relegated to data projectors or niche products such as convertible tablet PCs and LCD-based eBook readers.
First, the HDTV-standard 1280 × 720720p"), which offers an exact 16:9 aspect with square pixels; naturally, it displays standard 720p HD video material without stretching or letterboxing and 1080i/1080p with a simple 2:3 downscale. This resolution has found some use in tablets and modern, high-pixel-density mobile phones, as well as small-format "netbook" or "ultralight" laptop computers. However, its use is uncommon in larger, mainstream devices as it has an insufficient vertical resolution for the proper use of modern operating systems such as Windows 7 whose UI design assumes a minimum of 768 lines. For certain uses such as word processing, it can even be considered a slight downgrade (reducing the number of simultaneously visible lines of text without granting any significant benefit as even 640 pixels is sufficient horizontal resolution to legibly render a full page width, especially with the addition of subpixel anti-aliasing).
Widespread availability of 1280 × 800 and 1366 × 768 pixel resolution LCDs for laptop monitors can be considered an OS-driven evolution from the formerly popular 1024 × 768 screen size, which has itself since seen UI design feedback in response to what could be considered disadvantages of the widescreen format when used with programs designed for "traditional" screens. In Microsoft Windows operating system specifically, the larger taskbar of Windows Vista and 7 occupies an additional 16-pixel lines by default, which may compromise the usability of programs that already demanded a full 1024 × 768 (instead of, e.g. 800 × 600) unless it is specifically set to use small icons; an "oddball" 784-line resolution would compensate for this, but 1280 × 800 has a simpler aspect and also gives the slight bonus of 16 more usable lines. Also, the Windows Sidebar in Windows Vista and 7 can use the additional 256 or 336 horizontal pixels to display informational "widgets" without compromising the display width of other programs, and Windows 8 is specifically designed around a "two-pane" concept where the full 16:9 or 16:10 screen is not required. Typically, this consists of a 4:3 main program area (typically 1024 × 768, 1000 × 800 or 1440 × 1080) plus a narrow sidebar running a second program, showing a toolbox for the main program or a pop-out OS shortcut panel taking up the remainder.
XGA+ stands for Extended Graphics Array Plus and is a computer display standard, usually understood to refer to the 1152 × 864 resolution with an aspect ratio of 4:3. Until the advent of widescreen LCDs, XGA+ was often used on 17-inch desktop CRT monitors. It is the highest 4:3 resolution not greater than 220 pixels (≈1.05 megapixels), with its horizontal dimension a multiple of 32 pixels. This enables it to fit closely into a video memory or framebuffer of 1MB (1 × 220 bytes), assuming the use of one byte per pixel. The common multiple of 32 pixels constraint is related to alignment.
Historically, the resolution also relates to the earlier standard of 1152 × 900 pixels, which was adopted by Sun Microsystems for the Sun-2 workstation in the early 1980s. A decade later, Apple Computer selected the resolution of 1152 × 870 for their 21-inch CRT monitors, intended for use as two-page displays on the Macintosh II computer. These resolutions are even closer to the limit of a 1MB framebuffer, but their aspect ratios differ slightly from the common 4:3.
WXGA+ and WSXGA are non-standard terms referring to a computer display resolution of 1440 × 900. Occasionally manufacturers use other terms to refer to this resolution.1440 × 900 resolution as WXGA(II).
WXGA+ (1440 × 900) resolution is common in 19-inch widescreen desktop monitors (a very small number of such monitors use WSXGA+), and is also optional, although less common, in laptop LCDs, in sizes ranging from 12.1 to 17 inches.
Super XGA (SXGA) is a standard monitor resolution of 1280 × 1024 pixels. This display resolution is the "next step" above the XGA resolution that IBM developed in 1990.
SXGA is the most common native resolution of 17-inch and 19-inch LCD monitors. An LCD monitor with SXGA native resolution will typically have a physical 5:4 aspect ratio, preserving a 1:1 pixel aspect ratio.
Any CRT that can run 1280 × 1024 can also run 1280 × 960, which has the standard 4:3 ratio. A flat panel TFT screen, including one designed for 1280 × 1024, will show stretching distortion when set to display any resolution other than its native one, as the image needs to be interpolated to fit in the fixed grid display. Some TFT displays do not allow a user to disable this, and will prevent the upper and lower portions of the screen from being used forcing a "letterbox" format when set to a 4:3 ratio.
SXGA+ stands for Super Extended Graphics Array Plus and is a computer display standard. An SXGA+ display is commonly used on 14-inch or 15-inch laptop LCD screens with a resolution of 1400 × 1050 pixels. An SXGA+ display is used on a few 12-inch laptop screens such as the ThinkPad X60 and X61 (both only as tablet) as well as the Toshiba Portégé M200 and M400, but those are far less common. At 14.1 inches, Dell offered SXGA+ on many of the Latitude C-Series laptops, such as the C640, and IBM since the ThinkPad T21. Sony also used SXGA+ in their Z1 series, but no longer produce them as widescreen has become more predominant.
In desktop LCDs, SXGA+ is used on some low-end 20-inch monitors, whereas most of the 20-inch LCDs use UXGA (standard screen ratio), or WSXGA+ (widescreen ratio).
WSXGA+ stands for Widescreen Super Extended Graphics Array Plus. WSXGA+ displays were commonly used on Widescreen 20-, 21-, and 22-inch LCD monitors from numerous manufacturers (and a very small number of 19-inch widescreen monitors), as well as widescreen 15.4-inch and 17-inch laptop LCD screens like the Thinkpad T61p, the late 17" Apple PowerBook G4 and the unibody Apple 15" MacBook Pro. The resolution is 1680 × 1050 pixels (1,764,000 pixels) with a 16:10 aspect ratio.
UXGA has been the native resolution of many fullscreen monitors of 15 inches or more, including laptop LCDs such as the ones in the IBM ThinkPad A21p, A30p, A31p, T42p, T43p, T60p, Dell Inspiron 8000/8100/8200 and Latitude/Precision equivalents; some Panasonic Toughbook CF-51 models; and the original Alienware Area 51M gaming laptop. However, in more recent times, UXGA is not used in laptops at all but rather in desktop UXGA monitors that have been made in sizes of 20 inches and 21.3 inches. Some 14-inch laptop LCDs with UXGA have also existed (such as the Dell Inspiron 4100), but these are very rare.
WUXGA stands for Widescreen Ultra Extended Graphics Array and is a display resolution of 1920 × 1200 pixels (2,304,000 pixels) with a 16:10 screen aspect ratio. It is a wide version of UXGA, and can be used for viewing high-definition television (HDTV) content, which uses a 16:9 aspect ratio and a 1280 × 720 (720p) or 1920 × 1080 (1080i or 1080p) resolution.
The 16:10 aspect ratio (as opposed to the 16:9 used in widescreen televisions) was chosen because this aspect ratio is appropriate for displaying two full pages of text side by side.
WUXGA resolution has a total of 2,304,000 pixels. One frame of uncompressed 8BPC RGB WUXGA is 6.75MiB (6.912MB). Initially, it was available in widescreen CRTs such as the Sony GDM-FW900 and the Hewlett-Packard A7217A (introduced in 2003), and in 17-inch laptops. Most QXGA displays support 1920 × 1200. WUXGA is also available in some mobile phablet devices such as the Huawei Honor X2 Gem.
The QXGA, or Quad Extended Graphics Array, display standard is a resolution standard in display technology. Some examples of LCD monitors that have pixel counts at these levels are the Dell 3008WFP, the Apple Cinema Display, the Apple iMac (27-inch 2009–present), the iPad (3rd generation), the iPad Mini 2, and the MacBook Pro (3rd generation). Many standard 21–22-inch CRT monitors and some of the highest-end 19-inch CRTs also support this resolution.
QWXGA (Quad Wide Extended Graphics Array) is a display resolution of 2048 × 1152 pixels with a 16:9 aspect ratio. A few QWXGA LCD monitors were available in 2009 with 23- and 27-inch displays, such as the Acer B233HU (23-inch) and B273HU (27-inch), the Dell SP2309W, and the Samsung 2343BWX. As of 2011, most 2048 × 1152 monitors have been discontinued, and as of 2013, no major manufacturer produces monitors with this resolution.
QXGA (Quad Extended Graphics Array) is a display resolution of 2048 × 1536 pixels with a 4:3 aspect ratio. The name comes from it having four times as many pixels as an XGA display. Examples of LCDs with this resolution are the IBM T210 and the Eizo G33 and R31 screens, but in CRT monitors this resolution is much more common; some examples include the Sony F520, ViewSonic G225fB, NEC FP2141SB or Mitsubishi DP2070SB, Iiyama Vision Master Pro 514, and Dell and HP P1230. Of these monitors, none are still in production. A related display size is WQXGA, which is a widescreen version. CRTs offer a way to achieve QXGA cheaply. Models like the Mitsubishi Diamond Pro 2045U and IBM ThinkVision C220P retailed for around US$200, and even higher performance ones like the ViewSonic PerfectFlat P220fB remained under $500. At one time, many off-lease P1230s could be found on eBay for under $150. The LCDs with WQXGA or QXGA resolution typically cost four to five times more for the same resolution. IDTech manufactured a 15-inch QXGA IPS panel, used in the IBM ThinkPad R50p. NEC sold laptops with QXGA screens in 2002–05 for the Japanese market.iPad (starting from 3rd generation and Mini 2) also has a QXGA display.
WQXGA (Wide Quad Extended Graphics Array) is a display resolution of 2560 × 1600 pixels with a 16:10 aspect ratio. The name comes from it being a wide version of QXGA1280 × 800) display.
To obtain a vertical refresh rate higher than 40Hz with DVI, this resolution requires dual-link DVI cables and devices. To avoid cable problems monitors are sometimes shipped with an appropriate dual link cable already plugged in. Many video cards support this resolution. One feature that is currently unique to the 30-inch WQXGA monitors is the ability to function as the centerpiece and main display of a three-monitor array of complementary aspect ratios, with two UXGA (1600 × 1200) 20-inch monitors turned vertically on either side. The resolutions are equal, and the size of the 1600 resolution edges (if the manufacturer is honest) is within a tenth of an inch (16-inch vs. 15.89999"), presenting a "picture window view" without the extreme lateral dimensions, small central panel, asymmetry, resolution differences, or dimensional difference of other three-monitor combinations. The resulting 4960 × 1600 composite image has a 3.1:1 aspect ratio. This also means one UXGA 20-inch monitor in portrait orientation can also be flanked by two 30-inch WQXGA monitors for a 6320 × 1600 composite image with an 11.85:3 (79:20, 3.95:1) aspect ratio. Some WQXGA medical displays (such as the Barco Coronis 4MP or the Eizo SX3031W) can also be configured as two virtual 1200 × 1600 or 1280 × 1600 seamless displays by using both DVI ports at the same time.
An early consumer WQXGA monitor was the 30-inch Apple Cinema Display, unveiled by Apple in June 2004. At the time, dual-link DVI was uncommon on consumer hardware, so Apple partnered with Nvidia to develop a special graphics card that had two dual-link DVI ports, allowing simultaneous use of two 30-inch Apple Cinema Displays. The nature of this graphics card, being an add-in AGP card, meant that the monitors could only be used in a desktop computer, like the Power Mac G5, that could have the add-in card installed, and could not be immediately used with laptop computers that lacked this expansion capability.
In March 2009, Apple updated several Macintosh computers with a Mini DisplayPort adapter, such as the Mac mini and iMac. These allow an external connection to 2560x1600 display.
In 2010, WQXGA made its debut in a handful of home theater projectors targeted at the Constant Height Screen application market. Both Digital Projection Inc and projectiondesign released models based on a Texas Instruments DLP chip with a native WQXGA resolution, alleviating the need for an anamorphic lens to achieve 1:2.35 image projection. Many manufacturers have 27–30-inch models that are capable of WQXGA, albeit at a much higher price than lower resolution monitors of the same size. Several mainstream WQXGA monitors are or were available with 30-inch displays, such as the Dell 3007WFP-HC, 3008WFP, U3011, U3014, UP3017, the Hewlett-Packard LP3065, the Gateway XHD3000, LG W3000H, and the Samsung 305T. Specialist manufacturers like NEC, Eizo, Planar Systems, Barco (LC-3001), and possibly others offer similar models. As of 2016, LG Display make a 10-bit 30-inch AH-IPS panel, with wide color gamut, used in monitors from Dell, NEC, HP, Lenovo and Iiyama.
Released in November 2012, Google"s Nexus 10 is the first consumer tablet to feature WQXGA resolution. Before its release, the highest resolution available on a tablet was QXGA (2048 × 1536), available on the Apple iPad 3rd and 4th generations devices. Several Samsung Galaxy tablets, including the Note 10.1 (2014 Edition), Tab S 8.4, 10.5 and TabPRO 8.4, 10.1 and Note Pro 12.2, as well as the Gigaset QV1030, also feature a WQXGA resolution display.
QSXGA (Quad Super Extended Graphics Array) is a display resolution of 2560 × 2048 pixels with a 5:4 aspect ratio. Grayscale monitors with a 2560 × 2048 resolution, primarily for medical use, are available from Planar Systems (Dome E5), Eizo (Radiforce G51), Barco (Nio 5, MP), WIDE (IF2105MP), IDTech (IAQS80F), and possibly others.
Recent medical displays such as Barco Coronis Fusion 10MP or NDS Dome S10 have a native panel resolution of 4096 × 2560. These are driven by two dual-link DVI or DisplayPort outputs. They can be considered to be two seamless virtual QSXGA displays as they have to be driven simultaneously by both dual-link DVI or DisplayPort since one dual-link DVI or DisplayPort cannot single-handedly display 10 megapixels. A similar resolution of 2560 × 1920 (4:3) was supported by a small number of CRT displays via VGA such as the Viewsonic P225f when paired with the right graphics card.
WQSXGA (Wide Quad Super Extended Graphics Array) describes a display standard that can support a resolution up to 3200 × 2048 pixels, assuming a 1.5625:1 (25:16) aspect ratio. The Coronis Fusion 6MP DL by Barco supports 3280 × 2048 (approximately 16:10).
QUXGA (Quad Ultra Extended Graphics Array) describes a display standard that can support a resolution up to 3200 × 2400 pixels, assuming a 4:3 aspect ratio.
WQUXGA (Wide Quad Ultra Extended Graphics Array) describes a display standard that supports a resolution of 3840 × 2400 pixels, which provides a 16:10 aspect ratio. This resolution is exactly four times 1920 × 1200 (in pixels). Dell uses the term "UHD+" to refer to this resolution.
Most display cards with a DVI connector are capable of supporting the 3840 × 2400 resolution. However, the maximum refresh rate will be limited by the number of DVI links connected to the monitor. 1, 2, or 4 DVI connectors are used to drive the monitor using various tile configurations. Only the IBM T221-DG5 and IDTech MD22292B5 support the use of dual-link DVI ports through an external converter box. Many systems using these monitors use at least two DVI connectors to send video to the monitor. These DVI connectors can be from the same graphics card, different graphics cards, or even different computers. Motion across the tile boundary(ies) can show tearing if the DVI links are not synchronized. The display panel can be updated at a speed between 0Hz and 41Hz (48Hz for the IBM T221-DG5, -DGP, and IDTech MD22292B5). The refresh rate of the video signal can be higher than 41Hz (or 48Hz) but the monitor will not update the display any faster even if graphics card(s) do so.
In June 2001, WQUXGA was introduced in the IBM T220 LCD monitor using a LCD panel built by IDTech. LCD displays that support WQUXGA resolution include: IBM T220, IBM T221, Iiyama AQU5611DTBK, ViewSonic VP2290,Hz and 48Hz, made them less attractive for many applications.
After having used VGA-based 3:2 resolutions HVGA (480 × 320) and Retina DVGA (960 × 640) for several years in their iPhone and iPod products with a screen diagonal of 9 cm or 3.5 inches, Apple started using more exotic variants when they adopted the 16:9 aspect ratio to provide a consistent pixel density across screen sizes: first 1136 × 640 (rarely: WDVGA) with the iPhone 5, 5C, 5S and SE 1st for 10-cm or 4-inch screens, and later 1334 × 750 with the iPhone 6, 6S, 7, 8, SE 2nd and SE 3rd for 12-cm or 4.7-inch screens, while devices with 14-cm or 5.5-inch screens used standard 1920 × 1080 with the iPhone 6 Plus, 6S Plus, 7 Plus and 8 Plus. The iPhone X, XS and 11 Pro introduced a 2436 × 1125 resolution for 15-cm or 5.8-inch screens, while the iPhone XS Max and 11 Pro Max introduced a 2688 × 1242 resolution for 17-cm or 6.5-inch screens (with a notch) all at an aspect ratio of roughly 13:6 or, for marketing, 19.5:9.
Other manufacturers have also introduced phones with irregular display resolutions and aspect ratios, e.g. Samsung"s various Infinity displays with 37:18 = 18+1/2:9 (Galaxy S8/S9 and A8/A9), i.e. 2960 × 1440 (Quad HD+, WQHD+) or 2220 × 1080 (Full HD+), and 19:9 (S10) aspect ratios: 3040 × 1440 and 2280 × 1080 (S10e).
Some air traffic control monitors use displays with a resolution of 2048 x 2048, with an aspect ratio of 1:1,Eizo is major supplier of panels and monitors in this aspect ratio. Also in 2022, a 16:18 monitor (in 2560x2880 resolution, named SDQHD) was released for general productivity work by LG Electronics.
VESA CVT 1.2 from 2003 recommends only 4:3, 16:9 and 16:10 (8:5) aspect ratios for newly introduced display resolutions. The discouraged legacy aspect ratios 5:4 and 15:9 (5:3) are only kept for SXGA and WXGA. VESA CVT 1.2
Bhagat, Hitesh Raj; Bajaj, Karan (26 January 2018). "The 18:9 display dilemma: Will the new smartphone screens make our lives easier or do the opposite?". The Economic Times. Bennett, Coleman & Co. Retrieved 2018-10-01.
Humphries, Matthew (29 July 2014). "Forget 4K, LG ships a 105-inch 5K TV". Ziff Davis. Archived from the original on 2018-06-12. Retrieved 2018-05-29.
Anthony, Sebastian (5 September 2014). "Dell unveils 5K desktop monitor with almost 2x the pixels of your puny 4K display". ExtremeTech. Ziff Davis. Retrieved 2014-10-19.
Kwon, Jang Yeon; Jung, Ji Sim; Park, Kyung Bae; Kim, Jong Man; Lim, Hyuck; Lee, Sang Yoon; Kim, Jong Min; Noguchi, Takashi; et al. (2006). "2.2 inch qqVGA AMOLED Drove by Ultra Low Temperature Poly Silicon (ULTPS) TFT Direct Fabricated Below 200°C". SID 2006 Digest. 37 (2): 1358–61. doi:10.1889/1.2433233. S2CID 110488279.
Shin, Min-Seok; Choi, Jung-Whan; Kim, Yong-Jae; Kim, Kyong-Rok; Lee, Inhwan; Kwon, Oh-Kyong (2007). "Accurate Power Estimation of LCD Panels for Notebook Design of Low-Cost 2.2-inch qVGA LTPS TFT-LCD Panel". SID 2007 Digest. 38 (1): 260–263. doi:10.1889/1.2785279. S2CID 109838866.
5.0 inch FWVGA 854*480 Front 0.3M and 2M Rear facing cameras Audio (MP3, AAC,AMR/MIOI) and Video (MP4, 3GP) supported Dual-SIM Card Support E-Books, Facebook, Games, and FM Radio supported 4GB of internal memory Extra optional storage up to 32GB 1100mAh battery provides up to 5hrs of call time and 120hrs of standby Go live with AMGOO’s AM501, a dual core powerhouse featuring a 5-inch FWVGA screen, Quad band 2G and WCDMA 3G as well as a long lasting 1550mAh battery that will have you speaking, watching, sharing, and playing for hours on end.
5.0“(QHD) LCD Display Front 2M and 5M Rear facing cameras Audio (MP3, ACC,MIDI,WAV) and Video (MP4, Divx,Xvid,H.263,H.264) supported Dual-SIM Card Support E-Books, Facebook, Games, and FM Radio supported 512MB of internal 1900mAh battery provides up to 6 hours 6 Hours call time and 144 hours of standby AMGOO"s AM815 is a sleek WCDMA 3G smartphone that is designed to perform! Featuring Android 4.2 OS, this good-looking handset is the perfect mix of beauty and power!
5.0” TFT LCD Display Octa core Front 5M and Rear 13 M facing cameras Audio (MP3, WAV,ACC,Amr-nb,Amr-wb,Midi) and Video (MP4, Divx,Xvid,H.263,H.264) supported Dual-SIM Card Support E-Books, Facebook, Games, and FM Radio supported 2GB of internal memory 2000mAh battery provides up to 5.2 hours call time and 250 hours of standby AMGOO"s AM902 is a powerful WCDMA 3G smartphone with a slim, fashionable design that features Android 4.2 OS. With an epic 5.0”TFT LCD Display and housing 16G of internal memory as well as up to 32G of additional space, end-users have the option of reading e-books, playing games or watching movies on the move or to store for later viewing pleasure. Also supported by various audio formats and FM radio, all that"s left is for you to prepare to entertain your senses!
Front 0.3M and 2M Rear facing cameras 4.0” WVGA LCD Display Dual-SIM Card Support E-Books, Facebook, Games, Twitter, and MSN 512MB of internal memory 1100mAh battery provides up to 3.5hrs call time and 200hrs of standby The AMGOO"s AM516 runs on the Android 4.2 operating system that gives the user the benefit of smooth transitions and loads of app download options from the Google Play store.
Rear-facing 2-Megapixel camera Audio (MP3, WAV,MID,AMR) and Video (MP4, 3GP) Dual-SIM Card Support E-Books ,Games ,Facebook ,MSN, Skype FM Radio supported 512MB of internal memory Extra optional storage up to 32GB USB Mass Storage and Bluetooth 2.0 Supported 1100mAh battery provides up to 6.28 hours of call time and 214 hours of standby AMGOO’s AM312 is a powerful Quad Band GSM Smartphone with large 3.5” HVGA display ideal for watching movies, reading E-Books, playing games or connecting with friends and family on Facebook..
0.3Mpx Rear facing cameras Audio (MP3, WAV,AMR,MID) and Video(MP4,3GP) Dual-SIM Card Support E-Books, Games, Facebook, MSN, Skype and FM Radio supported 64MB of internal memory Extra optional storage up to 32GB USB Mass Storage and Bluetooth 2.0 Supported 1250mAh battery provides up to 4.5 hours of call time and 150 hours of standby AMGOO’s AM313 is a formidable PDA feature phone with an impressive 3.5” HVGA display. This phone allows users to get connected anywhere in the world, and with dual SIM card support, switching SIM cards is a thing of the past.
Audio (MP3, WAV,MID,AMR) and Video (MP4, 3GP) supported Dual-SIM Card Support E-Books, Facebook, Games, and FM Radio supported Analog TV support 64MB of internal memory Extra optional storage up to 8GB 750mAh battery provides up to 5 hours of call time and 200hrs of standby c AMGOO’s AM213 is a beautifully colorful PDA phone with large 2.4” QVGA display. This PDA phone comes standard with dual SIM card support so switching SIM cards to use a different carrier or when travelling is no longer necessary. .
262K Color 2.3 Inch Display 2.3” QCIF Display Front 0.3M and 2M Rear facing cameras Audio (MP3, WAV) and Video (MP4, 3GP) supported Dual-SIM Facebook and FM Radio supported 128MB of internal memory Extra optional storage up to 16GB 1000Mah battery provides up to 7.1 hours call time and 200 hours of standby The AM931 is a powerful 2G Quad band and HSDPA 3G-enabled QWERTY phone providing users with a stylish, yet functional platform to text, write s, capture, store, and share with business partners, family, and friends like never before.
Analog TV support Facebook Flash light Bluetooth EBooks 128MB of internal memory with expandable 16GB SD Card storage 750mAh battery provides up to 5hrs call time and 150hrs of standby The AMGOO"s AM205 is a modern-designed Quad Band GSM QWERTY phone. It is ideal for business and people on the go, with a clear and colorful 2.3“TFT LCD display and full QWERTY keyboard it is the QWERTY phone to have.
2.2” (16: *240) Rear-facing Audio (MP3, WAV,MID,AMR) and Video (MP4, 3GP) supported Games Facebook FM Radio supported 32MB of internal memory Extra optional storage up to 8GB 600mAh battery provides up to 4.5 hours call time and 80 hours of standby AMGOO’s AM226 is a stylish Quad Band GSM flip phone with a 2.2” CSTN 65k Color Display. This Quad Band phone allows users to get connected anywhere in the world.
SOS Button SMS Various supported audio formats Bluetooth Video support: 3GP. MP4 Rear-facing camera 0.3Mpx FM Radio USB mass storage, 64MB of internal memory with expandable 16GB SD Card storage 1100mAh battery provides up to 4.5hrs call time and 150hrs of standby AMGOO"s AM219 is a classy feature phone with a futuristic design that is bound to turn heads and keep one entertained for hours with its wide selection of supported features.
SOS Button MP3 FM Radio USB mass storage, 64MB of internal memory with expandable 16GB SD Card storage 1000mAh battery provides up to 4.5hrs call time and 150hrs of standby AMGOO"s AM210 is a good-looking feature phone that is comfortable in hand and allows users to stay in touch with the times whilst keeping it conveniently simple..
1.77” 160*128 TFT LCD Display SMS SOS Button Torch MP3 FM Radio USB mass storage, 32MB of internal memory with expandable 32GB SD Card storage 1100mAh battery provides up to 4.5hrs call time and 150hrs of standby The AMGOO"s AM318 is an easy to use feature phone that is designed for end-users seeking simplicity, yet with a modern age feel and design.
Rear facing camera Audio (MP3, WAV) and Video (MP4, 3GP) supported Dual-SIM Card Support E-Books, Facebook, Games, and FM Radio 32MB of internal memory Extra optional storage up to 4GB USB mass storage and Bluetooth 2.1supported 600mAh battery provides up to 4.5 hours call time and 150 hours of standby AMGOO’s AM301 is a stylish Quad Band GSM Bar phone with large 2.2” QCIF display ideal for watching movies, reading E-Books, playing games, watching TV or connecting with friends and family on Facebook.
Rear facing camera Audio (MP3, WAV) and Video (MP4, 3GP) supported Dual-SIM Card Support E-Books, Facebook, Games, and FM Radio 32+32MB of internal memory Extra optional storage up to 4GB USB mass storage and Bluetooth 2.1supported 700mAh/1100mAh/1800mAh battery provides up to 5.4 hours/8 hours/13 hours call time and 230 hours/336 hours/600 hours of standby AMGOO’s AM211 is a stylish Quad Band GSM Bar phone with large 2.4” QCIF display ideal for watching movies, reading E-Books, playing games, watching TV or connecting with friends and family on Facebook.
2.2” QCIF Display Rear-facing camera Audio (MP3, WAV) and Video (MP4, 3GP) supported Games Facebook FM Radio supported 64MB of internal memory Extra optional storage up to 4GB 600mAh battery provides up to 4.5 hours call time and 150 hours of standby AMGOO’s AM220 is a Quad Band feature phone with dual-SIM card support, 4.5 hours of talk time and a host of entertainment options such as E-Books, music and videos.
Rear facing camera Audio (MP3, WAV) and Video (MP4, 3GP) supported Dual-SIM Card Support E-Books, Facebook, Games, and FM Radio supported 32MB of internal memory Extra optional storage up to 4GB 700mAh battery provides up to 4.5hrs call time and 150hrs of standby AMGOO’s AM203 is an ergonomically designed Quad Band GSM Bar phone providing users with a stylish and highly functional feature phone and dual SIM card support to provide additional options for connectivity.
2.2” QCIF Display Rear facing camera Audio (MP3, WAV) and Video (MP4, 3GP) supported Dual-SIM Card Support E-Books, Facebook, Games, and FM Radio supported 32MB of internal memory Extra optional storage up to 4GB 600mAh battery provides up to 4.5hrs of call time and 100hrs of standby The AM217 from Amgoo is a solid, attractive Quad Band feature phone with Analog TV and dual SIM card support to accommodate an additional carrier or account, and especially convenient for users that travel frequently.
Audio (MP3, WAV) and Video (MP4, 3GP) supported Dual-SIM Card Support E-Books, Facebook, Games, and FM Radio supported 512MB of internal memory Extra optional storage up to 4GB 600mAh battery provides up to 4.5 hours of call time and 100 hours of standby The AM208 is an entry-level handset designed to give end-users access to the most basic features available in a phone today. With its simple, yet functional design it meets users daily needs and its dual band feature makes it widely accessible across the world!.
1.77” TFT display Dual Torches to light up the night Audio (MP3, WAV) and Video (MP4, 3GP) supported Facebook, Games and MSN supported 32MB of internal memory Storage upgradable to 8GB 0.08Mpx rear facing camera 600mAh battery provides 5 hours of call time and 200 hours of standby AMGOO’s AM83Z is a feature-rich Quad Band GSM Bar phone with 1.77”colorTFT LCD display supporting vivid video playback, Facebook, games and MSN. Light your way with the AM83Z’s dual torches, ideal to cast away the shadows and light up the night.
1.77” TFT display Dual Torches to light up the night Audio (MP3, WAV) and Video (MP4, 3GP) supported Facebook, Games and MSN supported 32MB of internal memory Storage upgradable to 8GB 0.08Mpx rear facing camera 600mAh battery provides 5 hours of call time and 200 hours of standby AMGOO’s AM83N is a feature-rich Quad Band GSM Bar phone with 1.77”colorTFT LCD display supporting vivid video playback, Facebook, games and MSN.
Rear-facing camera Audio (MP3, WAV) and Video (MP4, 3GP) supported Games Facebook FM Radio supported 32MB of internal memory Extra optional storage up to 4GB 600mAh battery provides up to 4.5hrs call time and 150hrs of standby AMGOO’s AM303 is a durable Quad Band GSM waterproof phone with dual-SIM card support that provides users with the convenience of using an additional carrier or account without having to switch between SIM cards.
Rear facing camera Audio (MP3, WAV) and Video (MP4, 3GP) supported Dual-SIM Card Support E-Books, Facebook, Games, and FM Radio supported 32MB of internal memory Extra optional storage up to 4GB Mass Storage and Bluetooth 2.0 Supported 500mAh battery provides up to 4.5 hours call time and 150 hours of standby AMGOO’s AM302 is a curvaceous Quad Band GSM Bar phone with large 1.44” LCD display for watching movies, reading E-Books, playing games or connecting with friends and family on Facebook.