microcontroller tft display brands

STONE Technologies is a proud manufacturer of superior quality TFT LCD modules and LCD screens. The company also provides intelligent HMI solutions that perfectly fit in with its excellent hardware offerings.
STONE TFT LCD modules come with a microcontroller unit that has a 1GHz Cortex-A8 CPU. Such a module can easily be transformed into an HMI screen. Simple hexadecimal instructions can be used to control the module through the UART port. Furthermore, you can seamlessly develop STONE TFT LCD color user interface modules and add touch control, features to them.
You can also use a peripheral MCU to serially connect STONE’s HMI display via TTL. This way, your HMI display can supply event notifications and the peripheral MCU can then execute them. Moreover, this TTL-connected HMI display can further be linked to microcontrollers such as:
Becoming a reputable TFT LCD manufacturer is no piece of cake. It requires a company to pay attention to detail, have excellent manufacturing processes, the right TFT display technology, and have a consumer mindset.
Now, we list down 10 of the best famous LCD manufacturers globally. We’ll also explore why they became among the top 10 LCD display Manufacturers in the world.
Interface Devises Business includes Display and Senor, Sensor, and Application Solutions. As a leading company in the global semiconductor display industry, BOE has made the Chinese display industry develop from scratch to maturity and prosperity. Now, more than one-quarter of the global display panels are made by BOE, with its UHD, flexible display, microdisplay, and other solutions broadly applied to well-known worldwide brands.
LG Display is a leading manufacturer of thin-film transistor liquid crystal displays (TFT-LCD) panels, OLED, and flexible displays.LG Display began developing TFT-LCD in 1987 and currently offers Display panels in a variety of sizes and specifications using different cutting-edge technologies (IPS, OLED, and flexible technology).
LG Display now operates back-end assembly plants in South Korea, China, and Vietnam. In addition, LG Display operates a sales subsidiary with a global network to effectively serve overseas markets.
With innovative and differentiated technologies, QINNOOptoelectronics provides advanced display integration solutions, including 4K2K ultra-high resolution, 3D naked eye, IGZO, LTPS, AMOLED, OLED, and touch solutions. Qinnooptoelectronics sets specifications and leads the market. A wide range of product line is across all kinds of TFT LCD panel modules, touch modules, for example, TV panel, desktop and laptop computer monitor with panels, small and medium scale “panels, medical, automotive, etc., the supply of cutting-edge information and consumer electronics customers around the world, for the world TFT – LCD (thin-film transistor liquid crystal display) leading manufacturers.
AU Optronics Co., LTD., formerly AU Optronics Corporation, was founded in August 1996. It changed its name to AU Optronics after its merger with UNIOPtronics in 2001. Through two mergers, AU has been able to have a full range of generations of production lines for panels of all sizes.Au Optronics is a TFT-LCD design, manufacturing, and r&d company. Since 2008, au Optronics has entered the green energy industry, providing customers with high-efficiency solar energy solutions.
Sharp has been called the “father of LCD panels”.Since its founding in 1912, Sharp developed the world’s first calculator and LIQUID crystal display, represented by the living pencil, which was invented as the company name. At the same time, Sharp is actively expanding into new areas to improve people’s living standards and social progress. Made a contribution.
From the introduction of Japan’s original washing machines, refrigerators, and other household appliances, to the world’s first laptop, the first 16MB flash memory, the world’s smallest 0.85-inch HDDs; Create advanced HDDVD technology; Toshiba created many “world firsts” in the research and manufacture of new SED displays and contributed to changing people’s lives through constant technological innovation.
Tianma microelectronics co., LTD., founded in 1983, the company focus on smartphones, tablets, represented by high order laptop display market of consumer goods and automotive, medical, POS, HMI, etc., represented by professional display market, and actively layout smart home, intelligent wear, AR/VR, unmanned aerial vehicles (UAVs) and other emerging markets, to provide customers with the best product experience.IN terms of technology, the company has independently mastered leading technologies such as LTPS-TFT, AMOLED, flexible display, Oxide-TFT, 3D display, transparent display, and in-cell/on-cell integrated touch control. TFT-LCD key Materials and Technologies National Engineering Laboratory, national enterprise Technology Center, post-doctoral mobile workstation, and undertake national Development and Reform Commission, The Ministry of Science and Technology, the Ministry of Industry and Information Technology, and other major national thematic projects. The company’s long-term accumulation and continuous investment in advanced technology lay the foundation for innovation and development in the field of application.

Searching for the best TFT LCD module manufacturers in India? Well, that is admittedly a daunting task. With the growing number of TFT LCD display suppliers and manufacturers, it’s truly hard to pick which ones are reputable and which ones are not.
STONE Technologies is a proud manufacturer of superior quality TFT LCD modules and LCD screens. The company also provides intelligent HMI solutions that perfectly fit in with its excellent hardware offerings.
STONE TFT LCD modules come with a microcontroller unit that has a 1GHz Cortex-A8 CPU. Such a module can easily be transformed into an HMI screen. Simple hexadecimal instructions can be used to control the module through the UART port. Furthermore, you can seamlessly develop STONE TFT LCD color user interface modules and add touch control, features to it.
You can also use a peripheral MCU to serially connect STONE’s HMI display via TTL. This way, your HMI display can supply event notifications and the peripheral MCU can then execute them. Moreover, this TTL-connected HMI display can further be linked to microcontrollers such as:
Becoming a reputable TFT LCD manufacturer is no piece of cake. It requires a company to pay attention to detail, have excellent manufacturing processes, the right TFT display technology, and a consumer’s mindset.
Hence, we’ve rounded up 7 famous and reputable Indian LCD module manufacturers. These companies all produce quality display and screen-related products such as:
Videocon Industries Ltd is a well-known Indian manufacturer of TFT display modules, color TVs, home appliances, and consumer electronics. Videocon is a large company based in Mumbai, India.
The company takes pride in being India’s pioneer in color TV production and retail. Before the advent of the TFT display module, Videocon has been the world’s third-largest picture tube (CRT) manufacturer.
Videocon is popular for its high-quality products. Videocon manufactures an LCD display screen for LCD TV sets. A lot of Indians trust Videocon’s television sets.
Videocon assembles and manufactures their TFT LCD module products in world-class factories. The company’s main factories are in India. However, they also have manufacturing plants in Mainland China, Mexico, Poland, and Italy.
All of Videocon’s TFT LCD display products passed strict quality control checks. Testing is done throughout the entire manufacturing and assembly process. Furthermore, quality checks are done from the raw materials phase until the products’ release.
Videocon’s TFT display screens and TVs are affordable of good quality. The company knows how to manufacture quality TV sets at pocket-friendly prices since it is a pioneer in the Indian color TV industry.
Videocon’s mobile phone range is equipped with the latest touch LCD display technology. Smartphones are assembled in the company’s TFT touch screen factory. Hence, customers are ensured of high-performance mobile phones with a crisp touch screen LCD display.
To sum it up, Videocon Industries Limited is a strong TFT LCD display manufacturer. The company’s quality manufacturing plants, good end-products, and affordable prices make it among the famous TF LCD manufacturers in India.
The company started manufacturing televisions and telecom equipment in the 1980s. BPL joined forces with Japanese company Sanyo in 2006 to strengthen BPL’s consumer electronics brand, including TF-LCD display products and color televisions. The joint venture ended in 2007, leaving BPL to focus on its healthcare equipment sector.
1. BPL takes pride in its superior-quality television sets. The TVs are made with combinations of TFT-LCD display and LED output. The products are manufactured by third-party TFT LCD suppliers. Then, the TV parts are assembled at a plant in Baddi, Himachal Pradesh.
2. BPL also takes the lead when it comes to medical display equipment. BPL uses different combinations of TFT display, VGA output, LED, and touch LCD display to manufacture the following devices:
3. The company upholds strict quality standards in all TFT LCD display products. This is achieved through quality tests at all stages of production and assembly. Even the third-party suppliers providing the raw materials for TFT-LCD modules are required to run through tests to ensure quality.
In a nutshell, BPL continues to be an industry leader in India’s consumer electronics and medical equipment industries. BPL provides households and health facilities with top-notch TFT-LCD display module sets used in televisions and health monitoring equipment. And in recent years, BPL has clearly shown no signs of slowing down.
Dixon’s creed is providing consumers with world-class products at affordable prices. Consequently, the company is among the top TFT LCD manufacturers in India because:
Dixon is proud to create its products in local factories. For instance, the company has an LCD display module factoryin Tirupati, Andhra Pradesh. Furthermore, the company also operates three facilities in Uttarakhand and three more in Noida, Uttar Pradesh.
In conclusion, Dixon Technologies (India) Limited is among India’s famous TFT LCD manufacturers simply because it provides original, feature-packed, high-quality, and pocket-friendly products to both tech companies and end-consumers.
Oriole Electronics is an electronics company based in Mumbai. It was established in 1972 and is among the famous long-standing TFT LCD manufacturers in India.
Oriole’s strongest quality lies in its extensive experience in the TFT LCD and electronics industry. The company’s experience puts them at an edge against many younger industry competitors. All these thanks to several insights and expertise the company collected since 1972.
Another Oriole advantage is its in-house Research and Development team. Oriole’s R&D team conceptualizes products for its customers. They also formulate quality control guidelines that are strictly implemented during the production and testing phases. All these things are done to ensure the highest quality of Oriole’s TFT, LCD modules, and other product ranges.
Speaking of quality, Oriole is also ISO 9001:2008 certified. This credential ultimately proves the company’s utmost dedication to quality processes. Also, this ensures consistent operations of Oriole’s TFT LCD display factory network throughout India.
To wrap it all up, Oriole Electronics is indeed a quality display module manufacturer in India. Superior quality products, customized services, and affordable rates – all of these are testaments to Oriole’s good reputation.
RandServ proudly provides and even encourages custom manufacturing services. The company responds to unique client needs by creating LCD display modules and designs according to customer requirements. RandServ lets clients specify custom shapes, display sizes, and interactive touch support integration.
Another good point of RandServ is its superior-quality product range. The company may be new to the industry, but its products are made with world-class technology and attention to detail. RandServ’s electronic, TFT, LCD, and LED technologies make their end-products among the most long-lasting and robust electronic/digital products in the Indian market today.
In conclusion, RandServ Systems deserves a spot in our 7 famous TFT LCD manufacturers list mainly because of three things – cutting-edge LCD and digital products, customized client services, and high regard for ethical business practices.
Royal Display India is a reputable TFT display supplier and manufacturer based in Mumbai. Royal Display is relatively new, being in the business since 2003. But the company didn’t let their newness stop them from growing into a successful LCD display supplier and manufacturer.
A major factor that Royal Display holds in regard is value for money. The company keeps this in mind when creating and supplying display modules to their clients. Furthermore, Royal Display firmly believes that people need not shell out several bucks to get world-class quality products.
Another considerable advantage of Royal Display is its spacious manufacturing and warehousing units. Both are located in Maharashtra. The manufacturing unit boasts of specialized techniques used to produce modules for TFT, LCD, and OLED. Meanwhile, the warehouse unit is large enough to accommodate bulk orders from clients.
To wind this up, Royal Display is a young yet quality manufacturer for LCD modules and other related display screens in India. The company continues to grow with its plethora of quality display products coupled with many satisfied clients.
To conclude this post, we’ve rounded up 7 Famous TFT LCD Manufacturers in India. Some of them are industry pioneers, while some are novices. However, we’re sure all these reputable companies will be a good source of products for all your display module needs.
STONE provides a full range of 3.5 inches to 15.1 inches of small and medium-size standard quasi TFT LCD module, LCD display, TFT display module, display industry, industrial LCD screen, under the sunlight visually highlight TFT LCD display, industrial custom TFT screen, TFT LCD screen-wide temperature, industrial TFT LCD screen, touch screen industry. The TFT LCD module is very suitable for industrial control equipment, medical instruments, POS system, electronic consumer products, vehicles, and other products.

These wide viewing angle Small Format TFT LCDs with optional touch are industrial grade and cost competitive. Therefore these products are a popular display choice to integrate in many projects for example for use in ticket vending machines (TVMs) and other custom projects.
Using only high-tech factories that we partner with, we provide clients with the service of designing liquid crystal display panel (LCD) and liquid crystal display module(LCM), and is committed to the customized service, R&D, sales, after-sales service of display products. Our factories have hundreds of engineers focusing on creating the highest quality displays including monochrome LCD (TN, STN), colour LCD (CSTN and TFT), Custom LCD’s, LCD module (both COG* and COB*) which are widely used in mobile phones and many other applications.
Our state of the art factory produces High Resolution TFT glass panel cells, has TN, HTN, STN and TFT technologies for LCD panels. The Factory has class 1000 clean rooms, high accuracy bonding, pre bonding and heat seal machinery, many production lines specifically for TFT production, OCA and OCF bonding machines, In-House LCD glass cleansing process, output thousands of pieces per month.
Touchscreen overlay cover glass only available (so you do not have to purchase the display)These displays can come with: touchscreen components, touchscreen overlays, industrial touch screen,Wide LCDs, LED TFTs, and TFT Colour displays.
Other options are: LCD drivers, LVDS Touchscreen displays, automotive LCD Display, TFT high resolution screens, TFT LCD capacitive touchscreens, TFT capacitive touchscreens, high brightness LCDs, Letterbox Displays, small VGA Displays, LCD panel without backlights,Variations of our Small Format TFT LCDs include: TFT Display touchscreens, TFT IPS Display, monochrome displays, TFT or LCD, embedded components, LCD components, TFT Drivers, industrial range of Displays,
CDS also offers industrial TFT LCDs,Our displays are used in: touch screen vending machines, automotive touch screen displays, vending machine display panel, Touch screen vending, TFT Automotive, LCD Dislay panel kits, Touch screen TFT monitors, LCD Display components, LCD Screen components, and POS LCD Displays.As you can see from the tables above we have sizes including: 8.8 inches, 4.3 inch LCD Display, 10.1″ TFT LCD, 3.5 inch LCD Display, 4.3 inch display, 3.5 inch TFT LCD Display, 4.3″ screen, 7 inch LCD panel, 3 inch LCD Displays, and 4.3″ TFT LCDs as well as other small LCD Display screens.We have options on and equivalents to the following displays and TFT panel manufacturers: Raystar, Kingtech LCD, Digital View, OLED modules, OLED products, Powertip LCD Displays, Data Vision LCD, LG TFT Display, Tianma NLT, Powertip Displays, Mitsubishi LCD Displays, DMC components, Kyocera LCDs, NLT Technologies Ltd, Sharp LCD TFT modules, LCD manufacturers in the USA, PMOLED Displays, innolux display corp, Industrial touchscreens, A Grade TFT LCD Displays, Panoramic TFT Displays, Samsung TFT Displays, Touchscreen components, Transparent TFT Displays, Touchscreen components, TFT LCD controllers, as well as other TFT LCD manufacturers and Liquid crystal Display manufacturers.
CDS offers the widest range of displays and touchscreens including Abon touchscreens, Ampire LCD distributor, alternative Prisma interface baord supplier including Prisma iiia, Solomon Goldentek, Panasonic TFT, Winmate display, USB IO, and Apollo monitors
Our range includes AMOLED, circular displays, circular monitors, circular screens, circular TFT screens, round displays, Round TFT LCD displays, TFT AMOLEDs, TFT and IPS, TFT display interface microcontroller, TFT LCD or AMOLED, TFT LCD super AMOLED, WXGA TFT Displays, and WXGA TFT screens
As well as large format displays CDS also offers DSI TFT Display, large monochrome LCD displays, mono displays, mono OLEDC displays, mono TFT LCDs, monochrome displays, PCT Touchscreens, projected capacitive touch PCT technology, sq monitors and squid IDS.
CDS added a number of additional controller boards nd accessories which include TFT adaptor boards, TFT boards, TFT display controller boards, USB c LCD controller, USB touch kit, resistive touch screen, TFT accessories com, LCD controller board, LCD controller board USB c, LCD controller board, HDMI to MiPi DSI board, HDMI to MiPi DSI bridge, HDMI to MiPi LCD controller board, EDP adaptor bard, elite C microcontroller, Displaylink DL 3000 .
Whether it be bar type LCDs or any of CDS display solutions or many TFT displays we can help with comparing mipi dsi vs lvds interfces or mipi to edp wch can include use on pos shelf displays and rgb epaper for example.

This note will discuss the considerations made when choosing a microcontroller that will work for your display. A few requirements need to be met depending on the display’s features, interface, and size. These can also be determined by the embedded IC in the display. An overview of the considerations when choosing a microcontroller can be seen below. It should be noted that these items are separated for definition but may serve the same purpose and be interconnected in the ecosystem of the controller.
Application and display specific peripheral requirements. I2C, SPI, UART, Parallel, MIPI, LVDS, HDMI etc. Determines pin connections and required architecture of the device.
Flash and RAM memory requirements. Minimum frame buffer memory is dependent on the size andresolution of the display. Location of memory (external or internal) can restrict interface speed and must becompatible with the chosen interface.
Communication speed requirements defined by the interface and intended application. Refresh rateis determined on the size of the display and location of memory. This will indicate which processors arecompatible.
A displays embedded IC can offer resources such as internal RAM, clock generators and power control.This can save resources otherwise needed to be provided externally. Check the datasheet of the display’s ICcontroller for device function specifics.
Availability of resources for programming and debugging the microcontroller. Online resources andexampleprograms to leverage from can a lot of save time. Compatibility with a familiarprogramming environment isadditionally beneficial.
The interface selection is dependent on the intended application of the display. Each display has a different interface or different choices for a connection interface. For smaller displays a 3/4-wire serial interface would be sufficient. For larger display’s with high resolution a faster interface should be chosen. A parallel RGB interface is capable of high-speed data transmission however requires many pin connections. If the intended application for the display is video a MIPI, LVDS or HDMI connection would be a good choice.
The available memory of a microcontroller often becomes a highlighted issue when determining which microcontroller to select. The microcontroller needs a minimum amount of RAM to hold the frame buffer of the display. Even small displays require more RAM than a typical microcontroller possess. To verify that your microcontroller will have enough memory, it is important to calculate the frame buffer.
The minimum RAM required for the frame buffer in this example would then be 768kB. It is important to note that external RAM can be provided for the frame buffer if the microcontroller does not provide it internally. Clocking speed should be verified if using external RAM as the microcontroller cannot access external RAM as quickly. The clock frequency constrained by external RAM sometimes does not meet the minimum requirements of some very high-speed interfaces (ex. DSI-MIPI). Additionally, the display can contain some form of RAM depending on the IC controller inside the display. This can be verified on the specification sheet of the IC.
The speed of the microcontroller is heavily dependent on the interface used in the application. The minimum and maximum of the clock frequency is specified in the datasheet of the display and in the specification sheet of the display’s controller IC. The frame rate is typically around 50-60Hz, which is the median oscillation frequency to refresh the display to maintain an image. The display will often provide an internal high frequency clock that can be initialized to certain frequencies.
It is important to verify in the controller data sheet which resources are provided by the internal IC of the display. Some key information to look for would be: Does the display have sufficient RAM or does this need to be provided? Does the display have an internal oscillator for clock generation for the interface chosen? An additional graphics controller can be used to interface the display with the microcontroller to meet these requirements. Features like these can be utilized to avoid additional cost, space, and memory of your application.
After a brief consideration of intended application and interface of the display you can get some idea of which microcontroller processor and architecture you will need. There are a few different microcontroller processors to choose from. The main choices are ARM, AVR, PIC, and 8051. The difference between them is the bit size of the processor, 8-bit, 16-bit, 32-bit or 64-bit data . The data bit width is the amount of data that can be sent at a time. This determines the speed of data transfer and thus compatible applications and interfaces.
The AVR has an 8-bit processor and is a RISC type microcontroller. This type of processor is compatible with low speed interfaces (SPI, I2C) and smaller displays. A common AVR microcontroller board is the Arduino which has the embedded 8-bit ATMEL RISC processors. These processors are widely popular which provide the benefit of numerous online resources and availability. The Arduino processors (ATmega/SAM3X) are typically available in most microcontroller programming environments. Additionally, Arduino offers 32-bit AVR development boards which function closely to the ARM processors.
The AVR microcontrollers are constrained by the low frequency, internal memory availability and power costs. AVR’s cannot use external program memory but some may allow expansion of external SRAM. These microcontrollers alone would be incompatible for high frequency applications such as video, large displays, or capacitive touch panels.
The ARM microprocessors have a RISC architecture. They offer 32-bit or 64-bit processors and are great options for high speed interfaces (Parallel, LVDS, MIPI, HDMI) and high-resolution displays. Common ARM processors can be found from STMicroelectronics and Raspberry Pi. The most common version of the ARM processors is the “Microcontroller” Arm-M group which include the Cortex-M0 and Cortex-M4 series.
The ARM processors are compatible with most displays and connection interfaces. These microcontrollers have become increasingly popular, so the cost has become comparable between the ARM and the AVR types. These processors provide the speed, but it is recommended to verify the available RAM as these boards vary widely on included features.
The PIC architecture consists of 8, 16, and 32-bit processors developed by Microchip. The PIC 32-bit series of microcontrollers have been geared toward graphical embedded applications and there are a lot of resources online for these devices. There is a huge variety of PIC controllers which make them easily available. These microcontrollers are known for being low cost and are comparable to the ARM processors. The drawback of the PIC controllers is using Microchips programming environment, but this is based on preference.
The Intel MCS-51, more commonly known as the 8051 microcontrollers have a CISC architecture and an 8-bit processor. These processors differ in architecture from the previous and are programmed using a combination of C and assembly languages. The program memory is read only and does not have an on-board ISP. A special programming device is needed to rewrite the EEPROM or flash memory. These processors are typically small, low cost and low powered. This can make them favorable for battery powered devices. These processors are commonly used to initialize TFT displays and are combined with a graphics controller to provide the required resources such as RAM and clock frequency.
Development environments and online resources become considerably valuable when creating an application for your display. A brand new or uncommon microcontroller will have very few resources for reference. Even knowledgeable engineers can find frustrations with the manufacturers programming environments. There are many microcontroller choices that will support your display with similar and overlapping features. Choosing a microcontroller with an available FAQ, application notes or is accessible on a familiar programming platform can save a lot of time.

The display used in this project is a 1.8” TFT with 128x160 pixels of resolution. The microcontroller used is the SimpleLink MSP-432P401R from Texas Instruments. The TFT display will be interfaced with the microcontroller via a 4-wire serial connection and programmed using the Energia IDE platform.
In just a few steps the TFT can be wired and programmed to display up to 65K colors and 128x160 pixels of resolution. The display can be powered from the 3.3V output of the TI. Various wiring and interface options are available, from 3-4 wire serial, to 16/18-bit RGB and 8/9/16/18-bit MCU parallel. Additional features of this display are below. As always, check out the data sheet for the specs of this specific display. (datasheet)
First you will need to download the Energia IDE software if you have not already. This IDE was chosen because of the similarities is has to the Arduino IDE. This is beneficial because there is a large variety of open sourced examples that demonstrate the features of this display. An alternative programming IDE is Code Composer Studios, which is also compatible with the TI microcontroller. The IDE is up to preference. We will come back to this after the hardware is setup.
There are only a few connections that need to be made between the display for the 4-wire serial interface. The unused parallel data pins will be pinned to GND. Consult the datasheet for a detailed explanation of each pin assignment and their functions. The 4-wire serial data pins are connected to the TI specific serial inputs for the “Hardware SPI” programming option. While any pins can be used, their location must be defined in the “Software SPI” programming option.
The TI microcontroller has dedicated serial input pins specific to the board. The pin locations can be seen below and are described in the table for how they are connected to the display. These and other hardware pin definitions can be verified on the TI website.
After the screen is connected, and the TI microcontroller is plugged into the computer you will see the white LED backlight come on. That is a good sign that things are connected correctly.
Now it is time to program the microcontroller. For this example, we will be using the Energia IDE. An alternative platform that can be used is Code Composer Studios. I have found that Energia IDE is more practical for this example because of the compatibility with Arduino specific code with only minor changes.
We will need a program for the specific display chip “ILI9163”. For this example, I have created a modified version of a popular Adafruit example that demonstrates the various capabilities of the display. The example can be downloaded from Github here.
You will also need to include Adafruit’s GFX library which can be downloaded here. This is a popular library that contains examples and features for TFT displays that prove to be useful for this application.
You can now test any of these various programs that might be good reference for your specific project. There a lot of good examples in the Adafruit GFX library as a resource to test the various capabilities of the display.
This 1.8” TFT is a good option for displaying 16-bit 65K color images. This is compatible with most microcontrollers as it saves on-board memory. This is beneficial for storing bitmaps on flash memory since the screen is small and the 65K color bitmap image won’t take up all the on-board storage on the TI. This display also has a version with a resistive touch screen. This would be a good option for a digital push button. This may be further discussed in a future application note.

The display is a critical component in every project, impacting the case, firmware, electrical design, user interface, and even battery life. For these reasons, and because it is the most visible component of your product, it must be approved by the mechanical design team, management and marketing.Before these teams can approve, they need to see it in action. But it can take days or weeks to connect a display to your platform, initialize it and build a code library able to create believable demonstrations. Meanwhile, the whole project is on hold.Our 8051 development kit / demonstration board can solve this problem. Use it to get the display seen, demonstrated and approved for your project.
ER-DBT028-4 is a microcontroller 8051(80C51) demonstration and development kit for 2.8 inch tft lcd display with ILI9341 controller.The kit includes MCU board controlled by STC12LE5A60S2,ISP(In System Programming) with USB port and cable to customize the demonstration that includes your own bitmap images,personalized fonts,symbols,icons and burn sketches,microSD card that is written graphic and text into it,the power adaptor,the adaptor board with various pitch dimension used to connect MCU board and display.Optional for 8080 8-bit,8080 16-bit parallel interface and 3-wire,4-wire serial interface.

The display is a critical component in every project, impacting the case, firmware, electrical design, user interface, and even battery life. For these reasons, and because it is the most visible component of your product, it must be approved by the mechanical design team, management and marketing.Before these teams can approve, they need to see it in action. But it can take days or weeks to connect a display to your platform, initialize it and build a code library able to create believable demonstrations. Meanwhile, the whole project is on hold.Our 8051 development kit / demonstration board can solve this problem. Use it to get the display seen, demonstrated and approved for your project.
ER-DBTM050-2 is a microcontroller 8051(80C51) demonstration and development kit for ER-TFTM050-2 product that is 5 inch tft lcd display with RA8875 controller board.The kit includes MCU board controlled by STC12LE5A60S2,ISP(In System Programming) with USB port and cable to customize the demonstration that includes your own bitmap images,personalized fonts,symbols,icons and burn sketches,microSD card that is written graphic and text into it,the power adaptor,the adaptor board with various pitch dimension used to connect MCU board and display.Optional for 8080 8/16-bit,6800 8/16-bit parallel interface and I2C,3-wire,4-wire serial interface.

ST cooperates with Riverdi because we believe that such partnership brings value to our joint customers. On top of this, we also discovered that we shared some business visions about how to make it easier and faster to go from the initial stages of designing a product embedding a graphical user interface to a production ready product. The conclusion was that combining the STM32 High performance microcontrollers, with the free STM32 graphics toolchain and Riverdi displays + PCB and then merge all of this into a board support package ready to run TouchGFX, would be a compelling offering.
Designing and developing a product with an embedded user interface (GUI), can be complex, as it involves many building block and disciplines, which all requires expert knowledge. Riverdi offer is covering a lot of them, allowing the customer to focus on the most important part of the development, the GUI Application itself. And remember that this is the face of your product. Choosing such solution, the customer does not need to worry about sourcing components like the display, microcontrollers, memory, etc. or even writing low-level drivers, development the board support package or porting TouchGFX. Its all ready done. What makes cooperation with Riverdi unique is that Riverdi has been able to drive a 1280*800 display resolution in high colors, with a STM32H7 microcontroller and a TouchGFX application showing a smart home UI. This shows that Riverdi is well aware of how to exploit all the capabilities of the STM32 Graphics offering combining hardware and software in a unique solution. From the first business meetings, it was clear that we shared visions of the market for embedded GUIs. And Riverdi proved that they can go from an idea and concept to actual working hardware, very fast.

We have thousands of standard products that are in stock and available from our Seattle, WA and Hong Kong warehouses to support fast product development and preproduction without MOQ. The stock covers TN, STN LCD display panels, COB, COG character LCD display, graphic LCD display, PMOLED, AMOLED display, TFT display, IPS display, high brightness and transflective, blanview sunlight readable display, super high contrast ratio display, lightning fast response displays, efficient low power consumption display, extreme temperature range display, HMI display, HDMI display, Raspberry Pi Display, Arduino display, embedded display, capacitive touch screen, LED backlight etc. Customers can easily purchase samples directly from our website to avoid time delays with setting up accounts and credit terms and shipping within 24 hours.
Many of our customers require customized OEM display solutions. With over two decades of experience, we apply our understanding of available display solutions to meet our customer’s requirements and assist from project concept to mass production. Using your ideas and requirements as a foundation, we work side by side with you to develop ideas/concepts into drawings, build prototypes and to final production seamlessly. In order to meet the fast changing world, we can provide the fastest turnaround in the industry, it takes only 3-4 weeks to produce LCD panels samples and 4-6 weeks for LCD display module, TFT LCD, IPS LCD display, and touch screen samples. The production time is only 4-5 weeks for LCD panels and 5-8 weeks for LCD display module, TFT LCD, IPS LCD display, and touch screen.

There are a number of different kinds of displays that can be driven by a microcontroller. This repository contains examples for many of them, along with information about display technologies and some of the more popular libraries for controlling them.
Multi-Segment LED display - There are many models of multi-segment LED displays, including the classic 7-segment LEDs, alphanumeric displays, dot-matrix diplays, bar graph displays, RGB LEDs, and others. What these share in common is that they will have either a common-cathode or common-anode structure. Common cathode LEDs have multiple anodes, one for each LED segment, and one cathode for all. common anode LEDs have a single anode and multiple cathode for all the segments. Driving these displays requires a control pin for each LED segment. They are usually driven by a multiplexer or LED driver, which can provide both a common interface for all the LEDs (such as an SPI or I2C interface), and a controlled current supply for all the LEDs.
Broadcom/Avago’s HCMS-29xx display is multi-segment LED display that has several 5-7 LED matrices with a synchronous serial interface. It has the smallest visibly discrete LEDs in its display that I have encountered.
LCD - Liquid crystal display. LCDs are made up of long-chain molecules in a state between crystal and liquid. When a charge is applied, the molecules align, acting as a polarizer. When paired with a second polarizer, they can either block light or allow it to pass through, appearing either light or dark. A grid of these can form a single-color display. Liquid crystals do not emit light, so a backlight is required to light them up. They come im low-resolution, passive-matrix displays which are usually monochrome or higher-resolution, active-matrix screens which have higher resolution and are usually full color.
OLED - an OLED screen replaces the liquid crystal with a matrix of organic LEDs. This eliminates the need for a backlight, since each pixel generates its own light. For more on OLEDs, see this introduction from ehergy.gov. CNET provides this comparison of LCD vs OLED displays.
ePaper - ePaper displays use a matrix of tiny capsules which are black or colored on one side, and white on the other. Applying a charge to each capsule causes it to turn one way or the other. Unlike LCD or LED displays, ePaper displays maintain their state when powered off. ePaper displays cannot be refreshed as fast as LCD or LED, however. ePaper displays are typically not backlit, and require external lighting. eInk, the primary maker of ePaper displays, has a good FAQ on the technology. Visionect.com has a helpful illustrated explanation as well.
LCD and OLED screens drive their pixels in one of two ways. A passive matrix uses a grid of wires which control each pixel using a row-column scanning method. Voltage is applied to each column in sequence. Then the rows are scanned. If the pixel on that column at a given row should be on, then the row wire voltage is taken low to create a voltage difference, and the pixel turns on. An active matrix uses a grid of thin film transistors (TFT) instead of a row-column scanning apparatus. TFTs allow for greater pixel density and therefore sharper image quality and better response time for each pixel. Jameco offers a good explanation of passive vs. active matrix driver technology.
The oldest form of LCD display, patented in the 1980’s, is known as Twisted Nematic (TN) LCD, and has limits to its viewing angle. Newer LCD technologies such as in-plane switching (IPS) or plane-to-line switching (PLS) afford wider viewing angles and brighter screens.
There are a number of common display driver ICs on the market. Typically a driver IC will be capable of controlling many different sizes and shapes of display, if they are of the same class. For example, you’ll see many TFT displays that use Sitronix’ driver ICs, notably the ST7735 and ST7789. Ilitek’s ILI9225 chip is also common in TFTs. This means that libraries written for one vendor’s display are likely to work for displays from another vendor, if they use the same chipset. This can be convenient, as it means you can sometimes choose the library whose API you find easiest to work with.
Displays for microcontrollers use a variety of control interfaces. The most common are the ones you see for other electronic modules as well: synchronous serial interfaces like I2C and SPI, or asynchronous serial interfaces. also feature parallel interface, requires a large number of I/O pins from your controller.
BUSY - an output pin to indicate that the display controller is busy. connects to whicheve pin the microcontroller has assigned for this function. This pin is less common on TFT displays than on ePaper displays.
Backlight - most TFT screens have a pin which enables or disables the backlight of the screen. The naming for this is not standardized: BLK, LITE, TE are all in use. Read the module’s datasheet for details.
Hitachi HD44780 LCD display. See the Arduino LiquidCrystal library. These 2x16 character LCD displays are ubiquitous in the hobbyist market and come in many starter kits for the Uno. They are a passive-matrix LCD with a parallel interface (6 pins) that runs on 5 volts. They will typically not run on 3.3 volts. Each character is a 5x7 pixel matrix, so these are very low-resolution displays. They can usually be foung for $10-$15, which was a bargain in the early Arduino days. Nowadays, if you need an inexpensive 2-line display, some of the OLED displays like the SSD1306 are a better bargain.
There are some display modules which have an asynchronous serial (UART) interfaces. These typically have a microcontroller on the display module itself, which is interfacing with one of the types of interfaces above. These modules typically have a communications protocol that is unique to the vendor. They are convenient, but more expensive than their synchronous serial or parallel counterparts.
Finding the right display library for your Arduino or Arduino-compatible display can be challenging. Vendors who design and sell their own breakout boards tend to publish libraries that are compatible with their own boards. Smaller vendors may not make their own libraries, relying on third-party libraries instead. The Arduino site lists over 300 display-related libraries. The ease-of-use and adaptability of those libraries varies widely. The ones I’ve found most useful are Adafruit’s GFX library and Oli Kraus’ U8g2 library.
Since there is a relatively small number of driver chip manufacturers (Hitachi, Ilitek, Solomon-Systech, and Sitronix among them), different vendors’ boards often use the same driver hardware. This means that the libraries from one vendor can support the hardware from another. When you shop for displays, it’s worthwhile to check what the driver is for each one, and see if there’s a compatible library from your favorite library writer.
Adafruit_GFX is a hardware-independent graphics library written to work with all the Arduino-compatible displays that Adafruit sells. They complement this with display specific libraries like Adafruit_SSD1306 for SSD1306 OLED libraries, Adafruit_EPD for ePaper displays, Adafruit_ST7735 for some TFT libraries, and others. The advantage of the GFX library is that you get a common drawing API regardless of which display you’re using. It uses the Arduino Printable interface too, so commands like print() and println() work with this library just like they do in the serial monitor. There’s a good guide to the GFX library as well. Sparkfun’s got their own complement to the GFX library, Hyperdisplay.
u8g2 is designed as a universal library for many different displays. It supports a wider range of displays than any other I’ve used so far. It has its own graphics API which is more or less similar to Adafruit’s, and a wide font set as well. There’s also U8g2_for_Adafruit_GFX, a library which allows you to add U8g2 fonts to any Adafruit_GFX-based library.

Maclight Display have more than 10 years experiences in LCD display, majority of our display are exported to Europe, America, Asia. Customers including world famous company, such as Sanmina, Flextronics, Huawei, Hairer, Toco, etc.
We have various series display modules, our display including: Mono LCD panel and module ( tn/stn), TFT LCD module, OLED display module, Capacitive touch panel, Customized LCD display solution.
Maclight focus in industrial display solution.Our feature display including: super wide viewing angle tft lcd (IPS, SFT), super wide temperature tft display, ultra high brightness tft lcd display module for outdoor, long life time tft display LCD module (50k+ hours) for industrial/medical/automotive, tft LCD integrated capacitive touch solution with optical lamination, controller driving board for completed display solution.
Our R&D team have tier 1 working experience in LCD display. Our customer would benefit from our well designed and customized display solution by shorten the time from R&D to mass production, and build the high display performance. Our valuable designed display solution keep cost low and high quality by production efficiency up, and quality risk preventing.

David Johnson-Davies has designed a "universal" board for driving common color TFT LCD panels, offering an I2C interface for easy connection to external hardware: the Universal TFT Display Backpack.
"This project is a microcontroller board, based on an ATtiny414, that can accommodate a range of different Adafruit and AliExpress color TFT displays," Johnson-Davies explains. "While working on my Tiny TFT Graphics Library I needed to test it with several different TFT displays on a prototyping board, and noticed that many of them, with a small number of exceptions, had one of two standard pin connection layouts.
"That gave me the idea of designing a breakout board that would take any of these displays, and be a great starting point for a variety of display-based projects."
The Tiny TFT Graphics Library,which received a major update this week, is entirely compatible with the Backpack board — though its microcontroller can also be programmed directly, for those who"d prefer, without use of the library. True "universal" compatibility on the hardware front may be pushing things, perhaps, but Johnson-Davies has tested the board with a range of common displays from 0.96" to 2.4" from Adafruit and AliExpress with great success — using an 11-pin and eight-pin header respectively for each family.
"The display connection header pin holes are staggered," Johnson-Davies notes, "so you can push the display in place, and it will stay firmly connected without soldering. This is especially useful if you want to try different displays in an application. Although you could drive these TFT displays from an 8-pin ATtiny processor such as the ATtiny402, I decided to base the board on a 14-pin device, such as the ATtiny414, to allow it to offer […] additional optional features."
Those features: I2C support, to allow the microcontroller to drive an external sensor or other compatible hardware in addition to the display" optional connections to backlight and SD card select pins, brought to an edge connector if you"d prefer to use them for some other purpose; and room for a crystal oscillator for clock projects.
Johnson-Davies has released the board"s Eagle design fileson GitHubunder an unspecified open-hardware license, promising compatibility with "any of the new 0-series, 1-series, or 2-series 14-pin microcontrollers" from the ATtiny404 up to the ATtiny3224.
Ms.Josey
Ms.Josey