lcd monitors sizes manufacturer
LCD display doesn’t operate the same way as CRT displays , which fires electrons at a glass screen, a LCD display has individual pixels arranged in a rectangular grid. Each pixel has RGB(Red, Green, Blue) sub-pixel that can be turned on or off. When all of a pixel’s sub-pixels are turned off, it appears black. When all the sub-pixels are turned on 100%, it appears white. By adjusting the individual levels of red, green, and blue light, millions of color combinations are possible
The pixels of the LCD screen were made by circuitry and electrodes of the backplane. Each sub-pixel contains a TFT (Thin Film Transistor) element. These structures are formed by depositing various materials (metals and silicon) on to the glass substrate that will become one part of the complete display “stack,” and then making them through photolithography. For more information about TFT LCDs, please refer to “
The etched pixels by photolith process are the Native Resolution. Actually, all the flat panel displays, LCD, OLED, Plasma etc.) have native resolution which are different from CRT monitors
Although we can define a LCD display with resolution, a Full HD resolution on screen size of a 15” monitor or a 27” monitor will show different. The screen “fineness” is very important for some application, like medical, or even our cell phone. If the display “fineness” is not enough, the display will look “pixelized” which is unable to show details.
But you see other lower resolution available, that is because video cards are doing the trick. A video card can display a lower LCD screen resolution than the LCD’s built-in native resolution. The video cards can combine the pixels and turn a higher resolution into lower resolution, or just use part of the full screen. But video cards can’t do the magic to exceed the native resolution.
Aspect Ratio: You might hear 4:3 which is full screen, 16:9 is for widescreen; 21:9 is for ultrawide computer monitors and televisions, as well as cinematic widescreen projectors. Some ultrawide monitors are trying to replace dual monitor.
Contrast Ratio is the difference in light intensity between the brightest color (white) and darkest (black). You want a high contrast ratio for a more brilliant image. Computer monitors often have two separate contrast ratio measurements: active / dynamic contrast ratio and static contrast ratio. Active / dynamic contrast ratio measures the brightest and darkest colors over a period of time, while static measures them at a single point in time. Pay more attention to the static contrast ratio.
Response Time refers to how LCD monitors constantly refresh the displayed image, but it isn’t always smooth process. When there is a lot of action happening on screen, the panel may not update quite fast enough to keep up with how the eye perceives motion. This results in a slightly blurry image. Response time measures how quickly it takes a monitor to update from one frame to the next. A lower response time means much less blur while a high response time means more blur.
Refresh Rates refer to the amount of times per second the monitor will update the image. You’ve probably seen the terms 120 Hz or 240 Hz when shopping for TVs and monitors—those are refresh rates. 120 Hz means that the display refreshes the image 120 times per second. The higher the refresh rate, the smoother the movements and actions appear on screen.
Professional-grade monitors tend to have more monitor stand adjustments than consumer variants. These additional adjustments include height, tilt, swivel, and pivot. Ergonomic customizability is the foremost trend in the business PC monitor conversation.
An ultrawide monitor delivers all the benefits of a dual monitor setup—without gaps and bezels getting in the way. Manufacturers gear ultrawide 21:9 monitors toward gamers and movie buffs, but creative professionals find them useful as well. The advantage of 21:9 is that you have more screen real estate when tiling two windows side by side. On a single 16:9 monitor this might feel too narrow. Another advantage is that you only connect one cable to your PC graphics card, meaning you have free video outputs for even more screen space if desired.
When LCD monitors first came out, people did not pay much attention to the type of panel a monitor used. However, as users are becoming more educated on the advantages of certain types of panels, manufacturers are starting to advertise that information.
Twisted Nematic (TN)– The most common type of TFT display, TN provides very fast response times but poor color accuracy and viewing angles. Popular display technology for gaming monitors.
Vertical Alignment (VA) – VA panels are found in higher-grade monitors and tend to have better contrast ratios, viewing angles, and color accuracy compared to TN panels. They typically have slower response times than TN panels.
GVision’s R&D team is dedicated to supporting clients with our expertise in panel design and LCD manufacturing excellence. Your display project can be a minor engineering change or a major panel design requirement. In either case, your time to market will be vastly improved.
Your OEM, ODM or private label distribution project is welcomed and we will work closely with your engineers to develop an LCD display that complements your particular solution. We are always working on several manufacturing projects that involve new technologies and new uses for LCD displays, so we encourage you to contact us early in the design phase of your next project to see if a similar solution has already been developed by GVision.
Our proficiency for creating quality LCD displays while sourcing the finest components and panels has proven to be our greatest strength. GVision possesses the innovation, talent and techniques to assist you in bringing to market the best displays possible, at the best prices imaginable.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
How big is big enough? When it comes to computer monitors, you want something that can fit comfortably on your desk while giving you plenty of screen real estate. While in the past sub-20-inch monitors were commonplace, today, unless you’re really constrained for space, there’s no real need to buy anything under 22 inches. For most, 24 inches is going to be a baseline, as you can pick up a number of screens at that size for around $100, and they look fantastic at 1080p.
For those who want more than that, though, there are plenty of sizes to choose from. Monitors that stretch 27 inches diagonally are increasingly popular, and there are plenty of options beyond 30 inches that are affordable. If you want to go extreme, we’ve even tried some great computer monitors that get close to 50 inches, like Samsung’s CHG90.
While you’ll need to sit well back from those, there’s no denying that they look amazing. They give you the same screen as multiple smaller monitors without a bezel dividing them down the middle. They tend to be rather expensive, though, and if you go really wide, you’ll struggle to find media that can display at close to its native resolution, leaving the picture to either look stretched or surrounded by black.
Anywhere between 24 and 30 inches is going to be perfectly fine for most users. They let you make the most of modern resolutions and color clarity, and they also fit a couple of different web pages open at the same time without needing to use two monitors, which is handy for many professionals. They don’t tend to be too expensive at that size, either, unless you opt for the top-end models.
Today, all the best screens are still LCD monitors that use LED technology for a slim product that saves energy while providing ideal backlighting. We’ve been waiting years for OLED technology to make the transition to PC monitors, it isfinally beginning thanks to brands like LG, but the technology is still relatively rare.
One aspect of PC monitors that you do need to consider, though, is resolution. While 1080p was once the gold standard, today, it’s just the baseline. If you’re happy to spend a little more, there are a few other options worth considering, especially if you want to improve screen space or gaming visuals. Resolution isn’t the be-all and end-all of monitor features, though. In fact, too much resolution on too small of a screen can often be annoying because it shrinks all images down and forces you to enlarge everything to easily read it.
1080p: If you want reasonable clarity, but want to save on cost or focus on other, more important features, 1080p is where it’s at — as long as the monitor you’re buying isn’t extremely large. 1080p is ideal for 21-inch to 24-inch displays. These monitors offer great picture quality, and now that they are competing with 4K, the prices are rock-bottom. If you want to go larger than 24 inches, though, you should consider 2,560 x 1,440 resolution at the least and perhaps 4K.
4K/Ultra HD (UHD): 4K is the resolution that the industry is most keen to drive consumers towards. It looks much more detailed than 1080p with 3,840 x 2,160 pixels, and prices have come down substantially in the past few years. That said, gamers will need a powerful graphics card to run a system at this resolution, and finding affordable monitors with full suites of frame synching support or high-refresh rates is still difficult. There is plenty of 4K media out there to enjoy, though, whether you’re streaming or using UHD Blu-rays.
5K:This resolution made headlines when Apple debuted it on its iMac, but it’s far from a common resolution even years later. Dell’s UP2715K is a great-looking display, but we would recommend many high-end 4K monitors before it, as you won’t be able to see too much difference between them.
8K: There are some 8K monitors available as well, notably Dell’s 8K Ultrasharp. There’s not really any need for a monitor with such a high resolution at this time, but they are available for those with the budget if resolution is absolutely the most important thing.
While the above are the most common resolutions you’ll find on monitors, some fall into more niche categories. The best ultrawide monitors offer unique aspect ratios and resolutions with broad horizontal pixel counts, but less on the vertical dimension.
Aspect ratio: The aspect the screen shows images in (length compared to height). A common standard, and your best bet, is 16:9. It works with plenty of content, and it’s great for movies or games. Some fancy monitors like to stretch things out with ratios like 21:9, but that is more suitable for unusual work situations or hardcore gaming. Another common format, 16:10, provides slightly more vertical space for viewing multiple open documents or images. 3:2 is becoming more commonplace in laptops for better web viewing, but that’s rare on stand-alone displays.
Brightness: High-end monitors these days have brightness around 300 to 350 cd/m2. Extra brightness may be handy if you work in a well-lit room or next to large windows. However, too much brightness is a recipe for eye strain. As long as brightness options reach 250 cd/m2, your monitor is good to go. That said, if you want one with HDR support, the more peak brightness, the better to best take advantage of that technology.
HDR: High dynamic range, or HDR, is a recent addition to the PC monitor space and can have a dramatic impact on visuals. However, most PC monitors lack the brightness needed to take full advantage of it, and even the best ones don’t look as good as they should. Keep in mind there are a variety of HDR versions to consider, like HDR10+, for more advanced content.
IPS: Displays with IPS panels tend to be the most expensive of the bunch, but what you get for your money is much richer colors and clear viewing angles that are near horizontal. The downside of IPS panels is that they don’t tend to have as fast response times as TN displays, so some consider them inferior for gaming. There are, however, gaming IPS displays, like the fantastic Asus PG279Q, which make good ground on their TN counterparts. Some IPS monitors suffer from quality control issues, though, and most IPS displays have a telltale glow when displaying dark images due to backlight bleeding.
There are also curved monitors to consider. They don’t have different resolutions than their flat counterparts, but present a concave curved screen, which can make a difference to the experience and tasks they’re best suited for.
They have a narrow field of view, and aren’t that great for group watching. Fortunately, this is less of an issue on monitors, which tend to have an audience of one.
To run a display at 4K resolution, you’ll need to use HDMI 1.4 at the very least, though HDMI 2.0 would be required if you want to support a refresh rate of 60Hz, which should be a bare minimum unless all you do is watch movies on it (with HDMI 2.1 being the newest version of the standard). If you want to do high refresh rate gaming, especially at higher resolutions, DisplayPort 1.4 monitors can handle up to 8K at 60Hz and 4K at up to 200Hz, so they’re better suited than HDMI in that regard. DisplayPort 2.0 is also on the way.
The slightly older, DisplayPort 1.2 connector can handle 1440p and 1080p at high refresh rates, too, so if you’re not opting for 4K, that port option should suffice for lower-resolution monitors. USB-C is an option, as it can support up to 4K resolution, but it’s not as capable as DisplayPort connections.
We recommend picking a monitor that is easy to use, especially if you’re building a complex setup with more than one monitor. Think about adding a stand that you can tilt or rotate to achieve the perfect monitor angle. Some monitors even let you adjust tilt and rotation with one hand.
Built-in controls to navigate through the monitor’s menu and select different monitor modes are an interesting feature, but they shouldn’t feel clunky. Pay attention to port placement and cable management features to connect your new monitor in a neat and tidy manner. Some monitors go an extra step and include charging ports along the base or even turn the monitor base into a wireless charging pad for your phone.
The most common computer monitors are compact enough to sit on a table, desk, or stand. However, if you’re in the market for an enormous monitor, the most space-efficient choice is to mount the monitor onto a wall, thereby freeing up precious floor space. In this case, look for monitors thatcome with VESA standard mountingoptions or which are compatible with them. That way, you’ll have a larger selection of mounting arms from a variety of manufacturers to choose from, rather than being limited by specific mounting options.
You may use your monitor to hold video chats with friends or for business conferences. You have two main options for video communication, namely a built-in webcam or an independent camera, with marked differences that provide benefits according to your needs. Many monitors, especially high-quality models, come with an integrated webcam.
For widescreen LCD monitors, the aspect ratio is 16:9 (or sometimes 16:10 or 15:9). Widescreen LCD displays are useful for viewing DVD movies in widescreen format, playing games and displaying multiple windows side by side. High definition television (HDTV) also uses a widescreen aspect ratio.
All types of displays include a projection surface, commonly referred to as the screen. Screen sizes are normally measured in inches from one corner to the corner diagonally across from it. This diagonal measuring system actually came about because the early television manufacturers wanted to make the screen size of their TVs sound more impressive.
Interestingly, the way in which the screen size is measured for CRT and LCD monitors is different. For CRT monitors, screen size is measured diagonally from outside edges of the display casing. In other words, the exterior casing is included in the measurement as seen below.
For LCD monitors, screen size is measured diagonally from the inside of the beveled edge. The measurement does not include the casing as indicated in the image below.
Because of the differences in how CRT and LCD monitors are measured, a 17-inch LCD display is comparable to a 19-inch CRT display. For a more accurate representation of a CRT"s size, find out its viewable screen size. This is the measurement of a CRT display without its outside casing.
Popular screen sizes are 15, 17, 19 and 21 inches. Notebook screen sizes are smaller, typically ranging from 12 to 17 inches. As technologies improve in both desktop and notebook displays, even larger screen sizes are becoming available. For professional applications, such as medical imaging or public information displays, some LCD monitors are 40 inches or larger!
If you have been around computers for more than a decade, then you probably remember when NEC announced the MultiSync monitor. Up to that point, most monitors only understood one frequency, which meant that the monitor operated at a single fixed resolution and refresh rate. You had to match your monitor with a graphics adapter that provided that exact signal or it wouldn"t work.
The introduction of NEC MultiSync technology started a trend towards multi-scanning monitors. This technology allows a monitor to understand any frequency sent to it within a certain bandwidth. The benefit of a multi-scanning monitor is that you can change resolutions and refresh rates without having to purchase and install a new graphics adapter or monitor each time.