lcd panel vs v out panel pricelist

23.8" LED-backlit LCD monitor / FHD (1920x1080) resolution IPS display / 178° (H) 178° (V) viewing angle / 250 cd/m² brightness / 5ms (GTG) response time (in FAST mode) / 1xUSB‑C input (video/audio/60W charging capability), 1xDisplayPort (in), 1xDisplayPort (out) with MST, 1xHDMI, 1xUSB‑C output (data/15W charging capability), 3xSuperSpeed 10Gbps USB Type A ports / 1xDisplayPort, 1xUSB-C to USB Type A cable included / 3 year system/panel warranty

lcd panel vs v out panel pricelist

TV repair costs between $60 and $350 with most spending $207 on average for LCD, LED, plasma, and 4K TVs; costs are higher if repairing older DLP, projection, and HD TVs. TV problems like display issues, powering-on problems, or sound issues can be fixed. Pickup and delivery fees may apply.

The cost to repair a TV will include the price of parts and labor costs, plus other associated costs. Additional charges include a trip fee for a technician to come to your home, a fee to transport your TV to and from a repair shop, and the diagnostic fee to determine what needs to be replaced.

The cost to repair a TV screen can be significantly more than the cost of purchasing a new TV. For this reason, replacing or repairing a broken TV screen is not considered feasible.

For example, the price of a new Samsung 40-inch LED TV is about $400, yet the cost of a replacement display panel for this model is about $380. This price is only for the replacement part and does not cover diagnostic costs, labor costs, or travel or shipping fees.

Broken TV screen repair is not a service offered by most TV or electronics repair companies. For example, BestBuy"s 90-day warranty, does not list broken TV screen repair as one of the problems they service.

Unless you are trying to fix a TV from the ’80s or earlier, cracked TV screen repair is not feasible; the entire display panel must be replaced instead. The cost of a replacement TV display panel is more than the cost of buying a new TV, and that’s before labor and other service costs.

The cost of TV screen replacement is generally the same as or more than the cost of buying a new TV. Therefore, replacing a broken or malfunctioning TV screen is not considered a viable option. If the TV is under the manufacturer’s warranty, the manufacturer may replace the entire unit.

TV manufacturers do keep replacement TV screen panels on hand to support products under warranty in case the screen malfunctions, due to manufacturer defect.

If you still want to replace a damaged or malfunctioning TV screen, your best option is to find a used replacement panel or a broken TV of the same model on which the screen is still functional. You might find one on eBay, and you can hire a technician to change out the panel.

The cost of a used replacement TV panel ranges from $50 to $350 or more, excluding shipping, depending on the brand and size. Note that the chances of finding exactly the part you need in excellent condition are slim, and the cost excludes the cost of installation by a repair shop.

Whether your TV is LCD, LED, plasma screen, or 4K (Ultra HD), the cost to fix common problems ranges from $60 to $350, depending on the repair type and the brand of TV being repaired.

These repair problems could have more than one possible source, so a technician should take time to narrow down the exact problem. TVs are repaired by replacing faulty components.

TV motherboard replacement costs between $200 and $350, including parts and labor, or about $275 on average. Motherboard replacement parts range from $35 to $199and labor costs from $60 to $125.

A TV inverter repair costs $104 to $171, including parts and labor, with an average cost of $138 for a TV with one inverter board or $178 for two. Parts range from $7 to $74, and the average labor cost for TV inverter repair is $97 per hour.

The function of an inverter board in a TV is to power the backlight of the screen. The inverter board requires a few hundred volts of power. If the inverter board goes bad, this would cause the TV to power on and have sound but no picture.

When an inverter component goes bad, it is usually replaced rather than repaired. In some cases, the capacitors on a converter board fail, and a technician can fix it by replacing the capacitors rather than replacing the entire inverter component. However, if an entire inverter board replacement is not available for the model of TV being repaired, replacing the capacitors may be the only option for TV inverter repair.

A flat-screen TV bulb replacement costs between $60 to $115, with most homeowners spending $84 for parts and labor. The price for replacement bulbs ranges from $18.50 to $80.

If an older model LCD TV or projection TV powers on and has sound but no picture, this may be due to lamp burnout, which is both common and expected. In this case, replacing the bulb will fix the problem. An experienced technician should be able to replace the bulb quickly and easily.

TV backlight repair costs $100 to $122, including replacement parts and labor, at a repair shop. In-house repair costs are more due to trip fees. The price of backlight replacement parts averages around $2.50for each LED and between $20 and $25 for each CCFL strip.

If the CCFL strips for your TV are no longer available, a technician can convert the backlight from CCFL to LED using the same number of backlighting strips. Each strip of LEDs costs between $12 and $30.

A new inverter may be needed to power the LEDs, costing between $7 and $74before labor, or an average of $40. In some cases, a repair shop can convert a CCFL backlight to LED without installing a new inverter.

Backlight failure in a TV may also be due to failure of the power inverter that supplies power to the backlight. In rare cases, both the inverter and the lighting components fail.

Repairing a TV power supply board costs $23 to $234 for parts alone. Completely replacing the power supply board costs $250 for parts and labor. If one capacitor has failed, the cost for replacement capacitors is low. However, it’s more cost-effective for the technician to replace the entire board rather than spend time trying to diagnose and replace faulty capacitors one by one.

The cost to fix an HDMI port on a TV is $93 to $302. In some cases, the input circuit board that the HDMI port connects to may be damaged and need to be replaced. The cost for replacing this input circuit board, including labor, ranges from $200 to $350.

TV capacitor repair costs $60 to $129, including parts and labor. The cost for the replacement part ranges from $0.06 to $14, with the labor portion ranging from $60 to $125 per hour. TV capacitors protect the circuit from getting too much power, filter signals, and facilitate changing channels.

It is not possible to fix a TV capacitor when it fails; it needs replacing. If your TV stops working while you are using it and you notice a smell similar to ammonia or bleach, this is a sign that a capacitor has blown. However, some capacitors do not make any noticeable smell when they blow.

Flat screen replacement glass is not available. The only option for flat-screen TV glass repair is to try optical glass glue, which costs $1.70 for a 5-ml. tube. This may be an option for TV glass repair if the crack is only a few inches or less. TV panels are built as one unit at the factory, with the glass adhered to the display panel.

In-home CRT repair ranges from $199 to $249. The cost of repairing a CRT picture tube ranges from $199 for a TV that is 27 inches or smaller to $249 for a TV that is 28 inches or larger.

Picture tubes, or cathode-ray tubes (CRTs), were used in old TVs, which had much poorer image quality than modern TVs and were much bulkier and heavier.

A TV fuse repair costs between $61 and $136, with most spending $99 on average. The cost of the replacement fuse itself is $1.50 to $11, while labor ranges from $60 to $125 per hour. Additional fees may apply.

LCD flat-panel repair is not considered cost-effective. If the glass is cracked or the display is physically damaged, it is cheaper to replace the entire TV than to repair or replace the display panel.

Estimating TV repairs costs by brand is not something TV repair shops offer, however, there are general prices by type. When looking for specific repair costs for your TV, you’ll find them in the common repairs price list above. Pricing applies to brands such as Samsung, LG, Sanyo, TCL, Insignia, HiSense, Sony, Toshiba, Pioneer, and Vizio.

More popular TVs are usually less expensive to repair because repair shops order replacement parts for them in bulk, which allows them to buy those parts at a lower cost.

The cost of flat-screen TV repair ranges from $42 to $359. You cannot fix a broken screen, but the price of a new flat-panel TV starts from around $249 for a 1080-mp (non-4K) LED TV from LG to as much as $14,999 for an 85-inch 8K LED TV from Samsung. A TV referred to as a “flat TV” or “flat-screen” TV might be any of the following:

LCD TV repair typically costs $60 to $85 for diagnostics testing, and $200 to $300 to perform repairs. LCD TVs use backlighting, which may fail. Newer LCD TVs use LED strips for backlighting. Older ones might use CCFL. If CCFL backlighting fails, a technician can replace it with LED backlighting.

An LED TV is just an LCD TV that uses LED backlighting, which all newer models do (older models use CCFL backlighting). The cost to replace one LED backlighting strip ranges from $100 to $122, including parts and labor.

The cost to replace the motherboard, inverter, or LED"s in a 4K TV ranges from $100 to $275 or more depending on the brand and model. The cost for screen repair for a 4K TV is irrelevant because it cannot be fixed or replaced at a cost that is lower than the cost of a new 4K TV.

Digital light processing (DLP) TVs are also known as projection TVs. DLP big screens have not been made since 2012, and DLP TV repair is usually not worth the cost except for a lamp burnout, in which the bulb can be replaced. The cost to replace bulbs ranges from $60 to $115.

TV repair shops charge an average $60 to $125 per hour, or a flat rate of $50 to $250, which includes the diagnostic fee. Additional costs after that depend on the repairs needed and the brand and type of TV. However, most stores will have a minimum charge of about $90.

Best Buy TV repair is provided through the Geek Squad TV & home theater service. Geek Squad TV repair starts at a base cost of $100 for a diagnostic fee. TV repair is covered under Best Buy’s protection plan, which costs $280 per year when you purchase a TV from Best Buy at the time of purchase, or within the return period printed on your receipt.

The brand and model of your TV will dictate the final repair cost, with more expensive brands and larger TVs costing more to repair. Consider the remaining lifespan of the TV before paying for repairs. You can now buy bigger TVs with more features and better displays for a TV that won’t need repairs for a while and probably comes with a warranty.

The cost of labor to fix a TV ranges from $60 to $125 per hour, or a flat rate of $90 to $299. If the work is performed in your home, the cost ranges from $25 to $125 per hour plus the trip fee. Most TV repairs take 1 to 3 hours if the repair specialist has the parts already.

Some shops will pick up and deliver a TV for free. Others charge a fee that ranges from $40 to $75 for pickup and drop-off, with an average cost of $58.

If you live in a remote area, you may need to ship your TV to a repair facility, costing $99 to $175. Be sure to choose a delivery service that allows you to track the shipment and confirm delivery. When sending your TV into a service center for repair, you will be contacted regarding the associated costs and asked to process payment before the repair is completed, which usually takes two weeks including the shipping time.

Many TV repair shops charge a diagnostic fee that ranges from $20 to $60, depending on whether it is done in your home or the repair shop. Some shops charge a flat fee that ranges from $50 to $250that covers both the diagnostic cost and labor cost. In many cases, the initial diagnostic fee will be applied to the repair cost if you have the shop do the repair.

The more expensive a TV is, the more sense it makes to purchase an additional warranty to defray the potential for costly repairs. Best Buy offers an $89 five-year extended warranty for entry-level TVs. On larger TVs such as the 85-inch Samsung QLED 8K TV, which costs $14,998, the five-year warranty from Geek Squad costs an additional $1,699—11.33% of the cost of the TV.

With modern TVs, repair entails component replacement or replacement of capacitors, for which high levels of certification are not necessary. Generally, TV repair shops will let you know if their employees have certification.

First, check that the connecting cable is securely in the socket on both ends. If that doesn’t work, try substituting another data cable if you have one, or test it with a replacement cable.

Satellite dish repair is either covered by your satellite service company or the cost for a technician to fix it ranges from $80 to $150. Repairs may also be billed at an hourly rate of $50 to $65.

The cost of mounting a TV ranges from $149 to $199, with most people paying around $174 for the labor. The mounting hardware costs between $20 and $500 depending on the brand of mounting hardware and the size of your TV.

There are various ways you might be able to save money on TV repair. These include transporting your TV to a repair shop, using a shop that charges in 15- or 30-minute increments, diagnosing the problem yourself, using salvaged parts, and doing the repair work on your own.

You can also consider the cost of TV repair when purchasing a new TV. More popular TV models are less expensive to repair because repair shops buy parts for the most common TVs in bulk and are therefore able to get them at lower prices.

Plug - If the TV is not powering on and no status LEDs are lighting up, start by plugging the TV into a different outlet. If the TV is too challenging to move, you can run an extension cord from another nearby outlet.

Circuit breaker - Check the circuit breaker for the power outlet that the TV plugs into. You can check the breakers by opening the door to your breaker panel and looking for circuit breakers that are in the OFF position.

Power cable - Check the power cable. If it is a removable cable, you can test it by substituting a power cable from another piece of equipment in your home, or you can buy a replacement cable for this test. The cost for a replacement TV power cable ranges from $2.50 to $10.

Remote control - If the TV is not powering on with the remote control, you should try replacing the batteries. For remote controls with a status LED light, there could be enough power to light the LED but not enough power to send a signal to your TV.

Inverter is bad -It is possible that the inverter, which powers the backlights, has gone bad and needs to be replaced. It’s also possible that one or more capacitors on the inverter have gone bad, in which case a technician may be able to replace capacitors more cheaply than replacing the entire inverter.

Lamp burnout -In a projection TV or older LCD TV, no picture may be caused by lamp burnout. In this case, a technician can replace the bulb quickly and easily.

If the picture is displaying but there are problems such as vertical lines, a double picture, or a white display, this could indicate a faulty motherboard or mainboard.

Plug headphones into the headphone jack. If sound comes from the headphones plugged into the headphone jack, this indicates a problem with the TV speakers.

The primary way to save money on TV repair would be to perform the work yourself. This may require you to purchase and get familiar with various tools such as soldering tools, and methods for replacing a capacitor or some other component.

The right parts - It can be complicated to determine which component of a TV is failing and causing the TV not to work correctly. If you buy a replacement part and perform the repair yourself, the TV may still not work, either because you replaced the wrong part, the part was old and not working properly to begin with, or you did not perform the work correctly. Buying multiple replacement parts can become costly.

Lack of experience – you might cause more damage to the TV due to your lack of knowledge and experience, and you might also end up causing a fire with your soldering iron or being electrocuted.

The cost of repairing a TV could be as much as $500 if multiple repairs are needed. Consumer Reports recommends not to spend more than 50% of the cost of a new TV repairing the old one.

If you have a newer TV that cost thousands of dollars, having it repaired would most likely be cost-effective. If the TV only cost a few hundred dollars to begin with, replacing the TV is more likely to be the best option.

Not included in these prices from Best Buy are 1080P screens, which range from $249 to $279 for 43-inch TVs from brands like Samsung, Sony, and LG. On the upper end, Sony and Samsung both have 95-inch 8K LED TVs for $69,999.

In most cases, a flat-screen TV can be fixed. The exception is a physically damaged display panel or screen. Most other issues including failing speakers, backlights, or power supply. Burned out fuses and damaged input ports can also be repaired.

If the screen is not physically damaged but is not showing a picture or is displaying “snow’” or vertical or horizontal lines, a technician can repair the TV by replacing failed components. If the screen is physically damaged, it cannot be repaired.

You cannot replace a broken flat-screen display. New TVs costs anywhere from $249 for a 1080P (non 4K) LED TV from LG to as much as $14,999 for an 85” 8K LED TV from Samsung.

Some shops will pick up and deliver a TV for free. Others charge a fee that ranges from $40 to $75 for pickup and drop-off, with an average cost of $58.

If you live in a remote area, you may need to ship your TV to a repair facility, costing $99 to $175. Be sure to choose a delivery service that allows you to track the shipment and confirm delivery.

lcd panel vs v out panel pricelist

Vasai Virar, Dist. Thane C-2, G-18, Floor- Dewan Apt No. 3, Navghar East, Palghar, Maharashtra, 401202, Vasai Virar - 401202, Dist. Thane, Maharashtra

Advantage: Good price, good quality, Condition: New compatible Product. 100% Compatible & Genuine Product., Super Clarity & Long Life. Premium Quality., Print More & Cost Less. Made with high quality components and superior Materials, produces crisp and deep black text. 100% tested and quality guaranteed; Printread more...

lcd panel vs v out panel pricelist

Fans of TV gear love to debate the merits of flat-panel technologies. In the past, this meant comparing Quantum Dot LED (or QLED TV as it’s most commonly known) and Organic LED, otherwise known as OLED TV. But 2022 was the year a new display technology called Quantum Dot OLED or QD-OLED, made its official debut, and it has already started to reshape the TV landscape thanks to new models from Sony and Samsung, and computer monitors from Dell’s Alienware brand.

But what exactly is QD-OLED, how is it different from both QLED and OLED, and why do experts think it represents the best picture quality you can get? Let’s take a deep dive into the details of QD-OLED and find out.

The result is a TV that exhibits the stunning levels of contrast and perfect blacks of OLED while delivering brightness levels that exceed anything we’ve seen from OLED so far.

This “best of both worlds,” benefit was largely theoretical until we got a chance to see it for ourselves at CES 2022. Those impressions survived even once we brought the first two QD-OLED TVs in for testing. First with the Sony A95K, and then again with the Samsung S95B. Both TVs earned a rare 10/10 rating from our reviewer.

Picture improvements aside, it’s also possible that over time, QD-OLED TVs may prove less expensive to buy than similarly sized OLED TVs. We’ll discuss this in more detail later. Since QD-OLED TVs are essentially an evolution of OLED, it’s expected that some of the clever things we’ve seen LG do with its OLED panels, like transparent displays and rollable displays, will soon be possible with QD-OLED, too.

The LED backlight produces all of the brightness you see — and modern LED backlights can produce a lot of brightness, far more than OLED light sources. But achieving that brightness while maintaining a full-spectrum white, is difficult.

The solution: Start with a really bright blue LED light source, then use red and green quantum dots to balance the blue into a full spectrum of white. Because quantum dots can be tuned to emit specific colors and, amazingly, can do this at a nearly 100% efficiency level, QLED TVs get a much-needed improvement to their color accuracy without sacrificing any brightness or needing to use more energy.

From there, the purified white light passes through the LCD matrix (which is responsible for the images you see, and how bright or dark areas of the screen are) and, finally, through the color filter, which converts the white light into the right amounts of red, green, and blue so that we see true color images.

It’s a good system that produces bright and very colorful images. It’s also quite affordable to produce because, except for the quantum dots, all of the components have been around for decades, and are now “cheap” to make.

But it has drawbacks, too. No matter how hard the LCD matrix tries, it can’t block 100% of the light from coming through in dark scenes, so you never get that perfect, inky black that you see on an OLED TV. The LCD matrix also creates problems for off-angle viewing because it tends to “tunnel” light straight outward from the screen.

QLED also has to use more energy to create the brightness you see because the combination of the LCD matrix and the color filter diminishes the light the LED backlight generates. This makes QLED TVs less energy efficient than OLED TVs.

That sounds remarkably simple compared to QLED TV, and it is. Thanks to the emissive nature of the basic element of OLED TV — the OLED pixel — this one ingredient can take care of brightness and image creation, essentially fulfilling the roles of both the LED backlight and the LCD matrix in QLED TV.

Without an LCD matrix, viewing angles with OLED TV are as near-perfect as we’ve ever seen. You can sit wherever you like and still see the same levels of brightness, contrast, and color.

And as we’ve already hinted at, because OLED pixels can be shut off completely when an image calls for perfect blackness, that’s exactly what you get: No light being emitted at all.

But OLED TV isn’t perfect either. You can only derive so much brightness from an OLED pixel. It’s excellent in low-light conditions, but it simply can’t compete with QLED’s dedicated LED backlight in brighter environments. If you’ve ever looked at a QLED and OLED TV side by side in a brightly lit Costco warehouse and found the QLED TV more appealing, it’s probably due to its superior brightness.

OLED TV brightness is lower than QLED for two main reasons. First, and most importantly, each OLED pixel creates its own light. But the more power you drive through an OLED pixel, the more you shorten its lifespan. So OLED TVs could probably get brighter than they do today, but few buyers would be OK with a TV that only lasted half as long. The LEDs used in a QLED TV’s backlight are far less susceptible to this kind of aging and can continue to produce lots of light for a long time.

OLED panels are also susceptible to something known as burn-in. If you display the same kind of content on an OLED TV for tons of consecutive hours — say a lower info banner on a news channel, or a control panel in a video game — it can cause those pixels to age at a faster rate than the pixels that are constantly displaying different images.

Finally, because the large-format OLED panel market is effectively a monopoly, with just one company — LG Display — manufacturing and selling them to companies like LG, Sony, Philips, and Vizio, it will remain more expensive than QLED for some time to come.

Quantum Dot OLED significantly increases the overall brightness of OLED — and even improves its already superb color — by optimizing how much light a single OLED pixel can emit and eliminating the color filter.

At the moment, OLED TVs create their light and color starting point with white light. They do this by combining blue and yellow OLED material to create a blend that comes very close to pure white. Why do this instead of using red, green, and blue OLED material? The answer has to do with the complexities of manufacturing OLED panels at the 50-inch to 88-inch sizes of today’s TVs while keeping costs as low as possible.

To give you a sense of just how expensive a true RGB OLED panel is, Sony makes a 4K, 55-inch monitor for the broadcast and film industries that uses this technology. It costs nearly $28,000.

But when you start with white light, you need a way to separate the individual red, green, and blue portions of the spectrum. A color filter does this admirably, but color filters, as we mentioned above, reduce brightness.

When you’re watching standard dynamic range (SDR) content, the use of that white subpixel is moderate. OLED TVs can easily get bright enough to meet the full specification for SDR without relying heavily on the brightness of the white subpixel.

“Displays of all types that use this architecture are able to achieve color accuracy at relatively lower luminance,” said Jeff Yurek, director of marketing and investor relations at Nanosys, a company that develops quantum dot technology. But HDR material is a bit trickier.

When viewing HDR content, the panels turbocharge these white subpixels to deliver HDR’s higher brightness. But there’s a limit to how hard you can drive those white subpixels. Push them too far and not only do you reduce the panel’s life, but that extra brightness can also wash out the color of the other subpixels, something that is especially noticeable when displaying small features like text, which can often look less crisp.

To deal with the technical hurdles of OLED brightness, QD-OLED TVs take a page out of QLED TV’s handbook. Using the same principle that lets a QLED TV turn a blue backlight into a pure white light using red and green quantum dots, a QD-OLED panel uses just blue OLED material as the basis of each pixel.

That blue OLED pixel is then divided into three subpixels: A blue subpixel, which is the original blue OLED material, left unchanged; a red subpixel that layers red-tuned quantum dots over blue OLED; and a green subpixel that layers green-tuned quantum dots over blue OLED.

Since quantum dots are so energy-efficient, virtually no brightness is lost in those two color transformations. The result is a true RGB OLED display without the cost and complexity of a discrete RGB OLED starting point, the brightness tax of a color filter, or the need for a color-sapping white subpixel.

“What is so exciting about QD-OLED displays,” Yurek said, “is that they do not require a white subpixel to reach peak luminance. QD-OLED will be able to express the full color volume from near black all the way up to full-peak luminance without compromise.”

If there’s one drawback to QD-OLED in its current state of development, it’s that it doesn’t come in a wide variety of screen sizes. As of December 2022, the biggest QD-OLED TV you can buy is a 65-inch 4K TV. There are no 8K QD-OLED TVs (yet).

That will change as more people buy the first-generation products and work on the manufacturing side continues to improve, but for now, QLED and OLED have a major advantage in terms of size and resolution: both now exist in screen sizes of up to 98 inches, in up to 8K resolution.

It may take several years, but it’s possible that QD-OLED TVs will end up costing less than OLED TVs to make. Getting rid of the color filter is a great way to reduce materials and manufacturing complexity, which should mean a smaller outlay of cash.

And since QD-OLED will theoretically be brighter than OLED without the use of more electricity, it might be possible to create QD-OLEDs that have the same brightness as OLEDs while using less energy. Lower energy use brings down the cost of many of the components that have to be engineered to handle higher energy loads.

This all assumes that the investments needed to make QD-OLED manufacturing a reality will be paid off quickly, but that’s far from certain at this point.

Much like other OLED materials, there’s a three-way trade-off between lifespan, brightness, and efficiency. Generally speaking, any time you prioritize one of these attributes, the other two suffer. Drive an OLED pixel hard enough to produce the brightness you want and you not only diminish its life expectancy but also its efficiency.

But QD-OLED displays may prove to be the exception to this rule. By using three layers of blue OLED material per pixel, each layer can share the brightness burden.

“The amount of power needed from the blue OLED pixel in the QD-OLED to produce a given amount of front-of-screen brightness will be less,” said Jason Hartlove, CEO and president of Nanosys.

At the moment, Samsung Display — a division within Samsung that develops display technologies but doesn’t sell final products like TVs or monitors — is the only company manufacturing QD-OLED panels. It sells these panels to companies like Sony, Dell’s Alienware division, and Samsung Electronics (the Samsung division that makes and sells TVs). We expect other companies will join the ranks of Samsung Display’s QD-OLED customers now that the first highly positive reviews are in.

We’re confident that there will eventually be many companies selling QD-OLED TVs, but for now, it looks like Sony and Samsung are alone in this new field.

Sony’s QD-OLED is called theSony Bravia XR A95K 4K HDR OLED TV — no mention of “QD” or quantum dots. Samsung, bizarrely, does the same thing with its QD-OLED TV, known as the Samsung OLED 4K Smart TV S95B.

Samsung’s QD-OLED TVs cost considerably less than Sony’s, though as Senior Editor, Caleb Denison, points out, most people wouldn’t be able to appreciate the subtle improvements that Sony offers. This makes Sony’s price premium difficult to rationalize.

The Samsung OLED 4K Smart TV S95B starts at $2,100 for the 55-inch model, while the 65-inch version costs $2,800. However, we’ve seen discounts of up to $800 on these prices in 2022, so there are definitely deals to be had.

For its part, Sony sells the 55-inch Bravia XR A95K 4K HDR OLED TV for $2,800 and the 65-inch for $3,500. Not only are these regular prices much higher than Samsung’s, but the discounts we’ve seen are also less exciting — only about $200.

Nothing halts the progress of technology, and the companies that manufacture quantum dots have their sights set firmly on the eventual domination of the TV landscape.

Remember when we said that quantum dots use light energy at almost 100% efficiency to produce their own light? Well, it turns out that quantum dots aren’t picky about their diet. They can also be energized using electricity for what’s known as quantum dot electroluminescence, or QDEL. In our opinion, it’s QDEL panels that should be referred to as “QD Displays,” not QD-OLED panels, but this isn’t the first time the industry has chosen a confusing tech name, and it certainly won’t be the last.

Eventually, this means we’ll be able to ditch OLED and LED light sources and create ridiculously thin, flexible, colorful, bright, and energy-efficient displays that never diminish in brightness or color accuracy over time.

QDEL sounds like the holy grail of TV tech, doesn’t it? But we’re not quite there yet. At the moment, blue quantum dots possess the necessary attributes to act as electroluminescent subpixels; however, red and green quantum dots still need work.

MicroLED TVs are also becoming potent, if pricey, alternatives for the home display market. Their modular design means that their key strength is being able to scale from as small as 76 inches to well over 16 feet, but they’re also incredibly bright while possessing black levels and color accuracy to match QD-OLED TVs. But for now, they remain bulkier, are more expensive, and pack lower resolutions per inch than any other display technology.

Samsung currently makes a 110-inch, 4K microLED TV, but it doesn’t sell the product directly to buyers or through retail stores like Best Buy. Instead, you have to contact a Samsung-licensed AV installer. And if you have to ask how much it costs, well … you know how that one goes.

Still, just like QD-OLED, OLED, and plasma, it’s expected that microLED will soon become more affordable, more adaptable, and available in sizes that the average buyer might want. Keep your eyes peeled and focused on all the news coming out of CES 2023 for a peek at what’s to come.

lcd panel vs v out panel pricelist

Fans of TV gear love to debate the merits of flat-panel technologies. In the past, this meant comparing Quantum Dot LED (or QLED TV as it’s most commonly known) and Organic LED, otherwise known as OLED TV. But 2022 was the year a new display technology called Quantum Dot OLED or QD-OLED, made its official debut, and it has already started to reshape the TV landscape thanks to new models from Sony and Samsung, and computer monitors from Dell’s Alienware brand.

But what exactly is QD-OLED, how is it different from both QLED and OLED, and why do experts think it represents the best picture quality you can get? Let’s take a deep dive into the details of QD-OLED and find out.

The result is a TV that exhibits the stunning levels of contrast and perfect blacks of OLED while delivering brightness levels that exceed anything we’ve seen from OLED so far.

This “best of both worlds,” benefit was largely theoretical until we got a chance to see it for ourselves at CES 2022. Those impressions survived even once we brought the first two QD-OLED TVs in for testing. First with the Sony A95K, and then again with the Samsung S95B. Both TVs earned a rare 10/10 rating from our reviewer.

Picture improvements aside, it’s also possible that over time, QD-OLED TVs may prove less expensive to buy than similarly sized OLED TVs. We’ll discuss this in more detail later. Since QD-OLED TVs are essentially an evolution of OLED, it’s expected that some of the clever things we’ve seen LG do with its OLED panels, like transparent displays and rollable displays, will soon be possible with QD-OLED, too.

The LED backlight produces all of the brightness you see — and modern LED backlights can produce a lot of brightness, far more than OLED light sources. But achieving that brightness while maintaining a full-spectrum white, is difficult.

The solution: Start with a really bright blue LED light source, then use red and green quantum dots to balance the blue into a full spectrum of white. Because quantum dots can be tuned to emit specific colors and, amazingly, can do this at a nearly 100% efficiency level, QLED TVs get a much-needed improvement to their color accuracy without sacrificing any brightness or needing to use more energy.

From there, the purified white light passes through the LCD matrix (which is responsible for the images you see, and how bright or dark areas of the screen are) and, finally, through the color filter, which converts the white light into the right amounts of red, green, and blue so that we see true color images.

It’s a good system that produces bright and very colorful images. It’s also quite affordable to produce because, except for the quantum dots, all of the components have been around for decades, and are now “cheap” to make.

But it has drawbacks, too. No matter how hard the LCD matrix tries, it can’t block 100% of the light from coming through in dark scenes, so you never get that perfect, inky black that you see on an OLED TV. The LCD matrix also creates problems for off-angle viewing because it tends to “tunnel” light straight outward from the screen.

QLED also has to use more energy to create the brightness you see because the combination of the LCD matrix and the color filter diminishes the light the LED backlight generates. This makes QLED TVs less energy efficient than OLED TVs.

That sounds remarkably simple compared to QLED TV, and it is. Thanks to the emissive nature of the basic element of OLED TV — the OLED pixel — this one ingredient can take care of brightness and image creation, essentially fulfilling the roles of both the LED backlight and the LCD matrix in QLED TV.

Without an LCD matrix, viewing angles with OLED TV are as near-perfect as we’ve ever seen. You can sit wherever you like and still see the same levels of brightness, contrast, and color.

And as we’ve already hinted at, because OLED pixels can be shut off completely when an image calls for perfect blackness, that’s exactly what you get: No light being emitted at all.

But OLED TV isn’t perfect either. You can only derive so much brightness from an OLED pixel. It’s excellent in low-light conditions, but it simply can’t compete with QLED’s dedicated LED backlight in brighter environments. If you’ve ever looked at a QLED and OLED TV side by side in a brightly lit Costco warehouse and found the QLED TV more appealing, it’s probably due to its superior brightness.

OLED TV brightness is lower than QLED for two main reasons. First, and most importantly, each OLED pixel creates its own light. But the more power you drive through an OLED pixel, the more you shorten its lifespan. So OLED TVs could probably get brighter than they do today, but few buyers would be OK with a TV that only lasted half as long. The LEDs used in a QLED TV’s backlight are far less susceptible to this kind of aging and can continue to produce lots of light for a long time.

OLED panels are also susceptible to something known as burn-in. If you display the same kind of content on an OLED TV for tons of consecutive hours — say a lower info banner on a news channel, or a control panel in a video game — it can cause those pixels to age at a faster rate than the pixels that are constantly displaying different images.

Finally, because the large-format OLED panel market is effectively a monopoly, with just one company — LG Display — manufacturing and selling them to companies like LG, Sony, Philips, and Vizio, it will remain more expensive than QLED for some time to come.

Quantum Dot OLED significantly increases the overall brightness of OLED — and even improves its already superb color — by optimizing how much light a single OLED pixel can emit and eliminating the color filter.

At the moment, OLED TVs create their light and color starting point with white light. They do this by combining blue and yellow OLED material to create a blend that comes very close to pure white. Why do this instead of using red, green, and blue OLED material? The answer has to do with the complexities of manufacturing OLED panels at the 50-inch to 88-inch sizes of today’s TVs while keeping costs as low as possible.

To give you a sense of just how expensive a true RGB OLED panel is, Sony makes a 4K, 55-inch monitor for the broadcast and film industries that uses this technology. It costs nearly $28,000.

But when you start with white light, you need a way to separate the individual red, green, and blue portions of the spectrum. A color filter does this admirably, but color filters, as we mentioned above, reduce brightness.

When you’re watching standard dynamic range (SDR) content, the use of that white subpixel is moderate. OLED TVs can easily get bright enough to meet the full specification for SDR without relying heavily on the brightness of the white subpixel.

“Displays of all types that use this architecture are able to achieve color accuracy at relatively lower luminance,” said Jeff Yurek, director of marketing and investor relations at Nanosys, a company that develops quantum dot technology. But HDR material is a bit trickier.

When viewing HDR content, the panels turbocharge these white subpixels to deliver HDR’s higher brightness. But there’s a limit to how hard you can drive those white subpixels. Push them too far and not only do you reduce the panel’s life, but that extra brightness can also wash out the color of the other subpixels, something that is especially noticeable when displaying small features like text, which can often look less crisp.

To deal with the technical hurdles of OLED brightness, QD-OLED TVs take a page out of QLED TV’s handbook. Using the same principle that lets a QLED TV turn a blue backlight into a pure white light using red and green quantum dots, a QD-OLED panel uses just blue OLED material as the basis of each pixel.

That blue OLED pixel is then divided into three subpixels: A blue subpixel, which is the original blue OLED material, left unchanged; a red subpixel that layers red-tuned quantum dots over blue OLED; and a green subpixel that layers green-tuned quantum dots over blue OLED.

Since quantum dots are so energy-efficient, virtually no brightness is lost in those two color transformations. The result is a true RGB OLED display without the cost and complexity of a discrete RGB OLED starting point, the brightness tax of a color filter, or the need for a color-sapping white subpixel.

“What is so exciting about QD-OLED displays,” Yurek said, “is that they do not require a white subpixel to reach peak luminance. QD-OLED will be able to express the full color volume from near black all the way up to full-peak luminance without compromise.”

If there’s one drawback to QD-OLED in its current state of development, it’s that it doesn’t come in a wide variety of screen sizes. As of December 2022, the biggest QD-OLED TV you can buy is a 65-inch 4K TV. There are no 8K QD-OLED TVs (yet).

That will change as more people buy the first-generation products and work on the manufacturing side continues to improve, but for now, QLED and OLED have a major advantage in terms of size and resolution: both now exist in screen sizes of up to 98 inches, in up to 8K resolution.

It may take several years, but it’s possible that QD-OLED TVs will end up costing less than OLED TVs to make. Getting rid of the color filter is a great way to reduce materials and manufacturing complexity, which should mean a smaller outlay of cash.

And since QD-OLED will theoretically be brighter than OLED without the use of more electricity, it might be possible to create QD-OLEDs that have the same brightness as OLEDs while using less energy. Lower energy use brings down the cost of many of the components that have to be engineered to handle higher energy loads.

This all assumes that the investments needed to make QD-OLED manufacturing a reality will be paid off quickly, but that’s far from certain at this point.

Much like other OLED materials, there’s a three-way trade-off between lifespan, brightness, and efficiency. Generally speaking, any time you prioritize one of these attributes, the other two suffer. Drive an OLED pixel hard enough to produce the brightness you want and you not only diminish its life expectancy but also its efficiency.

But QD-OLED displays may prove to be the exception to this rule. By using three layers of blue OLED material per pixel, each layer can share the brightness burden.

“The amount of power needed from the blue OLED pixel in the QD-OLED to produce a given amount of front-of-screen brightness will be less,” said Jason Hartlove, CEO and president of Nanosys.

At the moment, Samsung Display — a division within Samsung that develops display technologies but doesn’t sell final products like TVs or monitors — is the only company manufacturing QD-OLED panels. It sells these panels to companies like Sony, Dell’s Alienware division, and Samsung Electronics (the Samsung division that makes and sells TVs). We expect other companies will join the ranks of Samsung Display’s QD-OLED customers now that the first highly positive reviews are in.

We’re confident that there will eventually be many companies selling QD-OLED TVs, but for now, it looks like Sony and Samsung are alone in this new field.

Sony’s QD-OLED is called theSony Bravia XR A95K 4K HDR OLED TV — no mention of “QD” or quantum dots. Samsung, bizarrely, does the same thing with its QD-OLED TV, known as the Samsung OLED 4K Smart TV S95B.

Samsung’s QD-OLED TVs cost considerably less than Sony’s, though as Senior Editor, Caleb Denison, points out, most people wouldn’t be able to appreciate the subtle improvements that Sony offers. This makes Sony’s price premium difficult to rationalize.

The Samsung OLED 4K Smart TV S95B starts at $2,100 for the 55-inch model, while the 65-inch version costs $2,800. However, we’ve seen discounts of up to $800 on these prices in 2022, so there are definitely deals to be had.

For its part, Sony sells the 55-inch Bravia XR A95K 4K HDR OLED TV for $2,800 and the 65-inch for $3,500. Not only are these regular prices much higher than Samsung’s, but the discounts we’ve seen are also less exciting — only about $200.

Nothing halts the progress of technology, and the companies that manufacture quantum dots have their sights set firmly on the eventual domination of the TV landscape.

Remember when we said that quantum dots use light energy at almost 100% efficiency to produce their own light? Well, it turns out that quantum dots aren’t picky about their diet. They can also be energized using electricity for what’s known as quantum dot electroluminescence, or QDEL. In our opinion, it’s QDEL panels that should be referred to as “QD Displays,” not QD-OLED panels, but this isn’t the first time the industry has chosen a confusing tech name, and it certainly won’t be the last.

Eventually, this means we’ll be able to ditch OLED and LED light sources and create ridiculously thin, flexible, colorful, bright, and energy-efficient displays that never diminish in brightness or color accuracy over time.

QDEL sounds like the holy grail of TV tech, doesn’t it? But we’re not quite there yet. At the moment, blue quantum dots possess the necessary attributes to act as electroluminescent subpixels; however, red and green quantum dots still need work.

MicroLED TVs are also becoming potent, if pricey, alternatives for the home display market. Their modular design means that their key strength is being able to scale from as small as 76 inches to well over 16 feet, but they’re also incredibly bright while possessing black levels and color accuracy to match QD-OLED TVs. But for now, they remain bulkier, are more expensive, and pack lower resolutions per inch than any other display technology.

Samsung currently makes a 110-inch, 4K microLED TV, but it doesn’t sell the product directly to buyers or through retail stores like Best Buy. Instead, you have to contact a Samsung-licensed AV installer. And if you have to ask how much it costs, well … you know how that one goes.

Still, just like QD-OLED, OLED, and plasma, it’s expected that microLED will soon become more affordable, more adaptable, and available in sizes that the average buyer might want. Keep your eyes peeled and focused on all the news coming out of CES 2023 for a peek at what’s to come.

lcd panel vs v out panel pricelist

With their vibrant colors and relatively constant picture appearance from multiple angles, IPS displays are suitable if your focus is on accuracy. When you can"t afford the pricey nature of these monitors, LEDs present a budget solution.

Not only do you spend less when shopping for LED displays, but you also spend less in terms of power uptake. Thanks to their less demanding operation, you also don"t have to worry about overheating issues.

IPS gaming monitors provide a number of advantages over other technologies, such as TN and VA panels, including superior image colors, despite the fact that LED panels are ideal for competitive gaming.

The benefits of using LED TVs are minimal energy consumption, a long-lasting backlight with pictures being bright. IPS displays offer more image accuracy and have better color reproduction in small viewing angles. In short, when it comes to LED vs IPS, former are cheaper, though the advantage of an IPS screen is better picture quality. Having said that, Samsung"s Quantum Dot technology could boast of dramatically enhanced color compared to IPS panels.

Although LED panels are excellent in competitive gaming, IPS gaming monitors have various tricks, like better image colors than other technologies, including TN and VA panels (see VA panel vs IPS). If you want to play while getting the most accurate color depiction, choose IPS and make sure to go over our review of the best 32-inch gaming monitors, including this affordable Dell gaming monitor.

What"s more, In-Plane Switching monitors maintain color consistency even when looking at them from extreme angles. If you prefer playing multiplayer games with your friends, the maintained picture precision across an extensive sitting arrangement is essential. Apart from picture, sound is also crucial to gamers, as monitors with speakers gain more and more popularity.

LED and IPS monitors (see also QLED) have excellent attributes with disadvantages as well. Before looking at the differences of screens featuring the two technologies, here is a look at the LCD (Liquid Crystal Display) technologies and also a LED vs LCD comparison.

LED (Light Emitting Diode) is a type of backlight technology in which the pixels light up. Many people confuse the difference between LED and LCD displays.

An LED monitor is a type of LCD monitor, and while both utilize liquid crystals for picture formation, the difference lies in LEDs featuring a backlight.

The benefit of using LED panel technology is how bright the LED displays are while still maintaining an efficient energy consumption lower than other screen technologies.

On the other hand, an LED monitor shows less reliability and accuracy in color contrast. You also get a limited viewing angle meaning that you"ll only get the best quality when sitting directly in front of the display.

If you need LCD monitors with a quick response time, consider an LED display panel using either VA or TN technology. Such an LCD screen typically offers a 1ms response time. However, remember that these monitors tend to have smaller viewing angles and inferior image quality than an IPS monitor. Regardless, you can still get a considerably good performance when planning quick-action games provided you sit directly in front of the screen. In that case, vertical monitors may prove a viable option.

On the other hand, LED monitors to focus on the brightness of the visuals. For this reason, you"ll notice a difference in the screen"s coloration based on your sitting position. Viewing LED monitors at particular angles may result in the appearance of washed-out displays.

Below are some combinations of these two technologies:LCD monitors incorporating IPS panels and LED backlightLED-backlit with IPS panel or TN panel featuresIPS display featuring LCD or LED backlight technology

Another big difference between IPS displays and LED monitors lies in the energy uptake. An IPS monitor provides better visual quality than an LED monitor, leading to more power consumption to maintain excellent on-screen performance.

Although LED monitors provide brighter screens, their power consumption is much less than IPS panel technology. That explains why they are a favorite Liquid Crystals Display technology amongst those looking for affordable electronics.

Because IPS monitors take up much power, they release more heat than their LED alternatives. Despite LED display monitors providing bright pictures, they produce relatively less heat than monitors with IPS display technology.

The cost of a monitor using IPS screen technology is approximately $100 or more, depending on whether the panel infuses other technologies like a TN panel or another type of LCD.

Notably, mid-range IPS monitors usually go for more than high-end LED monitors. When it comes to LED monitor prices, you can get an excellent monitor under $200, $100 and even $50, depending on your model and the included attributes.

While both offer superb monitor selections, the differences between IPS and LEDs make one a better option for you than the other. Apart from these two, there are other display types to choose from so it can be hard to decide which suits you best. Nonetheless, here are vital questions to answer before deciding.

When picking a monitor, it is essential to get one that aligns with your application. If you want a monitor for creative visual applications, go for an IPS monitor. This LCD panel allows you to sit at more diverse angles, get elaborate graphics, and features color accuracy.

If you want gaming monitors for fast-paced shooting games, LED monitors might be the ideal option to consider. Ideally, the type of LED monitor you pick should feature a TN panel to cater to the limited viewing angle and lower display quality. Other excellent options to consider are Organic Light-Emitting Diodes (OLED monitors), given their improved display quality over pure LED monitors.

As noted, IPS monitors provide impeccable visual quality. Unfortunately, you"ll have to put up with the increased energy consumption. Sometimes, an IPS monitor may get quite hot, leading to a concern in the unit"s longevity. That explains why various individuals consider IPS displays unreliable and not as good in terms of performance as LED monitors.

While you won"t have the impressive visual and color accuracy of a high-quality IPS display, LED monitors to suffer less from overheating issues. Many consider LED monitor performance as dependable and consistent.

When purchasing monitors, it"s wise to work with a realistic price range depending on the attributes expected. The more specs and panel combinations, the steeper the cost, irrespective of whether they are LED or IPS monitors. For example, monitors that include other Liquid Crystal Display panel types like VA and TN are typically pricier than pure IPS panels.

If you want value for your bucks" worth, consider getting LED monitors. Besides the availability of numerous LED monitors at budget prices like this S2318HN monitor by Dell, you are likely to have more attribute compatibility with them than with IPS technology.

Yes, they are less likely to cause eye strain than LEDs. With them, you get decent color representation and excellent contrast ratios. For these reasons, they minimize the effort your eyes take to decipher things. Some of these IPS panels operate even at a refresh rate of 280Hz to reduce input lag and combat unpleasant screen effects like tearing that may lead to straining - click here for the best monitors for eye strain.

Both IPS and LEDs have critical upsides that might be key to your application. Irrespective of the technology you prefer, the trick is identifying which coincides best with what you envision for your monitor.

In sum, IPS monitors are fantastic if you have a more flexible budget and you prefer intensive viewing angles with impressive color reproduction and image accuracy. Something to remember is the increased overheating potential because of the relatively higher power consumption.

An LED monitor might be your go-to alternative if you want to spend less. Besides, you can pick from multiple options featuring LCD and TN panels to circumvent some shortcomings synonymous with LED displays. What"s more, their performance is more reliable.

lcd panel vs v out panel pricelist

There’s never been a better time to buy a TV. Yes, we said the same a couple of years ago, but that doesn’t make it any less true The industry has worked nearly all of the bugs out of LCD and OLED TVs, and today’s prices are lower than ever. Or they were until this recent chip shortage took hold.

Regardless, high-end 4K models cost about half of what they did a few years ago, and excellent mid-range models (55- and 65-inch class) are available for much less than $1,000. We’ll give you our top picks, followed by an in-depth guide to the specs and features you’ll encounter when you shop.

The G2 Evo Gallery edition is a great OLED TV with a super thin bezel that looks especially nice on the wall. Our only caveat is that quantum-dot OLEDs that use RGB subpixels have eclipsed LG’s older WRGB technology (WRGB uses a white subpixel for brightness, which reduces color saturation).

Sony applied its image-processing prowess and high-end audio technology to Samsung’s quantum dot OLED panel to build the best 4K TV we’ve ever seen. But buying the best requires very deep pockets. You could buy an OLED from LG or Samsung and keep upwards of a grand in your pocket. On the other hand, you might find you don’t need to buy a soundbar, because the Bravia XR A95K’s audio technology is also the best the industry has to offer.

Samsung’s best 4K UHD LCD TV delivers terrific image quality, particularly when it comes to HDR, and it serves up a quartet of 120Hz-enabled HDMI ports plus a nifty remote that can be charged via RF harvesting. We were annoyed by Samsung’s convoluted Smart Hub TV interface, which requires too many clicks for our taste. That said, the QN90B is the best-looking 4K LCD TV you can buy right now.

The QN900B is our current favorite 8K UHD TV. Excellent upscaling, accurate color, and loads of peak brightness create an impactful image–especially with HDR material. But if you need to ask how much it costs, you probably can’t afford it.

You can spend a lot of money for an 8K TV, or you can spend a lot of money on an 8K TV. TCL’s 8K offering is an incredible value for the quality and performance that’s delivered for the price. If you don’t need to have the absolute best in the 8K category, the TCL 65R648 is a fantastic deal.

TCL is rapidly gaining—and deserving—a reputation for building affordable smart TVs that deliver incredible value. It’s 55-inch 6-series is certainly no exception, combining quantum-dot color with mini-LED backlight technology to build a set with great color, brightness, and the Roku TV operating system. We like it a lot.

CRT TVs were around for more 50 years and were still being improved when they fell out of favor. LCD TVs aren’t nearly that mature, and you’ll still find the occasional entry-level models with color and contrast issues. Color and contrast have nonetheless improved drastically in the last few years, and the improvements have trickled down almost to the lowest rung on the ladder. OLED remains at the pinnacle, but remains expensive to manufacture. I’ll talk more about LED versus OLED in a bit.

There’s also a resolution “race” in progress, though it seems to have stalled for the nonce at 8K UHD. Buying a TV with resolution of 7680 x 4320 pixels remains a pricey proposition, and there’s almost no content to take advantage of it. Apart from 4K Blu-ray, most video content is still delivered in 1080p resolution, even though 4K UHD TVs with resolution of 3840 x 2160 pixels rule the roost in terms of sales.

The best news, to expand on my previous point, is that top-end technology (quantum dots, mini-LED) has filtered down to the mid-range (defined as $750 to $1,250 for a 65-inch-class set). We haven’t seen one that quite puts it all together yet, but TCL’s 6-series come darn close. Too close, certainly, for the big three (LG, Samsung, and Sony) to remain comfortable.

Even better, nearly all the high-end 4k UHD 65-inch-class TVs that cost $600 to $10,000 or more a few years ago have dropped to below $3,000. Even Samsung’s 8K UHD QN800A-series can be hand for $3,500 (65-inch class). LG’s 8K UHD OLED—the 88-inch-class model OLED88Z9PUA—is something to behold, but it costs $30,000. Ouch. Then again, if your entertainment center is big enough to require an 88- to 120-inch-class television, that price tag might worth the experience.

Resolution: While most content remains 1080p or lower resolution, the vast majority of TVs being sold now are 2160p (4K UHD, or 3840 x 2160 pixels). Unless you’re buying something for the workshop or tool shed, go 2160p. 4K streaming is now a thing. It’s heavily compressed, and it may run you over your data cap in short order, but it’s still a consideration.

Good 2160p content looks spectacular, and most 2160p TVs will upscale lower-resolution content quite nicely. Just don’t believe any hokum about making 1080p content look like genuine 4K UHD.

That said, we’ve been incredibly impressed with just how much better both 1080p and 2160p material looks on the latest 8K UHD (7680 x 4320) TVs. More pixels, more processing power.

Screen size: 65-inch TVs are the hot commodity these days, but only you know which size TV fits best in your living space. Personally, I prefer 43-inchers. Go figure.

You can save a lot of money—$600 to $900 on a top-of-the-line set—by downsizing to perhaps 55-inches and sitting a bit closer. How close? 1.5 times the stated size of the TV is the recommended distance.

Note that the number of backlighting zones and other technologies aren’t always exactly the same across all sizes. Read the fine print carefully (if it even exists), as a 55-inch unit might not offer quite the performance of the 65-inch sets companies like to send to reviewers.

HDR: The acronym stands for high dynamic range, and it has become the norm in better TVs. HDR simply means a larger difference in luminance between the darkest area of an image and the brightest area. It doesn’t sound like much, but a lack of contrast (a comparative washed-out appearance) in LED TVs has long been an issue, especially at the entry level.

With HDR, which is created largely by significantly increasing peak brightness, light sabers and flames, highlights in hair, water, and other details really stand out. Trust me. You want it.

So far, the TV industry has been scrupulously honest about labeling their TVs for HDR: HDR-compatible in the fine print means the set understands at least some of the HDR formats (HDR10, Dolby Vision, HDR10+, HLG, etc.), but likely doesn’t have enough brightness to do anything with it. If it just says HDR, that means it can do something with it.

How much it can do depends on the TV. You need at least 700 nits peak brightness at a minimum to achieve decent HDR pop (e.g., light sabers and flames that stand out), while 1,000 nits does the trick quite nicely. Vendors don’t really list nits or brightness in meaningful ways, so you’ll need to read reviews in which it’s measured. Non-HDR TVs generally max out in the area of 300 to 400 nits.

HDR format support: One of true ironies in the TV industry is that arg