heat tolerance of an lcd touch screen quotation

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

ImportantAnalogue resistive touch screens are rarely designed for temperatures well above or below zero. Our ULTRA GFG Touch is specified for temperatures from -40 degrees up to +75 degrees Celsius.
Many manufacturers specify their touch panels for standard temperature ranges from 0 degrees up to +35 degrees Celsius. This is usually sufficient for interior applications. Extended temperature requirements are generally defined from 0 degrees up to +50 degrees Celsius. Some manufacturers go even further and declare their standard resistive touch screens from -10 degrees up to +55 degrees Celsius.
Such touch screen are not suitable for outdoor use or the use in some desert or industrial environment, where temperatures can easily reach even higher or lower levels. Even in the extended temperature range, our patented ULTRA glass-film-glass technology is quite unique: already in the standard version, it is specified from -40 degrees up to +75 degrees Celsius and can be further protected by applying various filters to meet specific customer requirements.
Recent test reports, which we prepare on request of the customer, can be downloaded below. In this particular case, the customer selected the temperature range of -25 up to +70 to be tested.

Liquid crystal displays (LCD) have become an essential component to the industry of display technology. Involved in a variety of contexts beyond the indoors like LCD TVs and home/office automation devices, the LCD has expanded its usage to many environments, such as cars and digital signage, and, thus, many temperature variations as well.
As with any substance that requires a specific molecular characteristic or behavior, LCDs have an operating temperature range in which the device, if within, can continue to function properly and well. In addition to that, there is also an ideal storage temperature range to preserve the device until used.
This operating temperature range affects the electronic portion within the device, seen as falling outside the range can cause LCD technology to overheat in hot temperatures or slow down in the cold. As for the liquid crystal layer, it can deteriorate if put in high heat, rendering it and the display itself defective.
In order for the LCD panel to avoid defects, a standard commercial LCD’s operation range and storage range should be kept in mind. Without adaptive features, a typical LCD TV has an operating range from its cold limit of 0°C (32°F) to its heat limit of 50°C (122°F) (other LCD devices’ ranges may vary a bit from these numbers).
The storage range is a bit wider, from -20°C (-4°F) to 60°C (140°F). Though these ranges are quite reasonable for many indoor and even outdoor areas, there are also quite a few regions where temperatures can drop below 0°C or rise above 32°C, and in these conditions, LCDs must be adapted to ensure functionality.
Heat, can greatly affect the electronics and liquid crystals under an LCD screen. In consideration of heat, both external heat and internally generated heat must be taken into consideration.
Seen as the liquid crystals are manipulated in a device by altering their orientations and alignments, heat can disrupt this by randomizing what is meant to be controlled. If this happens, the LCD electronics cannot command a certain formation of the liquid crystal layer under a pixel, and the LED backlighting will not pass through as expected, which can often lead to dark spots, if not an entirely dark image. This inevitably disrupts the display’s readability.
Depending on the upper limit of the operation temperature range, LCD device can be permanently damaged by extreme heat. With long exposure to extreme heat, besides the destruction of the liquid crystals, battery life can shorten, hardware can crack or even melt, response time may slow to prevent even more heat generation from the device.
The LED backlight and the internal circuitry, typically TFT-based in the common TFT LCDs, are components that can generate heat that damages the device and its display. To address this concern with overheating, many devices use cooling fans paired with vents.
Some devices that are used in extremely high ambient temperatures may even require air conditioning. With air vents to carry the heat out, the device can expel it into the surroundings.
But this leads to another problem: how can moisture be prevented from entering through the vent? If moisture enters the device and high heat is present, condensation can occur, fogging the display from inside, and in some cases, short-circuiting may cause the device to turn off. In order to circumvent this issue, the shapes of the air vents are specific in a way that allows only for air movement, not forms of moisture.
In the opposite direction is extreme cold. What typically occurs in the cold is “ghosting” (the burning of an image in the screen through discoloration) and the gradual slowing and lagging of response times. Like heat-affected LCD modules, the extreme temperature can affect the liquid crystals. This layer is a medium between the liquid and solid state, so it is still susceptible to freezing.
An LCD device can be left in freezing temperatures because it will likely not be permanently damaged like in the heat, but it is important to understand the device’s limits and how to take precautions when storing the device. The standard and most common lower-bound storage range limit is -20°C, below freezing, but if possible, it would be best to keep it above that limit, or else there is still a risk of permanent damage.
If the device is not adapted for the cold, it would be good to keep it bundled up, trapping the heat within layers. However, this is only a temporary solution. Adapted, rugged devices have advantages such as screen enclosure insulation for heat level preservation and, in more extreme cases, heaters to generate extra heat to raise the internal temperature to a level above the minimum.
When selecting the appropriate module, it is necessary to understand the device’s expected primary application. The application will decide factors such as display type, environmental conditions, whether or not power consumption is a factor, and the balance between performance and cost. These factors can have an effect on the operation and storage temperature ranges for the device.
Display types have a lot of variation. Choices like alphanumeric or graphic LCD, human-machine interactive LCD modules and touchscreen panels capabilities, the width of the viewing angle, level of contrast ratios, types of backlighting, and liquid crystal alignment methods are often considered. For example, the twisted nematic LCD provides for the fastest response time at the lowest cost, but cannot offer the highest contrast ratio or widest viewing angle.
Environment-based factors must consider things besides the obvious temperature like UV exposure and humidity/moisture, as they all are necessary in finding the perfect fit extreme temperature LCD module.
Besides the LCD modules, recent new products have opened doors in wide temperature range displays, such as OLED displays. OLED displays offer better displays in regard to contrast, brightness, response times, viewing angles, and even power consumption in comparison to traditional LCD displays.
These benefits, in addition to its ability to achieve a wide temperature range, provide more options for consumers in search of high quality displays for extreme climates.

Ingress Protection (IP) Rating is critical to evaluate the environments in which our full range of LCD monitors will be used. This rating classifies the amount of protection our enclosed LCD monitor has against the intrusion of foreign objects that could cause damage, falter, and safety issues. IP Rating is two numeral designation rate protection based on solid objects (dust, soil, contaminants, etc.) and liquid ingress (water, or other fluid substance). With this rating, users can know exactly how protected our LCD monitor is. IP ratings are specified with two digits, IPXX. The first digit defines the protection from solids, and the second digit defines the protection from liquids. For instance, our Panel Mount Sunlight Readable display has a front IP rating of 65 meaning that it would be completely protected from dust, and low water jet spraying in all directions.

Clearview™ transparent heating elements are an optically clear variation of our wire-wound heater that provides superior light transfer with higher durability than comparable technologies.
The wire-wound design brings high heating efficiency and quick thermal response with minimal power consumption. This makes Clearview LCD screen heaters ideal for applications such as computers, battery powered hand scanners, and touch screens.
Optically clear heaters are typically used in applications that require a high degree of light transmission. Clearview"s ultra-fine wire construction gives high optical clarity and ensures optimal light transmission for scanning and imaging applications.
Clearview provides controlled, direct heat to displays, lenses and clear panels, allowing continuous high definition operation of device monitors in low temperature environments. With an LCD screen heater, displays and touch screens remain usable in cold, high humidity/low dew point environments and locations where ambient temperature can change quickly.
Engineering services and consultation are available on every custom heating element order. Contact a specialist today for details about Clearview optically clear transparent LCD screen heaters.

Stockwell Elastomerics is a leading provider of gaskets for touch screens, displays and integrated touch panel assemblies that serve several functions: sealing, load distributing, gap filling, mechanical shock protection and over-press cushioning.
The obvious location is to seal the enclosure at the edge of the viewing area of the enclosure. The sealing function can be for simple dust sealing, light water exposure such as occasional water drips or cleaning or even more aggressive outdoor applications where there is heavy water exposure.
Often a touch screen gasket or display gasket will help spread the compression load of the housing or bezel on the display. Without a gasket, the enclosure that holds the display in place can create pressure points on the display. In some cases, these pressures can cause distortions, false contacts or short circuits.
Similar to load distributing, touch panel gaskets are used to fill gaps between the screen and the display and/or the screen and bezel. The display gasket will take up gaps generated by tolerance stack-ups in the device.
Display gaskets offer some degree of cushioning to protect the display from damage due to mechanical shock. In the event that a device is dropped or banged, the gasket will act as a touchscreen cushion, offering a limited amount of protection.
Touchscreen gaskets also serve as display cushions when a user presses on the display too hard. The gasket deflects, takes up and spreads the load offering some protection from over-press or overloading in a small area.
LCD dust seals and touch screen dust seals are the most basic requirement of display gasketing. These are often static (not portable), indoor applications where the device is not to be exposed to water. Sealing can be achieved by closed cell sponge materials or fine pore open cell materials such as PORON urethane foam.
Portable electronics or touchscreens used by the public such as gaming touchscreens or indoor information kiosks inevitably will be exposed to some water. This can come from cleaning and beverage splashing, or for portable devices – rain. These electronic devices are also more likely to be exposed to mechanical shocks, such as banging or dropping. Closed cell or compressed microcellular foam materials will offer more protection against incidental, light water exposure.
Outdoor displays such as outdoor information kiosks, ATMs and remote monitoring equipment require more design consideration. To contend with environments such as direct or wind-driven rain, sealing an enclosure, case or housing from ingress requires the proper material as well as proper compression on the gasket. Silicone foam or silicone sponge materials are preferred. Silicone gaskets remain flexible at low temperatures allowing for continued sealing against melting ice and snow as well as protecting against mechanical shock where many other materials will firm up in the cold and transfer energy. Other key features are: closed cell structure, low-stress relaxation, UV and ozone resistance, and general long life.
Ruggedized electronics typically need to withstand much more aggressive environments. This may include passing rain or wash down tests such as IP65, IP66 and possibly IP67. Beyond sealing, they often need to survive the cold soak drop test, tumbling, EMI susceptibility, and a variety of other tests depending on usage. View more information on ruggedizing electronics.
Light leaking is sometimes a concern with certain LCD or LED display applications. This can be addressed with black gasketing with either a very thin adhesive or a black supported adhesive. A common material configuration for this is soft PORON urethane foam with 3M 9795B adhesive. The 3M 9795B is a film supported double coat adhesive with a black PET support layer that does not pipe light.
Touchscreen gaskets and display gaskets tend to have narrow walls that don’t always lend themselves to easy installation. This can be addressed in a few ways such as fixturing or utilizing the centers as temporary supports. The preferred adhesives for touchscreen gaskets and display gaskets are repositionable adhesives such as Adchem 8311M or 3M 9415 depending on the bond strength required. Stockwell Elastomerics also offers medium and high bond strength adhesives for permanent bonding. View the current listing of pressure sensitive adhesive options.
Most touch panel or touch screen manufacturers offer guidelines for gasketing. These typically show the active screen area, viewing area, and the gasket area. The manufacturer offers various recommendations on adhesive strength and gasket material type, but caution should be taken since each application will vary.
Broad recommendations such as “closed cell foam” do not take into consideration factors such as stress relaxation, compression set, long term sealing performance, outgassing, plasticizer interaction, cost, and manufacturability. Over-designing the gasket can drive the cost up, whereas under designing could result in damaged devices and leaks when the units are in the field. Stockwell Elastomerics can offer guidance on design and manufacturability of touchscreen gaskets or touch panel gaskets. Key design points include:
The interior opening of the gasket should follow the touch screen manufacturer’s recommendation that stays clear of the active area. The outer dimension are defined by the available space behind the bezel or in the case. A rough rule of thumb is that the gasket wall should be 1.5x the thickness. (Example: .062″ thick gasket should have a gasket with .093″ or greater flange width.) This allows for die cutting and makes for a stable gasket when installed. A gasket that is taller than it is wide tends to fold over during compression. The exception to this is when the gasket is captive in a groove.
It is important to keep in mind the clamping loads. While wider gasket walls generally seal better, the overall surface area is directly related to the loads applied to the LCD and touchscreen. Compression Force Deflection curves of various materials are available to aid designers.
Some housing designs allow the touch panel gasket to wrap around the sides to make a tighter fit in the housing. Wrapping the gasket also gives the touch panel assembly additional cushioning for mechanical shock.
Proper compression of the gasket is critical to sealing. A rigid bezel or frame is required to prevent bowing between fasteners. Softer materials can help offset this however there are some limitations. Closed cell gasket materials help prevent wicking through the material but may not be soft enough. Soft open cell materials can be used but require more than 50% deflection (.062″ thick deflected to .031″ thick) in order to close the cell openings.
The gasket thickness will depend on the designed gap in the enclosure, the fastening scheme, rigidity of the housing and the level of sealing required. Many touch screen gaskets are thin and soft but as the display gets larger the tolerance stacks typically get larger as well. This may require a thicker gasket depending on the fastener locations.
PORON microcellular urethane foams are designed for electronic applications, therefore there are many standards, off-the-shelf thickness and firmness options available. Further, PORON is cast to an accurate thickness tolerance. PORON in thickness of .062″ and greater is cast to ± 10%. This is a very tight tolerance for a cellular gasketing material.
Designing the touch panel gasket for manufacturability can keep costs down – both part cost and touch panel assembling cost. For mid- and high-volume quantities, die cutting is the preferred method. A steel rule die can be produced quickly and inexpensively to allow the gasket to be kiss-cut against the adhesive release liner. Kiss-cutting allows the gasket installer to peel the gasket from a roll. Kiss-cut parts drastically improve throughput during assembly as compared to individually removing a liner from a loose part.
Some OEMs and contract manufacturers prefer to have the center of the gasket remain in place, held in place with small, breakaway tabs. Leaving the centers intact allows for easier positioning on the display when a fixture is not being used. Low tack, clean peeling adhesive is needed.
Specification requirements help with material selection, for example, NEMA 4, IP 65 or IP 66 will require closed cell or solid materials in order to pass testing. Less aggressive requirements such as NEMA 12 and IP 54 allow for more material options.
Typical UL specifications are UL 94, UL 508 (UL 60947) and UL 50. UL 94 addresses a flame requirement, UL 508 (UL 60947) is suitability for industrial controls, and UL 50 and UL 50E are for gasketing. Other UL specifications may apply depending on how and where the end product is being used.

This website uses cookies for tracking visitor behavior, for linking to social media icons and displaying videos. More information on how we deal with your privacy, please check our Privacy & Cookies statement.

Stockwell Elastomerics is a leading provider of gaskets for touch screens, displays and integrated touch panel assemblies that serve several functions: sealing, load distributing, gap filling, mechanical shock protection and over-press cushioning.
The obvious location is to seal the enclosure at the edge of the viewing area of the enclosure. The sealing function can be for simple dust sealing, light water exposure such as occasional water drips or cleaning or even more aggressive outdoor applications where there is heavy water exposure.
Often a touch screen gasket or display gasket will help spread the compression load of the housing or bezel on the display. Without a gasket, the enclosure that holds the display in place can create pressure points on the display. In some cases, these pressures can cause distortions, false contacts or short circuits.
Similar to load distributing, touch panel gaskets are used to fill gaps between the screen and the display and/or the screen and bezel. The display gasket will take up gaps generated by tolerance stack-ups in the device.
Display gaskets offer some degree of cushioning to protect the display from damage due to mechanical shock. In the event that a device is dropped or banged, the gasket will act as a touchscreen cushion, offering a limited amount of protection.
Touchscreen gaskets also serve as display cushions when a user presses on the display too hard. The gasket deflects, takes up and spreads the load offering some protection from over-press or overloading in a small area.
LCD dust seals and touch screen dust seals are the most basic requirement of display gasketing. These are often static (not portable), indoor applications where the device is not to be exposed to water. Sealing can be achieved by closed cell sponge materials or fine pore open cell materials such as PORON urethane foam.
Portable electronics or touchscreens used by the public such as gaming touchscreens or indoor information kiosks inevitably will be exposed to some water. This can come from cleaning and beverage splashing, or for portable devices – rain. These electronic devices are also more likely to be exposed to mechanical shocks, such as banging or dropping. Closed cell or compressed microcellular foam materials will offer more protection against incidental, light water exposure.
Outdoor displays such as outdoor information kiosks, ATMs and remote monitoring equipment require more design consideration. To contend with environments such as direct or wind-driven rain, sealing an enclosure, case or housing from ingress requires the proper material as well as proper compression on the gasket. Silicone foam or silicone sponge materials are preferred. Silicone gaskets remain flexible at low temperatures allowing for continued sealing against melting ice and snow as well as protecting against mechanical shock where many other materials will firm up in the cold and transfer energy. Other key features are: closed cell structure, low-stress relaxation, UV and ozone resistance, and general long life.
Ruggedized electronics typically need to withstand much more aggressive environments. This may include passing rain or wash down tests such as IP65, IP66 and possibly IP67. Beyond sealing, they often need to survive the cold soak drop test, tumbling, EMI susceptibility, and a variety of other tests depending on usage. View more information on ruggedizing electronics.
Light leaking is sometimes a concern with certain LCD or LED display applications. This can be addressed with black gasketing with either a very thin adhesive or a black supported adhesive. A common material configuration for this is soft PORON urethane foam with 3M 9795B adhesive. The 3M 9795B is a film supported double coat adhesive with a black PET support layer that does not pipe light.
Touchscreen gaskets and display gaskets tend to have narrow walls that don’t always lend themselves to easy installation. This can be addressed in a few ways such as fixturing or utilizing the centers as temporary supports. The preferred adhesives for touchscreen gaskets and display gaskets are repositionable adhesives such as Adchem 8311M or 3M 9415 depending on the bond strength required. Stockwell Elastomerics also offers medium and high bond strength adhesives for permanent bonding. View the current listing of pressure sensitive adhesive options.
Most touch panel or touch screen manufacturers offer guidelines for gasketing. These typically show the active screen area, viewing area, and the gasket area. The manufacturer offers various recommendations on adhesive strength and gasket material type, but caution should be taken since each application will vary.
Broad recommendations such as “closed cell foam” do not take into consideration factors such as stress relaxation, compression set, long term sealing performance, outgassing, plasticizer interaction, cost, and manufacturability. Over-designing the gasket can drive the cost up, whereas under designing could result in damaged devices and leaks when the units are in the field. Stockwell Elastomerics can offer guidance on design and manufacturability of touchscreen gaskets or touch panel gaskets. Key design points include:
The interior opening of the gasket should follow the touch screen manufacturer’s recommendation that stays clear of the active area. The outer dimension are defined by the available space behind the bezel or in the case. A rough rule of thumb is that the gasket wall should be 1.5x the thickness. (Example: .062″ thick gasket should have a gasket with .093″ or greater flange width.) This allows for die cutting and makes for a stable gasket when installed. A gasket that is taller than it is wide tends to fold over during compression. The exception to this is when the gasket is captive in a groove.
It is important to keep in mind the clamping loads. While wider gasket walls generally seal better, the overall surface area is directly related to the loads applied to the LCD and touchscreen. Compression Force Deflection curves of various materials are available to aid designers.
Some housing designs allow the touch panel gasket to wrap around the sides to make a tighter fit in the housing. Wrapping the gasket also gives the touch panel assembly additional cushioning for mechanical shock.
Proper compression of the gasket is critical to sealing. A rigid bezel or frame is required to prevent bowing between fasteners. Softer materials can help offset this however there are some limitations. Closed cell gasket materials help prevent wicking through the material but may not be soft enough. Soft open cell materials can be used but require more than 50% deflection (.062″ thick deflected to .031″ thick) in order to close the cell openings.
The gasket thickness will depend on the designed gap in the enclosure, the fastening scheme, rigidity of the housing and the level of sealing required. Many touch screen gaskets are thin and soft but as the display gets larger the tolerance stacks typically get larger as well. This may require a thicker gasket depending on the fastener locations.
PORON microcellular urethane foams are designed for electronic applications, therefore there are many standards, off-the-shelf thickness and firmness options available. Further, PORON is cast to an accurate thickness tolerance. PORON in thickness of .062″ and greater is cast to ± 10%. This is a very tight tolerance for a cellular gasketing material.
Designing the touch panel gasket for manufacturability can keep costs down – both part cost and touch panel assembling cost. For mid- and high-volume quantities, die cutting is the preferred method. A steel rule die can be produced quickly and inexpensively to allow the gasket to be kiss-cut against the adhesive release liner. Kiss-cutting allows the gasket installer to peel the gasket from a roll. Kiss-cut parts drastically improve throughput during assembly as compared to individually removing a liner from a loose part.
Some OEMs and contract manufacturers prefer to have the center of the gasket remain in place, held in place with small, breakaway tabs. Leaving the centers intact allows for easier positioning on the display when a fixture is not being used. Low tack, clean peeling adhesive is needed.
Specification requirements help with material selection, for example, NEMA 4, IP 65 or IP 66 will require closed cell or solid materials in order to pass testing. Less aggressive requirements such as NEMA 12 and IP 54 allow for more material options.
Typical UL specifications are UL 94, UL 508 (UL 60947) and UL 50. UL 94 addresses a flame requirement, UL 508 (UL 60947) is suitability for industrial controls, and UL 50 and UL 50E are for gasketing. Other UL specifications may apply depending on how and where the end product is being used.

8)Adopt digital SpO2 technology, anti-motion and anti-ambient light interference, and measurement can be performed under the circumstance of weak filling.

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

By continuing to use AliExpress you accept our use of cookies (view more on our Privacy Policy). You can adjust your Cookie Preferences at the bottom of this page.

Digimax distribetes a wide range of professional LCD monitors and large format displays for digital signage applications manufactured by Philips: one of the world"s largest manufacturers of TFT monitors, recognized for quality products and cutting-edge solutions.
Digimax also features touch display options with integrated touch technology thanks to multi-touch with 10 touch points, plus anti-reflective glass provides an even more immersive touch experience.
Digimax is able to customize the various components to adapt them to the specific needs of each industrial sector and renew them according to the latest technological innovations, such as bar type 16:4 displays that allow a very special view of the image, appreciated in advertising.

GDT250T2080 is a 2.5 inch color TFT-LCD display panel, 320x240 resolution, wide operating temp. -30℃~85℃, suitable for outdoor or cold environment, 4:3 contrast, 6 o"clock viewing angle, surface anti-glare treatment, 18-bit RGB (with T-CON) + 4-wire SPI interface, superior display quality, wide range of applications.
GDT250T2080 is a 2.5 inch color TFT-LCD display panel, 320x240 resolution, wide operating temp. -30℃~85℃, suitable for outdoor or cold environment, 4:3 contrast, 6 o"clock viewing angle, surface anti-glare treatment, 18-bit RGB (with T-CON) + 4-wire SPI interface, superior display quality, wide range of applications, it can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.
1. When the metal parts of the display (shielding cover and back cover) are dirty (such as water or finger grease), please wipe it with a dry soft cloth. Long-term contact with water may cause discoloration or spots.
3. The IC on the display panel and module is sensitive to electrostatic discharge; please ensure that the equipment and the operator are properly grounded before and during operation.
{"specs":[],"skus":[{"id":4697,"useViewType":false,"productId":373,"templateId":1,"code":"","name":"2.5 inch TFT LCD Display Panel, Wide Operating Temperature, GDT250T2080","stock":0,"price":0.00,"retailPrice":0.00,"weight":0.00,"status":"1","isDefault":"1","createDate":"2022-03-08 11:33:57","updateDate":"2022-03-08 11:33:57","productSkuSpecs":[],"moq":1,"skuId":0,"chargedWeight":0.00}],"specConfs":[]}
Ms.Josey
Ms.Josey