smallest lcd display for arduino free sample

Adding a display to your Arduino can serve many purposes. Since a common use for microcontrollers is reading data from sensors, a display allows you to see this data in real-time without needing to use the serial monitor within the Arduino IDE. It also allows you to give your projects a personal touch with text, images, or even interactivity through a touch screen.
Transparent Organic Light Emitting Diode (TOLED) is a type of LED that, as you can guess, has a transparent screen. It builds on the now common OLED screens found in smartphones and TVs, but with a transparent display, offers up some new possibilities for Arduino screens.
Take for example this brilliant project that makes use of TOLED displays. By stacking 10 transparent OLED screens in parallel, creator Sean Hodgins has converted a handful of 2D screens into a solid-state volumetric display. This kind of display creates an image that has 3-dimensional depth, taking us one step closer to the neon, holographic screens we imagine in the future.
Crystalfontz has a tiny monochrome (light blue) 1.51" TOLED that has 128x56 pixels. As the technology is more recent than the following displays in this list, the cost is higher too. One of these screens can be purchased for around $26, but for certain applications, it might just be worth it.
The liquid crystal display (LCD) is the most common display to find in DIY projects and home appliances alike. This is no surprise as they are simple to operate, low-powered, and incredibly cheap.
This type of display can vary in design. Some are larger, with more character spaces and rows; some come with a backlight. Most attach directly to the board through 8 or 12 connections to the Arduino pins, making them incompatible with boards with fewer pins available. In this instance, buy a screen with an I2C adapter, allowing control using only four pins.
Available for only a few dollars (or as little as a couple of dollars on AliExpress with included I2C adapter), these simple displays can be used to give real-time feedback to any project.
The screens are capable of a large variety of preset characters which cover most use cases in a variety of languages. You can control your LCD using the Liquid Crystal Library provided by Arduino. The display() and noDisplay() methods write to the LCD, as shown in the official tutorial on the Arduino website.
Are you looking for something simple to display numbers and a few basic characters? Maybe you are looking for something with that old-school arcade feel? A seven-segment display might suit your needs.
These simple boards are made up of 7 LEDs (8 if you include the dot), and work much like normal LEDs with a common Anode or Cathode connection. This allows them to take one connection to V+ (or GND for common cathode) and be controlled from the pins of your Arduino. By combining these pins in code, you can create numbers and several letters, along with more abstract designs—anything you can dream up using the segments available!
Next on our list is the 5110 display, also affectionately known as the Nokia display due to its wide use in the beloved and nigh indestructible Nokia 3310.
These tiny LCD screens are monochrome and have a screen size of 84 x 48 pixels, but don"t let that fool you. Coming in at around $2 on AliExpress, these displays are incredibly cheap and usually come with a backlight as standard.
Depending on which library you use, the screen can display multiple lines of text in various fonts. It"s also capable of displaying images, and there is free software designed to help get your creations on screen. While the refresh rate is too slow for detailed animations, these screens are hardy enough to be included in long-term, always-on projects.
For a step up in resolution and functionality, an OLED display might be what you are looking for. At first glance, these screens look similar to the 5110 screens, but they are a significant upgrade. The standard 0.96" screens are 128 x 64 monochrome, and come with a backlight as standard.
They connect to your Arduino using I2C, meaning that alongside the V+ and GND pins, only two further pins are required to communicate with the screen. With various sizes and full color options available, these displays are incredibly versatile.
For a project to get you started with OLED displays, our Electronic D20 build will teach you everything you need to know -- and you"ll end up with the ultimate geeky digital dice for your gaming sessions!
These displays can be used in the same way as the others we have mentioned so far, but their refresh rate allows for much more ambitious projects. The basic monochrome screen is available on Amazon.
Thin-film-transistor liquid-crystal displays (TFT LCDs) are in many ways another step up in quality when it comes to options for adding a screen to your Arduino. Available with or without touchscreen functionality, they also add the ability to load bitmap files from an on-board microSD card slot.
Arduino have an official guide for setting up their non-touchscreen TFT LCD screen. For a video tutorial teaching you the basics of setting up the touchscreen version, YouTuber educ8s.tv has you covered:
With the touchscreen editions of these screens costing less than $10 on AliExpress, these displays are another great choice for when you need a nice-looking display for your project.
Looking for something a little different? An E-paper (or E-ink depending on who you ask) display might be right for you. These screens differ from the others giving a much more natural reading experience, it is no surprise that this technology is the cornerstone of almost every e-reader available.
The reason these displays look so good is down to the way they function. Each "pixel" contains charged particles between two electrodes. By switching the charge of each electrode, you can influence the negatively charged black particles to swap places with the positively charged white particles.
This is what gives e-paper such a natural feel. As a bonus, once the ink is moved to its location, it uses no power to keep it there. This makes these displays naturally low-power to operate.
This article has covered most options available for Arduino displays, though there are definitely more weird and wonderful ways to add feedback to your DIY devices.
Now that you have an idea of what is out there, why not incorporate a screen into your DIY smart home setup? If retro gaming is more your thing, why not create some retro games on Arduino?

In this article we look at the tiny 0.49″ 64×32 graphic OLED from PMD Way. It is a compact and useful display, that only requires a small amount of time to get working with your Arduino or compatible board.
The purpose of this guide is to get your display successfully operating with your Arduino, so you can move forward and experiment and explore further types of operation with the display.
I2C pinouts vary for other boards. Arduino Leonard uses D2/D3 for SDA and SCL or the separate pins to the left of D13. Arduino Mega uses D20/D21 for SDA and SCL. If you can’t find your I2C pins on other boards, email admin at tronixstuff dot com for assistance.
To install the library – simply open the Arduino IDE and select Manage Libraries… from the Toolsmenu. Enter “u8g2” in the search box, and after a moment it should appear in the results as shown in the image below. Click on the library then click “Install”:
Now it’s time for you to explore the library reference guide which explains all the various functions available to create text and graphics on the display, as well as the fonts and so on. These can all be found on the right-hand side of the driver wiki page.

The uLCD-144G2 display module is compact and cost effective and features a 1.44” LCD TFT screen, which is the smallest LCD TFT module available from 4D Systems. Driven by the GOLDELOX processor, the uLCD-144G2 is the perfect compact display solution for any application requiring a small embedded screen.
The module is an elegant combination of a 1.44” TFT LCD screen, along with a modest but comprehensive collection of I/O Features. These include a micro-SD card connector, two general purpose input/output pins (GPIO"s) with Dallas 1-Wire Support, Analog Input and sound generation capability, along with serial communications.
This display module serves as a perfect solution to be deployed at the forefront of any product design, requiring a brilliance of colour, animation or images on any application. This GOLDELOX driven Intelligent Display Module is a perfect example of where art meets technology.
This module can be programmed using 3 different environments in the Workshop4 IDE. Designer, ViSi and Serial. Please refer to the Workshop4 Product Page for more information and documentation on these environments.

The Arduino board has a wide variety of compatible displays that you can use in your electronic projects. In most projects, it’s very useful to give the user some sort of feedback from the Arduino.
With the TFT display you can display colorful images or graphics. This module has a resolution of 480 x 320. This module includes the SD card socket and SPI FLASH circuit.
This is a tiny display with just 1 x 0.96 Inch. This display has a black background, and displays characters in white. There are other similar displays that can show the characters in other colors.

We often get asked, "What"s your smallest display?". Crystalfontz specializes in small displays, in fact the majority of our displays are smaller than 5". To make it easier for you to find the smallest lcd display, we"ve compiled this list of the most tiny displays we have.

This graphic LCD module acts as a shield for Arduino Uno-style microcontrollers. The pins on the carrier board match up to the Arduino Uno"s ports, so the module simply presses on and is fully and correctly connected. Plus, this carrier board is able to be connected to either a 3.3v logic level or a 5v logic level device. (Read our blog post if you have questions about logic level.)
This module is also available with a white-on-blue graphic display, or as a fully built kit with an included Seeeduino (Arduino Uno clone) loaded with code to demonstrate the graphic display.

ERM2004SYG-3 is small size 20 characters wide,4 rows character lcd module,SPLC780C controller (Industry-standard HD44780 compatible controller),6800 4/8-bit parallel interface,single led backlight with yellow green color included can be dimmed easily with a resistor or PWM,stn-lcd positive,dark blue text on the yellow green color,wide operating temperature range,rohs compliant,built in character set supports English/Japanese text, see the SPLC780C datasheet for the full character set, It"s optional for pin header connection,5V or 3.3V power supply and I2C adapter board for arduino.
It"s easily controlled by MCU such as 8051,PIC,AVR,ARDUINO,ARM and Raspberry Pi.It can be used in any embedded systems,industrial device,security,medical and hand-held equipment.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!".For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and Development Kit at the bottom of this page.

An LCD display (Liquid Crystal Display) is a flat panel display that uses the light modulating properties of liquid crystals. Since liquid crystals do not emit light, this type of display needs a backlight, or external light to produce an image. That’s why the power consumption of these displays is relatively high for battery powered Arduino projects.
On the other hand, the price of the LCDs is very low. The Nokia 5110, the 1.8″ Color TFT display and the 3.5″ Color TFT display, are all displays that use the LCD technology.
An OLED display is a screen that uses organic light emitting diodes. It requires no backlight, so the power consumption of these display is low and depends on how many pixels are lit. Also, since the screen does not need a backlight, it can display deep black color. Another advantage of this kind of display is that they are usually thinner and lighter the LCD displays. In low light, OLED displays can achieve better contrast in comparison to LCDs.
On the other hand, OLED displays are more expensive than LCD displays. Because of this, the available OLED displays for Arduino are tiny in size, and until recently they were only monochrome. A few months ago a small Color OLED appeared at a relatively low cost.
E-Paper of Electronic paper are displays that unlike traditional LCD or OLED displays does not emit light but reflect light. It is like the ink on the paper. This characteristic makes e-paper displays very comfortable to read, and they have an excellent readability under direct sunlight. Another great thing about e-paper displays is that they can hold static text and image for months without electricity! Yes, that’s correct, the display can show text and image even if it is off! That makes e-paper displays ideal for low powered projects!
Unfortunately there some disadvantages as well. The price of e-paper display is still very high. For example, this 4.3″ E-Paper display for Arduino costs over $60. Another significant disadvantage is that e-paper displays take a lot of time to update, as much as 2-3 seconds. So, they are only helpful for static text and images and not animations.
The Nokia 5110 is a basic graphic LCD screen which was originally intended for as a cell phone screen. It uses the PCD8544 controller which is a low power CMOS LCD controller/driver. Because of this, this display has an impressive power consumption. It uses only 0.4mA when it is on, but the backlight is disabled. It uses less than 0.06mA when in sleep mode! That’s one of the reasons that make this display my favorite. The PCD8544 interfaces to microcontrollers through a serial bus interface. That makes the display very easy to use with Arduino.
This impressive library is developed by Henning Karlsen who has put an enormous amount of effort to help the Arduino community move forward with his libraries. I have prepared a detailed tutorial on how to use the Nokia 5110 LCD display with Arduino. You watch it in this video:
This is a very new display, and it quickly became one of my favorites, because it uses the OLED technology, it can display 65.000 colors, it is very small, very bright and it has low power consumption.
Furthermore, it is also straightforward to use with Arduino since there is a library for it. It is the Adafruit SSD1331 library, and you find it here.
Also, despite the fact that this display is tiny, it is one of my favorites because it is ideal for handheld projects. Its power consumption is around 10-20 mA, and it depends on how many pixels are lit.
First of all the ST7735 Color TFT display is a very inexpensive display. It costs around $5, and it has a great library support. I have used it many of my projects, and I think it is great!
Furthermore, the display offers a resolution of 160×128 pixels, and it can display 65.000 colors. It uses the SPI interface to communicate with the Arduino boards. In addition to that, it works well with all the available Arduino boards, like the Arduino Uno, the Arduino Mega, and the Arduino Due. It also works fine with ESP8266 based boards, like the Wemos D1 and the Wemos D1 mini board.
In conclusion, this is one of the best Arduino displays if you need color and low cost. I have prepared a detailed tutorial about the 1.8″ ST7735 Color TFT display, you can watch it here:
This is another very nice display to use with Arduino. It is an OLED display and that means that it has a low power consumption. The power consumption of this display is around 10-20 mA and it depends on how many pixels are lit.
The display has a resolution of 128×64 pixels and it is tiny in size. Furthermore, it is very bright, and it has a great library support. Adafruit has developed a very nice library about this display, and you can find this library here.
In addition to that, the display uses the I2C interface, so the connection with Arduino is incredibly easy. You only need to connect two wires except for Vcc and GND. If you are new to Arduino and you want an inexpensive and easy to use display to use with your project, start with display. It is the easiest way to add a display to your Arduino project.
This 3.5″ Color TFT display is the biggest display that you can use in your project if you are using an Arduino Uno or a Mega. Unfortunately, it does not support the fast Arduino Due, nor the Wemos D1 ESP8266 board.
One of the biggest advantages of this display except it big size is its impressive resolution. The resolution of the display is 480×320 pixels! In addition to that, the display offers an SD card reader at the back so that you can store data.
Also, the display comes as a shield. So, you only have to connect the display with your Arduino board, and you are ready to use it. Of course, you need to install the appropriate driver for the display. Luckily I have a link to this driver here. Search for the download file, and you will find the library for the display in that .zip file.
In conlcusion, this display is a very easy to use display and it is ideal for beginners. Additionally you can use this display if you want to add a big display in your project. If fast refresh rate is not a requirement of your project, this display is a great display to use!

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

In this Arduino tutorial we will learn how to connect and use an LCD (Liquid Crystal Display)with Arduino. LCD displays like these are very popular and broadly used in many electronics projects because they are great for displaying simple information, like sensors data, while being very affordable.
You can watch the following video or read the written tutorial below. It includes everything you need to know about using an LCD character display with Arduino, such as, LCD pinout, wiring diagram and several example codes.
An LCD character display is a unique type of display that can only output individual ASCII characters with fixed size. Using these individual characters then we can form a text.
If we take a closer look at the display we can notice that there are small rectangular areas composed of 5×8 pixels grid. Each pixel can light up individually, and so we can generate characters within each grid.
The number of the rectangular areas define the size of the LCD. The most popular LCD is the 16×2 LCD, which has two rows with 16 rectangular areas or characters. Of course, there are other sizes like 16×1, 16×4, 20×4 and so on, but they all work on the same principle. Also, these LCDs can have different background and text color.
It has 16 pins and the first one from left to right is the Groundpin. The second pin is the VCCwhich we connect the 5 volts pin on the Arduino Board. Next is the Vo pin on which we can attach a potentiometer for controlling the contrast of the display.
Next, The RSpin or register select pin is used for selecting whether we will send commands or data to the LCD. For example if the RS pin is set on low state or zero volts, then we are sending commands to the LCD like: set the cursor to a specific location, clear the display, turn off the display and so on. And when RS pin is set on High state or 5 volts we are sending data or characters to the LCD.
Next comes the R/W pin which selects the mode whether we will read or write to the LCD. Here the write mode is obvious and it is used for writing or sending commands and data to the LCD. The read mode is used by the LCD itself when executing the program which we don’t have a need to discuss about it in this tutorial.
Next is the E pin which enables the writing to the registers, or the next 8 data pins from D0 to D7. So through this pins we are sending the 8 bits data when we are writing to the registers or for example if we want to see the latter uppercase A on the display we will send 0100 0001 to the registers according to the ASCII table. The last two pins A and K, or anode and cathode are for the LED back light.
After all we don’t have to worry much about how the LCD works, as the Liquid Crystal Library takes care for almost everything. From the Arduino’s official website you can find and see the functions of the library which enable easy use of the LCD. We can use the Library in 4 or 8 bit mode. In this tutorial we will use it in 4 bit mode, or we will just use 4 of the 8 data pins.
We will use just 6 digital input pins from the Arduino Board. The LCD’s registers from D4 to D7 will be connected to Arduino’s digital pins from 4 to 7. The Enable pin will be connected to pin number 2 and the RS pin will be connected to pin number 1. The R/W pin will be connected to Ground and theVo pin will be connected to the potentiometer middle pin.
We can adjust the contrast of the LCD by adjusting the voltage input at the Vo pin. We are using a potentiometer because in that way we can easily fine tune the contrast, by adjusting input voltage from 0 to 5V.
Yes, in case we don’t have a potentiometer, we can still adjust the LCD contrast by using a voltage divider made out of two resistors. Using the voltage divider we need to set the voltage value between 0 and 5V in order to get a good contrast on the display. I found that voltage of around 1V worked worked great for my LCD. I used 1K and 220 ohm resistor to get a good contrast.
There’s also another way of adjusting the LCD contrast, and that’s by supplying a PWM signal from the Arduino to the Vo pin of the LCD. We can connect the Vo pin to any Arduino PWM capable pin, and in the setup section, we can use the following line of code:
It will generate PWM signal at pin D11, with value of 100 out of 255, which translated into voltage from 0 to 5V, it will be around 2V input at the Vo LCD pin.
First thing we need to do is it insert the Liquid Crystal Library. We can do that like this: Sketch > Include Library > Liquid Crystal. Then we have to create an LC object. The parameters of this object should be the numbers of the Digital Input pins of the Arduino Board respectively to the LCD’s pins as follow: (RS, Enable, D4, D5, D6, D7). In the setup we have to initialize the interface to the LCD and specify the dimensions of the display using the begin()function.
The cursor() function is used for displaying underscore cursor and the noCursor() function for turning off. Using the clear() function we can clear the LCD screen.
In case we have a text with length greater than 16 characters, we can scroll the text using the scrollDisplayLeft() orscrollDisplayRight() function from the LiquidCrystal library.
We can choose whether the text will scroll left or right, using the scrollDisplayLeft() orscrollDisplayRight() functions. With the delay() function we can set the scrolling speed.
So, we have covered pretty much everything we need to know about using an LCD with Arduino. These LCD Character displays are really handy for displaying information for many electronics project. In the examples above I used 16×2 LCD, but the same working principle applies for any other size of these character displays.
I hope you enjoyed this tutorial and learned something new. Feel free to ask any question in the comments section below and don’t forget to check out my full collection of 30+ Arduino Projects.

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

DESPI-K154Z90 is designed for 1.54 inch SPI color e-paper display GDEH0154Z90. It can boost the driving voltage of Good Display"s 1.54 inch e-paper display. Your image holds indefinitely without power – put up your image, then shut down the power. Once these e-paper modules are updated they don"t require any power and can actually be disconnected entirely and the content will remain on the display indefinitely.
Also it preserves interfaces for 6 Pin touch panel and 6 Pin front light, which users can test. And this module board contains a Flash chip W25Q128 which is a serial NOR Flash memory with capacity of 128M-bit(16M-byte), making it easier for users to store pictures, libraries and other related data. And SD card slot is also reserved in the module, which users can choose to add an extra micro SD card. Therefore, Flash chip and SD card slot address the user need for more storage.
● SPI interface. It can be used on Raspberry Pi/Raspberry Pi Pico/ Arduino/ EPS8266/ ESP32/ STM32 Platform. We could provide the driving board, if you need, contact us please.
Ms.Josey
Ms.Josey