stm32l476 discovery tft lcd quotation

The 32L476GDISCOVERY helps users to develop and share applications with the STM32L4 ultra-low-power microcontrollers.The Discovery kit combines STM32L476 features with LCD, LEDs, audio DAC, sensors (microphone, 3 axis gyroscope, 6 axis compass), joystick, USB OTG, Quad-SPI Flash memory, expansion and probing connectivity. It includes an embedded Ammeter which measures the MCU consumption in low power modes. An external board can be connected thanks to extension and probing connectors.

In September 2012, ST announced full-production of STM32 F3-series chips and STM32F3DISCOVERY board. The STM32 F050-series will also be available in a TSSOP20 package.
Common peripherals included in all IC packages are USB 2.0 FS, two SPI, two I²C, three USART, eight 16-bit timers, two watchdog timers, temperature sensor, 16 to 24 channels into one ADC, two DACs, 37 to 83 GPIOs, seven DMA, real-time clock (RTC), cyclic redundancy check (CRC) engine. The STM32FL152 line adds a LCD controller.
capacitive touch sense and 32-bit random number generator (only L0x2 and L0x3 chips), LCD controller (only L0x3 chips), 128-bit AES engine (only L06x chips).
NUCLEO-L476RG board for STM32L476RGT6 MCU with 80 MHz Cortex-M4F core, 1024 KB flash (HW ECC), 96 KB SRAM, 32 KB SRAM (HW parity), external quad-SPI memory interface, external static memory interface.
The following Discovery evaluation boards are sold by STMicroelectronics to provide a quick and easy way for engineers to evaluate their microcontroller chips. These kits are available from various distributors for less than US$20. The STMicroelectronics evaluation product licence agreement forbids their use in any production system or any product that is offered for sale.
Each board includes an on-board ST-LINK for programming and debugging via a Mini-B USB connector. The power for each board is provided by a choice of the 5 V via the USB cable, or an external 5 V power supply. They can be used as output power supplies of 3 V or 5 V (current must be less than 100 mA). All Discovery boards also include a voltage regulator, reset button, user button, multiple LEDs, SWD header on top of each board, and rows of header pins on the bottom.
A discovery board for STM32F429ZIT6 microcontroller with 180 MHz ARM Cortex-M4F core, 2048 KB flash, 256 KB RAM, 4 KB battery-backed RAM in LQFP144 package.
This board includes an integrated ST-LINK/V2 debugger via Mini-B USB connector, 8 MB SDRAM (IS42S16400J), 2.4-inch 320x200 TFT LCD color display (SF-TC240T), touchscreen controller (STMPE811), gyroscope (L3GD20), 2 user LEDs, user button, reset button, Full-Speed USB OTG to second Micro-AB USB connector, and two 32x2 male pin headers.
A discovery board for STM32F407VGT6 microcontroller with 168 MHz ARM Cortex-M4F core, 1024 KB flash, 192 KB RAM, 4 KB battery-backed RAM in LQFP100 package.
A discovery board for STM32L152RBT6 microcontroller with 32 MHz ARM Cortex-M3 core, 128 KB flash (with ECC), 16 KB RAM, 4 KB EEPROM (with ECC) in LQFP64 package.
This board includes an integrated ST-LINK/V2 debugger via Mini-B USB connector, 24-segment LCD, touch sensors, 2 user LEDs, user button, reset button, and two 28x1 male pin headers.
A discovery board for STM32L152RCT6 microcontroller with 32 MHz ARM Cortex-M3 core, 256 KB flash (with ECC), 32 KB RAM, 8 KB EEPROM (with ECC) in LQFP64 package.
This board includes an integrated ST-LINK/V2 debugger via Mini-B USB connector, 24-segment LCD, touch sensors, 2 user LEDs, user button, reset button, and two 28x1 male pin headers.
A discovery board for STM32L100RCT6 microcontroller with 32 MHz ARM Cortex-M3 core, 256 KB flash (with ECC), 16 KB RAM, 4 KB EEPROM (with ECC) in LQFP64 package.
A prototyping environment for a variety of STM32 variants, which allows users to create their applications using an application programming interface (API) to implement device peripherals and a range of evaluation features on the EvoPrimer base including TFT color touchscreen, graphical user interface, joy stick, codec-based audio, SD card, IrDA and standard peripherals such as USB, USART, SPI, I2C, CAN, etc.
Simulink, by MathWorks provides model-based design solutions to design embedded systems. The Embedded Coder Support Package for STMicroelectronics Discovery Boards and the Simulink Coder Support Package for STMicroelectronics Nucleo Boards provide parameter tuning, signal monitoring and one-click deployment of Simulink algorithms to STM32 boards with access to peripherals like ADC, PWM, GPIOs, I²C, SPI, SCI, TCP/IP, UDP, etc.

Discovery STM32L4P5G-DK set is a development platform for the STM32L4P5AGI6PU microcontroller based on Arm Cortex-M4 core with four I2C buses, three SPI ports and six USART ports, CAN port, two SAI ports, 12-bit ADC, 12-bit digital-to-analog converter , internal 320 KB SRAM memory and 1 MB Flash memory, two Octo-SPI memory interfaces, touch detection function, USB OTG FS port, LCD-TFT controller, flexible memory controller (FMC), 8- to 14-bit DCMI interface and support JTAG debugging.

Ahh yeah look at that! If you look closely, top right of the LCD, that’s obviously a flex connector for a resistive touch overlay (4 contacts running to the 4 sides of the LCD overlay).
Agreed! I will be picking one up. I’ve been happy developing for the stm32f4discovery (and other stm32 chips) with gcc, openocd and gdb. It is all free.
I can see there is only a STLINK usb connector on board, so there is even no FS to expect. beside HS, I suppose does mean High Speed (480mbps). but HS anyway needs a separate physical layer USB chip for addition to STM32F4 chip and most likely this is chip is not present on this board anyway, because this is STM32F4+LCD+SDRAM demoboard and there is no need for USB at all.
I wouldn’t expect TI to hack profits from their calculator range, and HP have always been expensive, but ST could easily change their format to calculator-friendly. Clamshell design, LCD & battery in top half, CPU & keypad in bottom half, expansion pins to left / right of keypad makes a self contained unit.
HP Palm – Love the idea, hate the baguette (french bread loaf) layout. If I could get custom key covers, and surface-mount key switches, I’d be designing my own low-profile keypad to go with an LCD module. Top side keypad, bottom side CPU / RAM / USB / LCD driver / power regulation / expansion port.
Great find, thanks! Man, could they have buried the details on that guy any farther down into the document? I can’t help but feel like a quick pointer in the LCD section to “oh by the way there’s a touch screen, here’s how to talk to it” would have been a good idea.
It’s certainly useable in any other project where you have an onboard LCD controller. Especially any other project that happens to use a STM32F4. What difference would it have made if it had an external controller? Surely it’d have been on the same PCB. Were you hoping for a removeable SPI-interfaced module?
Look in the UM1670 user manual, paragraph 4.8: the tft includes an ILI9341 controller. The ILI9341 has it’s own graphics ram inside, it is not mapped into the STM32 address space. It is connected to the STM32 via a parallel bus. The ILI9341 and similar controllers are common on cheap chinese tfts. So it is no problem to source similar tfts for your final product after developing on the discovery board.
UM1670 in paragraph 4.8 also says that “The TFT LCD is a 2.41″ display of 262 K colors. Its definition is QVGA (240 x 320 dots) and is directly driven by the STM32F429ZIT6 using the RGB protocol”. ILI9341 has multiple modes of operation including direct RGB/HSYNC/VSYNC mode which bypasses internal GRAM. I don’t have the board yet but I assume display buffer is located in external SDRAM which is also on the board. The whole point of this kit is to show TFT and SDRAM interface in new STM32F4x9.
I’ve checked this discovery board firmware available from ST’s site (“STM32F429 discovery firmware package UM1662” number: STSW-STM32138, btw. finding it is a bit difficult – ST’s site is terrible):
Check again martin. Those lines have pullups to vdd and are connected to cpu pins. I have this board for some time and I can confirm that lcd is driven by lcd controller from cpu and frame buffer is in external dram which is also on the board.
Ms.Josey
Ms.Josey