tft lcd display driver quotation

Quote: This display uses the NT57860 driver IC. I"m using the TC358860 eDP-to-MIPIDSI bridge chip, but I"m not sure whether it can drive this display panel. Is it possible to share the datasheet of this NT57860 driver IC? That way I"m able to verify that. Thanks in advance, With kind regards

tft lcd display driver quotation

Leadtek has paid great efforts on research and development of TFT-LCM, especially on its application of consumable and industrial products. The sizes of LCM includes 1.4”, 2.4”, 3.5", 3.51", 4.3", 4", 5", 7", 8", 10.1” and 11.6". And among them the 3.5”, 4.3", 5", 7” and 10.1" LCM has achieved the leading level of the industry, and mainly applied to vehicle-applications, tablet PCs, smartphones, medical equipment, measurement equipment, E-books, EPC and industrial products, and provides powerful and reliable supports on supplies and qualities. We are cooperating with famous foreign companies on research and developments, and will bring out the series products of industrial control. Also, we explore the overseas market, and build up a long-term relationship with our overseas partners and agents, Leadtek products will be worldwide in the near future.

tft lcd display driver quotation

ER-TFTV070A1-3 is 800x480 dots 7" color tft lcd module display with small HDMI signal driver board and superior display quality,super wide view angle. It"s optional for optional 4-wire resistive touch panel with USB driver board and cable, optional capacitive touch panel with USB controller board and cable, optional remote control,It can be used in any embedded systems,car,industrial device,security and hand-held equipment which requires display in high quality and colorful video.It"s also ideal for Raspberry PI by HDMI.

tft lcd display driver quotation

ER-TFTV043-3 is 480x272 dots 4.3" color tft lcd module display with vga,video,av signal driver board,optional 4-wire resistive touch panel with USB driver board and cable,optional capacitive touch panel with USB controller board and cable,optional remote control,superior display quality,wide view angle.It can be used in any embedded systems,car,industrial device,security and hand-held equipment which requires display in high quality and colorful video.

tft lcd display driver quotation

INT043BTFT and INT043BTFT-TS are embedded display driver boards based on our 4.3 inch 480 x 272 RGB resolution TFT display module. Mounted on the embedded board is the Solomon Systech SSD1961 LCD controller that supports common RAM-less LCD drivers and offers the following features and benefits:

tft lcd display driver quotation

INT028ATFT and INT028ATFT-TS are embedded display driver boards based on our 2.8 inch 240 x 320 RGB resolution TFT display module. Mounted on the embedded board is the RAIO RA8872 LCD controller that offers the following features and benefits:

tft lcd display driver quotation

TFT LCD, acronym for Thin Film Transistor Liquid Crystal Display, is a technology developed for improve image quality and has countless consumer and industrial uses.

Specifically, within TFT monitors, liquid crystals allow faster and smoother state transitions while saving power, resulting in high image quality on the display, which appears without flickering or bright irregularities (unlike simpler LCD screens).

TFT screens can be of different sizes, ranging from small 3.5" screens to large displays, and can also be identified by their area of use or by certain special features and applications, such as multitouch.

TFT displays are always clearly visible in sunlight, making them particularly suitable for outdoor use. This type of display is also particularly light, thin and energy-efficient, as well as being relatively inexpensive in relation to the technical features offered.

Digimax has an extensive catalogue ofTFT screens from 7" to 23", LCD displays and professional monitors capable of handling a high number of pixels to enable high image quality, high resolution and a screen without glare or flicker.

TFT technology is now a consolidated reality for the choice of monitors, screens and industrial displays: following this market evolution, Digimax offers the latest generation of TFT touch screen solutions, multi touch monitors and transparent displays able to offer the right option for every need.

We offer both standard and customised TFT LCDs through strategic partnerships with leading international suppliers and brands: Ampire displays, Raystar monitors and DLC screens, as well as RockTech, RockTouch and AUO touch screens.

Together with Digimax consultancy, a specific service is also available to configure TFT kits consisting of a TFT LCD monitor and matching PC board: it is possible to customise CPU and coverlens, touch technology used and connection wiring between motherboard and display.

tft lcd display driver quotation

Since the reference voltages are connected to all channels, many DACs may use the same reference voltage. The more DACs there are connected to a single reference voltage, the larger the required C-DAC settling time. This study simulates the settling time for different numbers of connected DACs using a 0.35-μm 5-V CMOS model. Figure 11 shows the simulated results where the settling time is measured at 99.9% of its final voltage for a full swing (0.266 V ~ 4.75 V). The settling time is 5.2 μs when 200 DACs are connected to a single reference voltage. Although a column driver IC contains several hundreds or even up to a thousand DACs, these DACs are distributed to 256 (28) reference voltages. This means that not all the DACs are connected to a single reference voltage. A typical UXGA (1600×1200) display has a pixel clock frequency of 162 MHz and a horizontal scanning time of 9.877 μs [4]. Hence, the proposed column driver is suitable for UXGA displays.

Due to the limited silicon area, the proposed LCD column driver has only four channels. The 10-bit LCD column driver with R-DAC and C-DAC was fabricated using a 0.35-μm 5-V CMOS technology. Table I shows the device sizes used in the proposed column driver, where Rtop, Rmid, Rbot, and Ri are designated in Figure 7. Figure 12 is a photograph of the die. Except for the resistor string of the R-DAC, the die area is 0.2×1.26 mm2 for four channels. Each RGB digital input code is 10-bits wide.

The Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) are typically measured for a DAC. However, it is difficult to determine these two specifications for a nonlinear DAC. To demonstrate the performance of the proposed circuit, the nonlinear gamma voltages are not applied to the R-string and the resistor values of the resistor string are made equal. Since an LCD panel needs several column drivers, the uniformity of different drivers is very important. Figure 13 shows the measured transfer curves of a DAC for eight off-chip column drivers. To show the deviation between different chips, Figure 14 provides an

enlarged view of the transfer curves, where the maximum deviation is 3.5 mV from the mean. This deviation is mainly due to process variations. The approach in this study uses no error correction. Hence, the deviation can be reduced by applying an offset canceling technique to the buffer amplifier. Figures 15(a) and (b) show the DNL values for positive and negative polarities, respectively. Figures 16(a) and (b) show the INL values for positive and negative polarities, respectively. The combination of R-DACs and C-DACs creates two groups of DNL values. The maximum DNL and INL values are 3.83 and 3.84 LSB, respectively. This study uses a 1-LSB voltage of 2.44mV to calculate the INL and DNL values. The linearity, however, is less important than the deviations between off-chip drivers for LCD drivers [2].

Figure 17 shows the measured output waveforms of two neighboring channels under dot inversion for the RGB digital inputs of ‘1111111111.’ Here, the voltage levels for negative and positive polarities are 0.266 V and 4.75 V, respectively. A load resistor of 5 kΩ and a capacitor of 90 pF were used. Figure 18 shows a similar waveform for ‘0000000000’ inputs, where the corresponding voltage levels for negative and positive polarities are 2.425 V and 2.598 V, respectively. These two figures show that the settling time is within 3 μs, which is smaller than that of previously published work [2] and standard UXGA displays [5]. Table II summarizes the performance of the proposed column driver IC. The average area per channel is 0.063 mm2, which is smaller than the reported areas of fully R-DAC-based column drivers [5, 8]. These experimental results show that the proposed column driver is suitable for UXGA LCD-TV applications.

tft lcd display driver quotation

LAPIS Technology"s display drivers realize uniform and fast pixel charging for 8K 120Hz, 75-inch, and larger panels with the unique technology of panel load charging.

Gaming monitors require a higher refresh rate *1 in order to display video smoothly.The higher the refresh rate, the shorter the time required to write the display data.

LAPIS Technology"s display drivers use high-speed point-to-point interface technology *2 (4Gbps), which enables large amounts of display data transfer in a short time.Our products have been used in many panels with high refresh rates such as 360Hz.

In automotive display, it is needed to ensure automotive quality, reduce the number of signal and power wires, and provide long-distance wiring.We will meet these needs with a unique point-to-point interface that reduces wiring number and enables long-distance transmission, as well as an anomaly detection function to ensure automotive quality.