avr lcd touch screen in stock
ER-TFTM070-4V2.1 is the updated version of ER-TFTM070-4,that is 800x480 dots 7" color tft lcd module display with ssd1963 controller board,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO, and ARM .It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.
It supports 6800, 8080 8-bit /9-bit/16-bit/18-bit/24-bit parallel interface.Built-in MicroSD card slot.It"s optional for resistive touch panel and controller XPT2046,capacitive touch panel and controller FT5206, font chip, flash chip and microsd card. We offer two types connection,one is pinheader and the another is ZIF connector with flat cable mounting on board by default and suggested.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for7" TFT capacitive touch shield with libraries,examples,schematic diagram for Arduino Due,Mega 2560 and Uno. For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.
With the increasing popularity of smartphones and tablet computers, touchscreen has become one of the most common user interfaces encountered today. The idea of this project came from some apps on the smart phone. It is very interesting to play a virtual Chinese chess on the mobile phone. People can take them everywhere and play it whenever they want. So we decided to build the electronic Chinese Chess game in our project. Meanwhile, LCD touch screen is a very popular thing used in electronic products, and doing the project will give us experience in utilizing a set of devices that is popular in modern devices. So in our final project, we designed a Chinese chess game application on touchscreen. Users can play Chinese chess on it. In addition, they can set the background as they like. Meanwhile, this project will also provide ECE4760 course a library for initializing and developing LCD touch screens of the same configuration for reference.
It is quite meaningful for us to do this project. On one hand, with the increasing popularity of touch-screen mobile phones and tablet PCs, touch screen becomes more and more important in our lives. It is much more convenient and flexible than the traditional keyboard. On the other hand, Chinese Chess is a traditional Chinese intellectual game which can be dating back to Warring States Period in China. This old game can help people to improve their consciousness ability, thinking ability and add much fun to our life.
At the high level, our project mainly consists of two parts: the ATmega1284p microcontroller, the LCD touch screen. Atmega1284p is the main control part. When user presses on the screen, the signal will be sent to the MCU and some movements would be made. Also the MCU will control what is shown on the LCD screen and the state mode, based on the screen interrupt.
The hardware part of our project is not very complex. We soldered our Atmega1284p MCU and the LCD touch screen together. The LCD touch screen consists of two chips, SSD1289 LCD control chip and ADS7843 touch panel controller chip.
For the software part, the tricky part is to drive the LCD touch screen to work. Based on the driver code of similar lcd touch screen but of different configurations as ours, we read the datasheet of SSD1289 LCD control chip carefully, and changed the driver code so that it can be used to drive our LCD, and made it work. The other main part is to implement Chinese chess game rules, we defined a structure to store the chessmen’s information, so it is not that difficult. Another fussy part is to debounce each touch and adjust coordinates of touched points, because of the size limitation of the touch screen, we requires a high resolution, so the coordinates adjustment part is important. We figured a way out to debounce each touch with the help of a timer and adjust the coordinates by Putty.
Our design uses the SPI(serial peripheral interface) to realize the communication of touchpanel and AVR. Devices communicate in master/slave mode where the master device initiates the data frame.
From the high-level discussed above, our hardware consists of two parts, which include the LCD touch screen and the Atmega1284 prototype board. Below we will discuss each part separately.
The TFT 3.2′ LCD touch screen we use contains three parts, the touch panel, the TFT LCD screen and SD card. This touch screen has 40 pins. The TFT LCD use the control chip, SSD1289, while the touch panel uses the Analog Device ADS7843 touch screen controller. With our project, we can provide ECE4760 class the drive code for the LCD touch screen of such configuration.
Pin 4 to pin 17 ,pin 21 to pin 28 are for the TFT LCD screen display, pin 29 to pin 34 are for the touch panel, and pin 35 to pin 40 are for the sd card. Still there are some very important pins to be introduced. For the reason that microcontroller is always getting two hot if the VCC and GND of this touch screen is connected to the VCC and GND of the microcontroller, so we use additional voltage source for the touch screen. The VCC pin of the touch screen is connected to 5V. And the most important pin is the one for LCD back light. The LED-A pin for back light should be connected to 5V through a resistor of 75 ohm. This is a very important protection for the microcontroller and TFT LCD touch screen, or else both of them would be very hot.
The ADS7843 is a 12-bit sampling Analog-to-Digital Converter (ADC) with a synchronous serial interface and low on resistance switches for driving touch screens. By using this LCD, we can avoid refreshing the screen all the time compared with using a TV. The existence of GRAM in ADS7843 helps us to save the time in refreshing the screen. When we need to change what will be shown on screen, we just need to write the GRAM which replace the dots on the LCD.
The LCD we use is a 3.2″ TFT screen. It has a resolution of 320 × 240, as the following figure shows. There are 240 pixels each line and 320 pixels each column. We can use (x, y) coordinate to represent each pixel on screen.
Key control signals for SSD1289 TFT Driver are listed: lcd_reset, lcd_cs(chip select), lcd_rs(0 for register address, 1 for value), lcd_wr(0 for write), lcd_rd(set 0 all the time in this project).
EarthLCD is a leading “Assembled In The U.S.A.” manufacturer of Industrial ezLCD “Smart” Touch Serial LCD’s for Embedded Systems, LCD Touch Monitors, Industrial Grade LCD Kits, LCD Touch Screen Kits, Industrial NTSC Monitors & Kits, Open Frame Monitors, Smart LCD Screens, Touch Screen Monitors, Industrial LCD Touch Screen Monitors, All in one Monitors, Custom OEM solutions, Integrated Solutions for OEM, LCD Touch Screen Modules, Custom LCD Display and LCD Controller Cards.
EarthLCD is a division of Earth Computer Technologies, Inc. originally founded in 1984. A full line of products plus custom engineered solutions are available. We source LCD displays direct from major manufacturers world wide allowing for a cost advantage over our competitors. EarthLCD offer’s the world’s widest variety of LCD’s in fully integrated solutions for OEM supply chain requirements.
EarthLCD targets industries such as Point Of Sale, Industrial Automation, Security, Hospitality, Kiosks, Home Automation, OEM, Gaming, Banking, Service, Test Equipment and Monitoring, Embedded Systems, Automotive, and many other applications.
LCD & Display components are used to give visual feedback and display text, images and videos. There are simple LED bar gauges, 7-segment, and matrix displays and also LCD modules that interface with Microcontroller & FPGA Boards with serial, or with Single Board Computers with USB.
Introducing Tripp Lite’s Mobile Interactive Display. Designed to encourage and assist group collaboration and audience participation, this all-in-one game-changer integrates a best-in-class 65-inch 4K interactive touchscreen flat-panel display, heavy-duty mobile stand and rechargeable battery system.
At the heart of the Mobile Interactive Display is a full-featured, touch-enabled Windows 10 PC and an embedded Android operating system. Built-in wireless networking, remote screen sharing and a wide range of pre-installed tools aid problem-solving and free expression of ideas. In addition, the detachable high-definition webcam beams the entire meeting area straight to off-site collaborators and partners, allowing anyone to participate in meetings, presentations and group discussions from any location.
The 65-inch 4K display boasts patented touchscreen technology with low-latency response and 20 points of multi-touch. Use your fingers or the included battery-free stylus to write notes, check email, create presentations, stream 4K video and surf the web. Share resources with your fellow team members, and save them in the cloud. The large touchscreen monitor is built for ultra-fast, ultra-precise interactivity for multiple concurrent users. It all makes for an immersive and expansive experience that basic electronic whiteboards can’t match.