oled lcd display arduino free sample

This article shows how to use the SSD1306 0.96 inch I2C OLED display with the Arduino. We’ll show you some features of the OLED display, how to connect it to the Arduino board, and how to write text, draw shapes and display bitmap images. Lastly, we’ll build a project example that displays temperature and humidity readings.

The organic light-emitting diode(OLED) display that we’ll use in this tutorial is the SSD1306 model: a monocolor, 0.96-inch display with 128×64 pixels as shown in the following figure.

The OLED display doesn’t require backlight, which results in a very nice contrast in dark environments. Additionally, its pixels consume energy only when they are on, so the OLED display consumes less power when compared with other displays.

The model we’re using here has only four pins and communicates with the Arduino using I2C communication protocol. There are models that come with an extra RESET pin. There are also other OLED displays that communicate using SPI communication.

Because the OLED display uses I2C communication protocol, wiring is very simple. You just need to connect to the Arduino Uno I2C pins as shown in the table below.

To control the OLED display you need the adafruit_SSD1306.h and the adafruit_GFX.h libraries. Follow the next instructions to install those libraries.

After wiring the OLED display to the Arduino and installing all required libraries, you can use one example from the library to see if everything is working properly.

This is an example for our Monochrome OLEDs based on SSD1306 drivers. Pick one up today in the adafruit shop! ------> http://www.adafruit.com/category/63_98

The Adafruit library for the OLED display comes with several functions to write text. In this section, you’ll learn how to write and scroll text using the library functions.

First, you need to import the necessary libraries. The Wire library to use I2C and the Adafruit libraries to write to the display: Adafruit_GFX and Adafruit_SSD1306.

Then, you define your OLED width and height. In this example, we’re using a 128×64 OLED display. If you’re using other sizes, you can change that in the SCREEN_WIDTH, and SCREEN_HEIGHT variables.

The (-1) parameter means that your OLED display doesn’t have a RESET pin. If your OLED display does have a RESET pin, it should be connected to a GPIO. In that case, you should pass the GPIO number as a parameter.

To draw a pixel in the OLED display, you can use the drawPixel(x, y, color) method that accepts as arguments the x and y coordinates where the pixel appears, and color. For example:

The library also provides methods to displays rectangles with round corners: drawRoundRect() and fillRoundRect(). These methods accepts the same arguments as previous methods plus the radius of the corner. For example:

The library provides an additional method that you can use with shapes or text: the invertDisplay() method. Pass true as argument to invert the colors of the screen or false to get back to the original colors.

Copy your array to the sketch. Then, to display the array, use the drawBitmap() method that accepts the following arguments (x, y, image array, image width, image height, rotation). The (x, y) coordinates define where the image starts to be displayed.

In this section we’ll build a project that displays temperature and humidity readings on the OLED display. We’ll get temperature and humidity using the DHT11 temperature and humidity sensor. If you’re not familiar with the DHT11 sensor, read the following article:

The code starts by including the necessary libraries. The Wire, Adafruit_GFX and Adafruit_SSD1306 are used to interface with the OLED display. The Adafruit_Sensor and the DHT libraries are used to interface with the DHT22 or DHT11 sensors.

The (-1) parameter means that your OLED display doesn’t have a RESET pin. If your OLED display does have a RESET pin, it should be connected to a GPIO. In that case, you should pass the GPIO number as a parameter.

In this case, the address of the OLED display we’re using is 0x3C. If this address doesn’t work, you can run an I2C scanner sketch to find your OLED address. You can find the I2C scanner sketch here.

We use the setTextSize() method to define the font size, the setCursor() sets where the text should start being displayed and the print() method is used to write something on the display.

After wiring the circuit and uploading the code, the OLED display shows the temperature and humidity readings. The sensor readings are updated every five seconds.

The I2C address for the OLED display we are using is 0x3C. However, yours may be different. So, make sure you check your display I2C address using an I2C scanner sketch.

The OLED display provides an easy and inexpensive way to display text or graphics using an Arduino. We hope you’ve found this guide and the project example useful.

oled lcd display arduino free sample

In this article we look at the tiny 0.49″ 64×32 graphic OLED from PMD Way. It is a compact and useful display, that only requires a small amount of time to get working with your Arduino or compatible board.

The purpose of this guide is to get your display successfully operating with your Arduino, so you can move forward and experiment and explore further types of operation with the display.

I2C pinouts vary for other boards. Arduino Leonard uses D2/D3 for SDA and SCL or the separate pins to the left of D13. Arduino Mega uses D20/D21 for SDA and SCL. If you can’t find your I2C pins on other boards, email admin at tronixstuff dot com for assistance.

To install the library – simply open the Arduino IDE and select Manage Libraries… from the Toolsmenu. Enter “u8g2” in the search box, and after a moment it should appear in the results as shown in the image below. Click on the library then click “Install”:

Now it’s time for you to explore the library reference guide which explains all the various functions available to create text and graphics on the display, as well as the fonts and so on. These can all be found on the right-hand side of the driver wiki page.

oled lcd display arduino free sample

This code should work, however my Diymall .96 Yellow and Blue OLED LCD did not come with a backlight that worked. The address in the WireTransmission line might be different than what is below.

oled lcd display arduino free sample

In this tutorial a 0.96 inch monochrome OLED display from Geekcreit is connected or interfaced to an Arduino. Libraries are then installed and some example programs run which show how to use the display in an Arduino sketch.

The display connects to Arduino using only four wires – two for power and two for data, making the wiring very simple. The data connection is I2C (I²C, IIC or Inter-Integrated Circuit). This interface is sometimes called TWI (Two Wire Interface).

At the very lowest level, the Arduino Wire library is used to communicate with the display. Libraries are available that make it easy to start using the display right away to display text and graphics. These libraries are installed in this tutorial.

The first and most important thing to note is that some of the displays may have the GND and VCC power pins swapped around. Check your display to make sure that it is the same as the image below. If the pins are swapped, make sure to change the connections to the Arduino – OLED VCC connects to 5V on the Arduino, OLED GND to GND on the Arduino.

The image below shows how to connect the Geekcreit 0.96 inch OLED I2C display to Arduino. Pin connections are as follows for wiring the OLED display to an Arduino Uno.

Two Arduino libraries must be installed to start using the display. The SSD1306 driver library is used to initialize the display and provide low level display functions. The GFX library provides graphics functions for displaying text, drawing lines and circles, etc. Both these libraries are available from Adafruit.

Copy the Adafruit_SSD1306-master folder from the downloaded zipped file into the Arduino libraries folder. This folder is usually found at Documents → Arduino → libraries on Windows systems. On Linux it is usually found at home folder → Arduino → libraries.

In the Arduino IDE, find the libraries under the Sketch → Include Library menu from the top menu bar. When the mouse cursor is hovered above the Include Library menu item, the new libraries can be found on the pop-out menu. In Windows the libraries appeared under "Contributed libraries" near the top of the pop-out menu on my system. On my Linux computer the libraries appeared under the "Recommended libraries" section of the pop-out menu near the bottom.

The SSD1306 driver isn"t set up for the Geekcreit OLED display by default. The display size must be changed in the driver before it can be used. If it is not changed, an error message will appear when attempting to verify the example sketch (see the section below) in the Arduino IDE:

Open the Adafruit_SSD1306 folder that was just installed in the Arduino libraries folder. Find Adafruit_SSD1306.h and open it in a text editor. Scroll down the file to find the section with the header SSD1306 Displays or search for for this term in the text editor to find it quickly. Comment out #define SSD1306_128_32 and uncomment #define SSD1306_128_64 so that the code in this section looks as follows.

If the libraries for the display were installed correctly, example programs for the display will be found in the Arduino IDE under File → Examples → Adafruit SSD1306 – open the ssd1306_128x64_i2c sketch under this menu.

The I²C address must be changed in this sketch in order for it to work with the Geekcreit display. Change the address from 0x3D to 0x3C as shown in the code below. This address is not 0x78 or 0x7A as printed on the back of the OLED board.

After making the changes, the sketch can be uploaded to the Arduino. When building the sketch for an Arduino Uno the IDE will display a low memory warning message, but the sketch will still run.

If the changes to the driver and example sketch were made correctly and the OLED display is wired to the Arduino correctly, the sketch should start running. The example program starts by showing the Adafruit logo, it then turns on a single pixel. Various graphics and text functions are then displayed.

This section of the tutorial shows how to quickly start using the I2C OLED display with the Adafruit libraries. A quick start Arduino template sketch, text display demo and various graphics functions follow.

The template file below can be used to quickly start new OLED projects. It includes the necessary header files and initialization code for the display. Copy the code and use it as a basis for starting new OLED display projects.

The Arduino sketch below sets a pixel at each corner of the screen as shown in the image below. A function is then used to display a line of text on the display as can be seen in the image – a "hello world" program. An explanation of how the program works follows.

After initializing the display, the above sketch then draws a pixel at each extreme of the display by using drawPixel() to place a pixel in each corner of the screen. The first parameter passed to drawPixel() is the screen X coordinate and the second parameter is the screen Y coordinate.

Use print() to write a line of text to the display as shown in the above sketch. Before writing text to the display, call setTextSize() and setTextColor(). Because this is a monochrome display, setTextColor() must be passed WHITE for the text to be seen on a black background.

Text that is written to the display is positioned by calling setCursor() to move the invisible cursor to the desired position. X and Y coordinates are passed to setCursor() to move the cursor and start of text to these pixel coordinates.

All text and graphics are written to buffer memory in the Arduino. Only when display() (display.display() in the above code) is called is the contents of the buffer displayed on the screen. This means that any text and graphical objects such as lines and circles will not appear on the screen until display() is called.

The number passed to the the Adafruit_SSD1306 constructor as shown in the above code is the number of the Arduino pin used to reset the display for displays that have a reset pin. As the display used in this tutorial does not have a reset pin, -1 is passed to the constructor so that none of the Arduino pins are used as a reset for the display.

If the display() function is called without first calling clearDisplay() as shown in the following code, the Adafruit logo appears on the screen. Where does this logo come from?

Memory used for the screen buffer is initialized with the Adafruit logo in the Adafruit_SSD1306 driver library. This code is found in the Adafruit_SSD1306.cpp file in the Arduino libraries folder at libraries → Adafruit_SSD1306. The logo consists of hexadecimal code used to initialize the buffer[] array near the top of the Adafruit_SSD1306.cpp file.

Adafruit have provided a short tutorial on using their GFX library. The tutorial explains more about the coordinate system used for displays and shows how to draw graphics primitives such as lines and circles.

Adafruit Arduino SSD1306 and GFX library installation – from Adafruit, the developers of the libraries used in this tutorial. Buy something from their shop if you are able to in order to support their software development such as the libraries used in this tutorial.

oled lcd display arduino free sample

There are a number of options for displaying text or graphics in your project. LEDs and LCDs are the traditional choices but in recent years another type of display has been getting a lot of attention – the OLED.

OLED’s are used in display applications large and small, from giant television screens to tiny smartwatch displays.  They are bright, easy to see in a variety of lighting conditions and they consume very little current.

OLED is an abbreviation for “Organic Light Emitting Diode” which would seem to indicate that these devices are somehow related to traditional LED’s but differ in the sense that they are “organic”.  This is actually true on both accounts.

The “organic” in OLED refers to the organic molecules used in creating these devices. Organic molecules are simply molecules that are based around lines or rings of carbon atoms. Examples of organic molecules include common items such as sugar, gasoline, alcohol, wood, and plastics.

Kodak was also the first company to release a commercial device using OLEDs. Its EasyShare LS633 camera was released in March 2003 and used an OLED display screen.

OLEDs have a very wide field of view, approaching 170 degrees. This allows users to enjoy the video display without needing to sit directly in front of it.

Early OLED displays had lifespan problems. This has been improved, however blue OLEDs still have a shorter life expectancy than their traditional LED equivalents.

Currently, OLEDs are more expensive to manufacture. This will likely change as more factories produce them. Eventually, they will rival or beat LCDs in value, but right now they are more expensive.

Transparent OLEDs can be made up to 85% as transparent as their substrate (the material they are printed on) is.  This will improve and has a lot of potential for heads-up displays.

Foldable OLEDs are perhaps the most intriguing of them all. These OLEDs have already been used in curved video displays and will find a lot of use in the design of phones with bendable screens.

But the real exciting aspect of foldable OLEDs is that they can be printed onto cloth. This creates the possibility of a new generation of wearable electronics. Imagine a t-shirt that is also a video display.

So now that we know a bit about OLEDs how do we get one connected to an Arduino and start displaying wonderful things?  There are actually a couple of ways.

OLED displays typically come with either an SPI or an I2C interface. Some even have both interfaces, one of the ones we will look at today works like that.

To display data on an OLED you will first load it into the OLED buffer and then give it a command to write to the display. There are several libraries available for the Arduino that will simplify this, I’ll be showing you one from Adafruit that is very versatile.

As the OLED display is really a matrix of OLEDs you’ll need to address them individually to control them. The Adafruit library simplifies this, as do the other OLED libraries.

We will start by working with a couple of very common I2C OLED displays. These displays are based on the SSD1306 OLED driver chip so they can use the same software libraries.

One of my displays is 128×32. It is a very simple I2C display with no provision for changing its I2C address. Mine came configured for I2C address 0x3C, which is probably the most common OLED address.

The second display is 128×64, twice as many lines as the first one. It is actually a bicolor display, the top 16 pixels are yellow and the bottom 32 are blue.  This type of display is often used as an indicator for devices like FM radios and MP3 players.

The larger display has the same connections as its smaller counterpart, it also has provisions for changing its I2C address. The address change involves moving a surface-mount resistor from one set of solder pads to another. Not quite as simple as using a jumper wire or solder bridge!

The instructions that follow should work with any sized OLED based upon the SSD1306 OLED driver chip. Make sure you check your I2C address as it may not be the same as the one I used, you can just change it in the sketches.

As long as you keep your OLED and Arduino reasonably close you should just be able to connect them directly without any other components. If you experience errors try adding pull-up resistors, I didn’t find that to be necessary myself.

The power and ground connections to the display are pretty obvious. Most of these displays have an onboard regulator to supply power to the OLEDs and to the “charge pump” used to drive them.

TheSCLconnection goes to Arduino pinA4. TheSCLconnection goes toA5. If your Arduino Uno has a separate set of SDA and SCK connections (usually located near theAREFpin) you can use those instead, they are actually the same connection.

Adafruit SSD1306– The library for the SSD1306 monochrome OLED display. It was originally designed for an Adafruit-specific display but has been enhanced to work with any display based upon the SSD1306 driver chip.

Both Adafruit libraries are available at GitHub, but it is much easier to install them using the Library Manager in the Arduino IDE.  You can do that as follows:

One thing to note is that you should check your I2C address and adjust the sketch to match. The 64 line sketch has a different I2C address, I had to change it to run on my display.

For fun, I connected two 32 Line displays up to the Arduino, by running them in parallel on the I2C bus. Normally you would never connect two I2C devices with the same address onto one I2C bus but in this case, it actually works.

It works because displays only receive data, they don’t return any to the host Arduino. Both displays have the same address so they simply respond to the data for that address.

The Waveshare 1.5 inch display module is a monochrome 128 x 128 OLED display that can use either an I2C or SPI interface.  Connections can be made to the module using an included cable that mates with a connector on the module itself. There are also holes for header pins to make the same connections if you prefer.

I used the supplied cable to hook up the OLED display to my Arduino, you can also solder header pins to the module and plug it into a breadboard if you prefer. Either way the connections are the same, as follows:

You can’t use the Adafruit demos with this display, even when wired in SPI mode. The Waveshare 1.5 inch OLED display uses the SSD1327 driver, which is a different beast than the SSD1306 driver used in the I2C displays we looked at previously.

I visited theWaveshare Wiki for the 1.5 inch OLED Moduleto get some sample software.  They sent me to the (amusingly misspelled)1.5inch OLED Moudle download page.  I downloaded and unzipped the file.

Without adding extra memory to your Arduino you can’t really do any animation on the display as there won’t be enough memory to hold the display buffer – remember, this is a 128 x 128 display.  But as I don’t really want to add extra RAM to my Arduino Uno I restricted myself to the ”internal memory” sketch.

You’ll need to locate your Arduino sketchbook folder, the one that holds the Arduino sketches from the Arduino IDE on your computer. Locate and open that folder, it’s probably calledArduino.

If your Arduino libraries folder does not already have aFontsfolder just copy the whole folder in. If there is already aFontsfolder then copy just the contents of the WaveshareFontsfolder into the existing folder.

Open theINT_RAMfolder in the WaveshareArduinofolder. You’ll see another folder calledOLED_Show. Copy this entire folder to yourArduinofolder on your local computer.

Open theOLED_Showfolder. You’ll see a number of files, including a sketch calledOLED_Show.ino. This is the demo sketch, you can open it with your Arduino IDE.

When you compile and upload the sketch you may get a message warning you about low memory on the Arduino. Just accept the message, the sketch leaves very little free memory as it uses most of it to load the display buffer.

The demo displays a fake “clock” along with a number of graphic symbols and some text.  It will give you an idea of what kind of characters you can display and how they will look.

If you want to see some animated demos using this display you are probably better off running the code included for the Raspberry Pi, as this won’t have the memory limitations the Arduino code does.

The previous examples will help you get your OLED display setup and ensure that it is working. They can also be used as starting points for your own sketch to control the OLED display.

But they can also be a bit overwhelming. Because they contain a lot of graphics and animation coding to show off the display the demo scripts are also rather complex. And that makes it a bit more difficult for a beginner to figure out how to control their display.

In order to make it easier for you to get started with OLED displays, I’ve created a very simple project that you can build that uses simple code to display text.

Since both the AM2320 and OLED display are I2C devices the wiring of our OLED temperature and humidity meter couldn’t be easier. Here is the hookup diagram.

Here is the sketch for the OLED Temperature and Humidity Meter. If you need a copy of it make sure to check out the Resources section at the end of this article where you will find a link to download it.

In order to run this sketch, you’ll need to install more libraries to work with the AM2320 (I will assume you installed the two Adafruit libraries we discussed earlier as you need those too). Again these will be installed from the Library Manager in your Arduino IDE, using the same procedure you followed when installing the OLED libraries earlier.

Now onto the sketch. It starts by loading all of the libraries we just spoke of, along with theArduino Wire Libraryto communicate via I2C. Note that the Graphics library has been included but isn’t really being used in this sketch, you can omit the include statement for it if you wish.

We then setup an object calleddisplay that represents our OLED display. Note that the original Adafruit OLED tha the library was written for used a Reset pin that still needs to be defined, even if it isn’t used.

Note that the initialization line for the OLED specifies its I2C address. If you are using an OLED with a different address you will need to change that.

Now we work with the OLED display.  Keep in mind that when you work with an OLED you are first setting up your data in a display buffer, after which you issue a command to display the buffer contents.

Next, we set the display color. As we are using a monochrome display we always useWHITE. It doesn’t matter what color your display actually is (mine is yellow and blue but I still useWHITEfor both). Color values don’t really come into play until you work with RGB OLEDs.

We then move the cursor down and print the word “Humidity:” followed by some spaces – the spaces are a crude attempt at lining up the display!  We then print the actual humidity value from the float, followed by a space and a percentage symbol.

The project worked perfectly the first time I tried it. You’ll notice some gibberish on the display when it is first fired up, this will clear in two seconds when the first readings are displayed.

The cost of OLEDs is continually falling and it won’t be too long before they rival LCDs in price. They don’t need a backlight and they are visible in all types of lighting environments.

I’m planning to start experimenting with RGB OLED displays next, so if you enjoyed this article and video keep your eyes open for an article about color OLEDs soon.

OLED displays are bright, lightweight and easy to read in almost any lighting environment. In this article, you"ll learn how OLEDs differ from regular LEDs and LCDs and how to use them with an Arduino.

oled lcd display arduino free sample

OLED or organic light-emitting diode is a light-emitting diode (LED) in which the emissive electroluminescent layer is a film of organic compound (millions of small LED lights) that emits light in response to an electric current.

An 128×32 OLED device can be considered as a matrix of 4,096 individual pixels that each can individually be set ON – they light up – or OFF – just background. Because background is ink black the ON pixels stand out pretty nicely and readability is perfect. Due to this pixel configuration it is possible to design and display graphic bitmaps: logos, avatars, sprites.

To control the OLED display you’ll need the "Adafruit_GFX.h" library and the "Adafruit_SSD1306.h" library. There are two ways you can download and install the library to your Arduino IDE. Wire.h library allows you to communicate with I2C / TWI devices. By default this library is included in Arduino IDE .

image2cpp is a simple tool to change images into byte arrays (or your array back into an image) for use with Arduino and (monochrome) displays such as OLEDs. It was originally made to work with the Adafruit OLED library.

You can easily convert any image to a bitmap pattern and give that byte array in your sample code. Hence we will get the required pattern in the display.

oled lcd display arduino free sample

Tired of using character LCD displays in your Arduino projects over and over? Well! They are, in fact, a thing of the past. Enter the fantastic OLED (Organic Light-Emitting Diode) displays! They’re extremely light, almost paper-thin, theoretically flexible, and produce a brighter, crisper image.

OLED displays are available in a range of sizes (such as 128×64, 128×32) and colors (such as white, blue, and dual-color OLEDs). Some OLED displays have an I2C interface, while others have an SPI interface.

One thing they all have in common, however, is that at their core is a powerful single-chip CMOS OLED driver controller – SSD1306, which handles all RAM buffering, requiring very little work from your Arduino.

In this tutorial, we’ll be using both I2C and SPI 0.96-inch 128×64 OLED displays. Don’t worry if your module is a different size or color; the information on this page is still useful.

An OLED display, unlike a character LCD display, does not require a backlight because it generates its own light. This explains the display’s high contrast, extremely wide viewing angle, and ability to display deep black levels. The absence of a backlight reduces power consumption significantly. The display uses about 20mA on average, though this varies depending on how much of the display is lit.

The SSD1306 controller operates at 1.65V to 3.3V, while the OLED panel requires a 7V to 15V supply voltage. All of these various power requirements are fulfilled by internal charge pump circuitry. This makes it possible to connect the display to an Arduino or any other 5V logic microcontroller without requiring a logic level converter.

Regardless of the size of the OLED display, the SSD1306 driver includes a 1KB Graphic Display Data RAM (GDDRAM) that stores the bit pattern to be displayed on the screen. This 1 KB memory area is divided into 8 pages (from 0 to 7). Each page has 128 columns/segments (block 0 to 127). And, each column can store 8 bits of data (from 0 to 7). That certainly proves that we have:

As previously stated, regardless of the size of the OLED module, each module contains 1KB of RAM. The 128×64 OLED module displays the entire contents of 1KB of RAM (all 8 pages), whereas the 128×32 OLED module displays only half of the RAM (the first 4 pages).

Connect the SCL pin to the I2C clock pin and the SDA pin to the I2C data pin on your Arduino. It is important to note that each Arduino board has different I2C pins. On Arduino boards with the R3 layout, the SDA (data line) and SCL (clock line) are on the pin headers close to the AREF pin. They are also known as A5 (SCL) and A4 (SDA).

Begin by connecting the VCC pin to the Arduino’s 5V output and the GND pin to ground. Now connect D0/CLK, D1/MOSI, RES, DC, and CS to digital pins 10, 9, 13, 11, and 12, respectively.

The SSD1306 controller in the OLED display has flexible but complex drivers. To use the SSD1306 controller, extensive knowledge of memory addressing is required. Fortunately, the Adafruit SSD1306 library was written to hide the complexities of the SSD1306 controller, allowing us to control the display with simple commands.

This is a hardware-specific library that handles lower-level functions. To display graphics primitives such as points, lines, circles, and rectangles, it must be paired with the Adafruit GFX Library. Install this library as well.

This sketch will provide you with a thorough understanding of how to operate the OLED display and can serve as the foundation for more practical experiments and projects. Try out the sketch, and then we’ll go over it in detail.

The sketch begins with the inclusion of four libraries: SPI.h, Wire.h, Adafruit_GFX.h, and Adafruit_SSD1306.h. Although the SPI.h library is not required for I2C OLED displays, we must include it to compile our program.

The next step is to create an object of Adafruit_SSD1306.h. The Adafruit_SSD1306 constructor accepts 3 arguments: screen width, screen height, and the Arduino pin number to which the display’s reset pin is connected. So, a couple of constants are defined.

Also, since the OLED display we are using doesn’t have a RESET pin, we will send -1 to the constructor to indicate that none of the Arduino pins are used to reset the display.

This sketch uses the I2C protocol for communicating with the display. However, the sketch is ready if you wish to use SPI. Simply uncomment the following lines of code.

In the setup function, we need to initialize the OLED object using the begin() function. This function accepts two parameters. The first parameter, SSD1306_SWITCHCAPVCC, turns on the internal charge pump circuitry, and the second parameter sets the OLED display’s I2C address. Most OLED display modules of this type have an I2C address of 0x3C, but some have 0x3D.

To display text on the screen, we must first set the font size. This can be accomplished by calling setTextSize() and passing a font size (starting from 1) as a parameter.

The final step is to use the display() command to instruct the library to bulk transfer the screen buffer to the SSD1306 controller’s internal memory and display the contents on the OLED screen.

To display inverted text, we use the setTextColor(FontColor,BackgroundColor) function once more. If you’ve been paying attention, you’ll notice that we previously passed only one parameter to this function, but now we’re passing two. This is possible due to function overloading.

The print() or println() functions can be used to display numbers on the OLED display. Because an overloaded implementation of these functions accepts 32-bit unsigned int values, you can only display numbers ranging from 0 to 4,294,967,295.

The print() and println() functions send data to the display as human-readable ASCII text, whereas the write() function sends binary data to the display. This function can thus be used to display ASCII symbols. For example, sending 3 displays a heart symbol.

You can scroll the display horizontally by calling the functions startscrollright() and startscrollleft(), and diagonally by calling the functions startscrolldiagright() and startscrolldiagleft(). All of these functions take two parameters: start page and stop page. Refer to the OLED Memory Map section for an explanation of the pages. Because the display has eight pages from 0 to 7, you can scroll the entire screen by scrolling all the pages, i.e. passing parameters 0x00 and 0x07.

Sometimes, we don’t want to scroll the whole display, but just a part of it. You can accomplish this by passing the appropriate start and stop page information to the scrolling functions.

Our last example shows how to display bitmap images on the OLED display. This comes in handy when displaying things like logos, sprites, infographics, or icons.

The drawBitmap() function is used to display a bitmap image on an OLED display. This function accepts six parameters: top left corner X coordinate, top left corner Y coordinate, monochrome bitmap byte array, bitmap width in pixels, bitmap height in pixels, and color.

But, before we can use the drawBitmap() function, we need an image to draw. Remember that the OLED display’s screen resolution is 128×64 pixels, so images larger than that will not display properly. To get a properly sized image, open your favorite drawing program, such as Inkscape, Photoshop, or MS Paint, and set the canvas size to 128×64 pixels.

Once you have a bitmap, you must convert it into an array that the SSD1306 OLED controller can understand. This can be accomplished in two ways: with image2cpp (online) or with LCD Assistant (offline).

The dimensions of your image will be displayed in the Canvas size option under Image Settings. If your image is larger than 128×64, change it to 128×64 by selecting the appropriate scaling option. You can see the result in the Preview section.

When you are satisfied with the results, you can proceed to generate the data array. Simply select Arduino Code as the code output format and press the Generate code button.

For your information, there is a setting called “Draw Mode”. It actually generates images based on the scanning pattern of the display. If your image appears distorted on your screen, try changing the mode.

There’s also a Windows application called LCD assistant that can turn your bitmap image into a data array. It is not as powerful as image2cpp, but it is still widely used by hobbyists.

For your information, there is a setting called Byte Orientation. It actually generates images based on the scanning pattern of the display. If your image appears distorted on your screen, try changing the mode.

oled lcd display arduino free sample

If the code and wiring is done correctly, the output should look something like the photo shown here. The temperature default display is in Centigrade, and the relative humidity display is given as a percentage.

This tutorial has demonstrated how to wire and display temperature and humidity onto an inexpensive, easy-to-use, organic LED display that is compatible with the Arduino platform. This type of display is great for small projects where the user may be interested in displaying results in real-time or having a small display for an embedded project. These OLED displays are great because they consume less power and are brighter than traditional LCDs. This tiny display is ready and capable of being inserted into a 3-D printed case and used as a miniature screen for any engineer"s project.

oled lcd display arduino free sample

One thing we all always wish we could do when using any display is to load our own custom graphics, be it a logo, gif etc. In today’s tutorial we will show how to do just that on an OLED display using an Arduino.

OLED (organic light-emitting diode)display is a display based on light-emitting diode (LED) in which the emissive electroluminescent layer is a film of organic compound that emits light in response to an electric current. This layer of organic semiconductor is situated between two electrodes; typically, at least one of these electrodes is transparent. OLEDs are used to create digital displays in devices such as television screens, computer monitors, portable systems such as mobile phones, handheld game consoles, and PDAs. OLED displays do not require a backlight because they emit visible light and can thus, display deep black levels and be thinner and lighter than a liquid crystal display (LCD).

The schematics for this project is a simple one as it involves just the connection between the OLED display and the Arduino. Connect them as shown in the Schematics below.

One thing that should be kept in mind while creating the graphics or logo is the canvass size. It’s important the canvass size is same as the screen, to ensure the designed graphics shows perfectly on the display. For our case, the canvass size is 128 x 64 as this is the resolution of our LCD.

It is also important to disable antialiasing when using the paint.net software and the graphics should be designed only in black and white as these are the only color schemes that work on the OLED display. Any other color used will not be visible on the display.

To load the graphics into our Arduino code, we will need to convert the bitmap image into byte arrays. To do this, we will use the LCD assistant software.  LCD Assistant is a free and easy to use software that converts bitmap images into a data array which can then be used in C programming language based firmware for any micro-controller. The software can be downloaded here.

The code for this tutorial is fairly simple, to facilitate the communication with the OLED display, we will be using U8 graphics library for Arduino which can be downloaded from this website here. Unzip the code into your Arduino libraries folder and launch an instance of the Arduino IDE. The code, using the void draw function will basically be displaying the graphics represented by each of the byte arrays we specify, one after the other, with a delay in between to ensure the graphics stay long enough on the screen to be seen.

In this code, we have three different byte arrays each of which represents different graphics. You can add your own byte array by copying the output of the LCD assistant software and pasting it into the code with a proper variable name following the format of the samples in the code.

The void draw function is the most important part of this project as it is in charge of drawing the graphics on the display. The function uses the u8g.drawBitmapP function from the U8 graphics library to draw the specified bitmap. The u8g.drawBitmapP function has five arguments; the first two are the x and y coordinates of the top left position on the screen where we want the graphics display to start from. The 3rd argument is the width of the bitmap image (128 in this case) divided by 8 while the 4th argument is the height of the bitmap image (64 in this case). The last argument is the variable name given to the byte array which represents the image to be displayed.

we leave the void setup function blank since it’s not necessary for this tutorial, but it must be included as its needed for the Arduino code to compile.

Next, we write the void loop() function. The void loop function for this project is fairly simple, all we need to do is call the void draw function to display a graphics and wait for few seconds before calling the function to display the next graphics.

oled lcd display arduino free sample

– Arduino is an open-source platform used for building electronics projects. Arduino consists of both a physical programmable microcontroller and a piece of software, or IDE (Integrated Development Environment) that runs on your computer, used to write and upload computer code to the physical board.

– The Arduino platform unlike most previous programmable circuit boards, the Arduino does not need a separate programmer to load new code onto the board — you can simply use a USB cable. Additionally, the Arduino IDE uses a simplified version of C++, making it easier to learn to program.

– The open sources and extensible language: Arduino IDE is based on open source tool. The programming language used can be extended through the C++ library.

– The open source and expandable hardware: Arduino is based on Atmel’s ATMEGA 8-bit microcontrollers and its SAM3X8E and SAMD21 32-bit microcontrollers. Development boards and modules are planned to be released under the premise of following the “Creative Commons License Agreement”, so experienced circuit designers can make their own modules and carry out corresponding expansions and improvements. Even users who are relatively inexperienced can make a trial version of the basic Uno development board, which is easy to understand the principle of its operation and save costs.

– The Arduino hardware and software were designed for artists, designers, hobbyists, hackers, newbies, and anyone interested in creating interactive objects or environments. Arduino can interact with buttons, LEDs, motors, speakers, GPS units, cameras, the internet, and even your smart-phone or your TV.

Arduino Leonardo: Arduino’s first development board to use one microcontroller with built-in USB. It is cheaper and simpler. The code libraries allow the board to emulate a computer keyboard, mouse, and more.

LCD means liquid crystal display. Basically, any displays can be used with Arduino, including alphanumeric character LCD display, monochrome graphic LCD display, color TFT LCD display, IPS LCD display. It can also be used for non LCD displays like: PMOLED display, AMOLED display, E-ink (E-paper) displays.  Orient Display developed easy interface (SPI, I2C) displays which can be easily used with Arduino.

LCD displays were first used for watches and calculators.  Now, LCD display technology dominants the display world, it can be found in wearables, smart homes, mobile phones, TVs, laptops, monitors, kiosks, aircraft cockpit, digital cameras, lab instrument, power grid etc.

LCD itself can emit light itself. It has to utilize outside light sources. LCD display module normally includes LCD glass (or LCD panel), LCD driving circuitry ( can be COG, COB or TAB) and a backlight.

A LCD display 16*2 is actually a basic and simple to use LCD module. It includes LCD glass, COB (Chip on PCB Board) LCD control board, backlight, zebra to connect LCD glass and control board and a bezel to hold everything together.  16×2 LCD display can display 16 characters per line and there are two lines. Each character has 5×7 dot matrix pixels and the cursor underneath. All 16×2 LCD display originally used standard Hitachi HD44780 driver. Of course the legendary HD44780 controller had EOL long time ago. All the 16×2 LCD displays use HD44780 compatible LCD controllers. Some of them are drop replacement, some of them need to modify the initialization code a little.

Pin5 (Read/Write/Control Pin): This pin toggles the display among the read or writes operation, and it is connected to a microcontroller unit pin to get either 0 or 1 (0 = Write Operation, and 1 = Read Operation).

Pins 7-14 (Data Pins): These pins are used to send data to the display. These pins are connected in two-wire modes like 4-bit mode and 8-bit mode. In 4-wire mode, only four pins are connected to the microcontroller unit like 0 to 3, whereas in 8-wire mode, 8-pins are connected to microcontroller unit like 0 to 7.

A 16×2 LCD has two registers like data register and command register. The RS (register select) is mainly used to change from one register to another. When the register set is ‘0’, then it is known as command register. Similarly, when the register set is ‘1’, then it is known as data register.

Command Register: The main function of the command register is to store the instructions of command which are given to the display. So that predefined tasks can be performed such as clearing the display, initializing, set the cursor place, and display control. Here commands processing can occur within the register.

Data Register: The main function of the data register is to store the information which is to be exhibited on the LCD screen. Here, the ASCII value of the character is the information which is to be exhibited on the screen of LCD. Whenever we send the information to LCD, it transmits to the data register, and then the process will be starting there. When register set =1, then the data register will be selected.

All of the code below uses the LiquidCrystal library that comes pre-installed with the Arduino IDE. A library is a set of functions that can be easily added to a program in an abbreviated format. In order to use a library, it needs be included in the program. Line 1 in the code below does this with the command #include . When you include a library in a program, all of the code in the library gets uploaded to the Arduino along with the code for your program.

Now we’re ready to get into the programming! I’ll go over more interesting things you can do in a moment, but for now let’s just run a simple test program. This program will print “hello, world!” to the screen. Enter this code into the Arduino IDE and upload it to the board:

There are 19 different functions in the LiquidCrystal library available for us to use. These functions do things like change the position of the text, move text across the screen, or make the display turn on or off. What follows is a short description of each function, and how to use it in a program.

The LiquidCrystal() function sets the pins the Arduino uses to connect to the LCD. You can use any of the Arduino’s digital pins to control the LCD. Just put the Arduino pin numbers inside the parentheses in this order:

This function sets the dimensions of the LCD. It needs to be placed before any other LiquidCrystal function in the void setup() section of the program. The number of rows and number of columns are specified as lcd.begin(columns, rows). For a 16×2 LCD, you would use lcd.begin(16, 2), and for a 20×4 LCD you would use lcd.begin(20, 4).

This function clears any text or data already displayed on the LCD. If you use lcd.clear() with lcd.print() and the delay() function in the void loop() section, you can make a simple blinking text program.

Similar, but more useful than lcd.home() is lcd.setCursor(). This function places the cursor (and any printed text) at any position on the screen. It can be used in the void setup() or void loop() section of your program.

The cursor position is defined with lcd.setCursor(column, row). The column and row coordinates start from zero (0-15 and 0-1 respectively). For example, using lcd.setCursor(2, 1) in the void setup() section of the “hello, world!” program above prints “hello, world!” to the lower line and shifts it to the right two spaces:

This function creates a block style cursor that blinks on and off at approximately 500 milliseconds per cycle. Use it in the void loop() section. The function lcd.noBlink() disables the blinking block cursor.

This function turns on any text or cursors that have been printed to the LCD screen. The function lcd.noDisplay() turns off any text or cursors printed to the LCD, without clearing it from the LCD’s memory.

This function takes anything printed to the LCD and moves it to the left. It should be used in the void loop() section with a delay command following it. The function will move the text 40 spaces to the left before it loops back to the first character. This code moves the “hello, world!” text to the left, at a rate of one second per character.

lcd.noAutoscroll() turns the lcd.autoscroll() function off. Use this function before or after lcd.autoscroll() in the void loop() section to create sequences of scrolling text or animations.

This function sets the direction that text is printed to the screen. The default mode is from left to right using the command lcd.leftToRight(), but you may find some cases where it’s useful to output text in the reverse direction.

This command allows you to create your own custom characters. Each character of a 16×2 LCD has a 5 pixel width and an 8 pixel height. Up to 8 different custom characters can be defined in a single program. To design your own characters, you’ll need to make a binary matrix of your custom character from an LCD character generator or map it yourself. This code creates a degree symbol (°).

The detailed LCD tutorial can be found in the article. ARDUINO LCD SET UP AND PROGRAMMING GUIDE or to check https://github.com/arduino-libraries/LiquidCrystal