nextion hmi tft lcd arduino quotation
When Nextion is in active Protocol Reparse mode, ucopy copies data from the serial buffer. Most HMI applications will not require Protocol Reparse and should be skipped if not fully understood.
Note: Protocol Reparse Mode (recmod) must be active to be used. Most HMI applications will not require Protocol Reparse and should be skipped if not fully understood.
Note: Protocol Reparse Mode (recmod) must be active to be used. Most HMI applications will not require Protocol Reparse and should be skipped if not fully understood.
This post is an introduction to the Nextion display with the Arduino. We’re going to show you how to configure the display for the first time, download the needed resources, and how to integrate it with the Arduino UNO board. We’ll also make a simple graphical user interface to control the Arduino pins.
Nextion is a Human Machine Interface (HMI) solution. Nextion displays are resistive touchscreens that makes it easy to build a Graphical User Interface (GUI). It is a great solution to monitor and control processes, being mainly applied to IoT applications.
The Nextion has a built-in ARM microcontroller that controls the display, for example it takes care of generating the buttons, creating text, store images or change the background. The Nextion communicates with any microcontroller using serial communication at a 9600 baud rate.
To design the GUI, you use the Nextion Editor, in which you can add buttons, gauges, progress bars, text labels, and more to the user interface in an easy way. We have the 2.8” Nextion display basic model, that is shown in the following figure.
The best model for you, will depend on your needs. If you’re just getting started with Nextion, we recommend getting the 3.2” size which is the one used in the Nextion Editor examples (the examples also work with other sizes, but you need to make some changes). Additionally, this is the most used size, which means more open-source examples and resources for this size.
To get started with Nextion, first you need to install Nextion Editor. Go to https://nextion.itead.cc/, select the Resources tab, Download > Nextion Editor and install Nextion Editor. You can either download the .zip file or the .exe file.
Connecting the Nextion display to the Arduino is very straightforward. You just need to make four connections: GND, RX, TX, and +5V. These pins are labeled at the back of your display, as shown in the figure below.
You can power up the Nextion display directly from the Arduino 5V pin, but it is not recommended. Working with insufficient power supply may damage the display. So, you should use an external power source. You should use a 5V/1A power adaptor with a micro USB cable. Along with your Nextion display, you’ll also receive a USB to 2 pin connector, useful to connect the power adaptor to the display.
The best way to get familiar with a new software and a new device is to make a project example. Here we’re going to create a user interface in the Nextion display to control the Arduino pins, and display data.
The user interface has two pages: one controls two LEDs connected to the Arduino pins, and the other shows data gathered from the DHT11 temperature and humidity sensor;
We won’t cover step-by-step how to build the GUI in the Nextion display. But we’ll show you how to build the most important parts, so that you can learn how to actually build the user interface. After following the instructions, you should be able to complete the user interface yourself.
Open Nextion Editor and go to File > New to create a new file. Give it a name and save it. Then, a window pops up to chose your Nextion model, as show in the figure below.
We’ll start by adding a background image. To use an image as a background, it should have the exact same dimensions as your Nextion display. We’re using the 2.8” display, so the background image needs to be 240×320 pixels. Check your display dimensions and edit your background image accordingly. As an example, we’re using the following image:
All components have an attribute called objname. This is the name of the component. Give good names to your components because you’ll need them later for the Arduino code. Also note that each component has one id number that is unique to that component in that page. The figure below shows the objname and id for the slider.
You should trigger an event for the touchable components (the buttons and the slider) so that the Arduino knows that a component was touched. You can trigger events when you press or when you release a component.
Notice that we have labels to hold the units like “ºC”, “ºF” and “%”, and empty labels that will be filled with the readings when we have our Arduino code running.
Once the GUI is ready, you need to write the Arduino code so that the Nextion can interact with the Arduino and vice-versa. Writing code to interact with the Nextion display is not straightforward for beginners, but it also isn’t as complicated as it may seem.
A good way to learn how to write code for the Arduino to interact with the Nextion display is to go to the examples folder in the Nextion library folder and explore. You should be able to copy and paste code to make the Arduino do what you want.
The first thing you should do is to take note of your components in the GUI that will interact with the Arduino and take note of their ID, names and page. Here’s a table of all the components the code will interact to (your components may have a different ID depending on the order you’ve added them to the GUI).
In this post we’ve introduced you to the Nextion display. We’ve also created a simple application user interface in the Nextion display to control the Arduino pins. The application built is just an example for you to understand how to interface different components with the Arduino – we hope you’ve found the instructions as well as the example provided useful.
In our opinion, Nextion is a great display that makes the process of creating user interfaces simple and easy. Although the Nextion Editor has some issues and limitations it is a great choice for building interfaces for your electronics projects. We have a project on how to create a Node-RED physical interface with the Nextion display and an ESP8266 to control outputs. Feel free to take a look.
Towards the end of 2015, I was contacted by ITead Studio after they read my Arduino blogs. Based on what they saw in my blogs, they asked me if I’d be willing to take a look at a couple of their related products. The first product they asked about was their HMI Display. My curiosity piqued, I quickly rummaged through their website and a few relevant Google searches. What I discovered had me pretty excited—it looked to be a product right up my alley.
The HMI (Human Machine Interface) Display is a cost-effective TFT touchscreen which can be controlled via an on-board serial port. The Nextion Editor is used to design an interface which is saved to a Micro SDCard and then loaded on the device. There’s quite a bit of interface logic built into the editor: you create pages and place objects (buttons, sliders, text boxes, etc.) within the page and include whatever control is needed to move between the pages you create.
More importantly? The serial interface on the devices also allow you to control the display from something like a Arduino, Raspberry Pi, or any other system-on-a-chip with the ability to communicate over a serial port. The ability to create a user interface in front of one of my Arduino creations piqued my curiosity the most.
Because the manufacturer claimed they were low cost, the first thing that I did was go out on Amazon to find out how much resellers were selling them for. I found the 2.4” Nextion HMI Displays for $17.99, 4.3” Nextion HMI Displays for $49.98, 7.0” Nextion HMI Displays for $79.99, and other sizes (both bigger and smaller) priced in a similar fashion. About my only complaint about what I found on Amazon is that there don’t seem to be many vendors selling the displays yet, which means they’re in and out of stock pretty quickly. Worse, there are unscrupulous vendors attempting to capitalize on the scarcity within Amazon by gouging buyers with exorbitant prices. Considering what’s going price-wise on Amazon, I’d suggest trying to buy through the ITEAD Studio Store or eBay until the Amazon vendors get their acts together. But for what you’re getting it certainly seems like a good value. Especially when you consider that the Nextion Editor will allow you to build a fully independent user interface without hooking up an Arduino or Raspberry Pi to control it.
The first thing I did was install the Nextion Editor and start tinkering around. It didn’t take me very long to figure out how to add a page, put some naughty words on that page, and get that profanity displayed on the 2.4” Nextion HMI Display. I learned a few things in the process:
From within the editor, you needed to “compile” your file and locate the build output (File –> Build Output) to find the *.tft file that gets copied to your Micro SDCard.
Apart from the fact that the touchscreen isn’t particularly responsive, I pulled this off pretty simply. I found the editor a bit difficult to get started with, but once I got a bit more familiar with the display I was able to create this example in just a few minutes. Naturally, this was just my initial attempt at using the Nextion HMI Display. My basic interface wasn’t really good for much at all unless you’re an Animal fanboy like I am! In order to abstract the most value from the Nextion HMI Display, I’d want to be able to control it from an Arduino.
I am thoroughly impressed with the Nextion HMI Display. The device falls right in a gap that I think exists between the Arduino and RaspberryPi devices; the Arduino lacks the processing capability to power much in the way of displays. Some of that can be offloaded onto the Nextion HMI Display. Along those same lines it can be done relatively inexpensively, and the Nextion Editor makes creating that interface a bit simpler. If you are an Arduino tinkerer, I think at the very least you should have one of the 2.4” HMI Displays in your inventory of spare parts.
Firstly, I recently got into home brewing my own beer in the home-brewing group at TheLab.ms, a Plano-area makerspace. As a result of the home brewing I wound up building a keezer to serve our beers from. My original design was that I’d simply write on the keezer which brews are in each faucet using dry-erase markers. However, thanks to the Nextion HMI Displays, I’m now entertaining the idea of building an interactive menu that describes what’s in each tap and features some photos to set atop or mount to the keezer somewhere.
I’m pretty excited with what you can do with the Nextion HMI Displays, both as a standalone device with an interface that you design and load on it yourself, and as a “smart” display with an Arduino or RaspberryPi behind it adding additional features and functionality. The Nextion HMI Displays have a nice set of features and present quite a bit of value considering the price points of their various-sized displays.
Click on Picture tab at bottom left corner and then + symbol to import a back ground picture.This picture resolution must match that of your NEXTION model
Note the usage of double quotes for data to be displayed.While typing the code the interpreter of Nextion editor gives options to select (intellisense).
OverviewNextion is a Human Machine Interface (HMI) solution combining an onboard processor and memory touch display with Nextion Editor software for HMI GUI project development. Using the NEXTION Editor software, you can quickly develop the HMI GUI by drag-and-drop components (graphics, text, button, slider, etc.) and ASCII text-based instructions for coding how components interact at the display side. Nextion HMI display connects to peripheral MCU via TTL Serial (5V, TX, RX ,GND) to provide event notifications that peripheral MCU can act on, the peripheral MCU can easily update progress, and status back to Nextion display utilizing simple ASCII text-based instructions. Comparing with Basic Series, the Discovery Series has a better MCU performance, the same functionalities as Basic, and Lower Price. That’s Nextion Discovery Series Products.
Nextion NX8048T050 5.0" LCD TFT HMI Touchscreen Display is a seamless Human Machine Interface (HMI) solution that provides a control and visualization interface between a human and a process, machine, application or appliance. Nextion is mainly applied to the Internet of thing (IoT) or consumer electronics field. It is the best solution to replace the traditional LCD and LED Nixie tube.
Nextion includes a hardware part (a series of TFT boards) and a software part (the Nextion editor). The Nextion TFT board uses only one serial port to communicate. It lets users avoid the hassle of wiring. We noticed that most engineers spend much time in application development but get unsatisfactory results. As a solution to this situation, Nextion editor has mass components such as button, text, progress bar, slider, instrument panel etc. to enrich the interface design. Furthermore, the drag-and-drop function ensures that users spend less time in programming, which will reduce 99% of their development workloads. With the help of this WYSIWYG editor, designing a GUI is a piece of cake.
Nextion 5.0” HMI Arduino TFT Lcd Intelligent Display Module Screen with integrated 4-wire Resistive Touch Panel 800×480 NX8048T050 is a powerful 5.0” HMI, which is the member of Nextion family. Features include: a 5.0″ TFT 800×480 resistive touchscreen display, 16M Flash, 2KByte RAM, 65k colors.
150mm/6Inch LCD Digital Electronic Carbon Fiber Vernier Caliper Gauge Micrometer is a 15 cm or 6 inch low cost vernier caliper which is best for two w..
Nowadays home automation is a trending topic among electronic enthusiasts and even the mass population. People are busy with their life challenges, so an electronic device should take care of the home instead! The majority of such devices need internet or Wi-Fi for connectivity or they don’t offer a user-friendly GUI, but I decided to design a standalone wireless monitoring/controlling unit that can be adjusted using a graphical and touch-controlled LCD display.
The device consists of a panelboard and a mainboard that communicate using 315MHz (or 433MHz) ASK transceivers. The panel side is equipped with a high-quality 4.3” capacitive-touch Nextion Display. The user can monitor the live temperature values and define the action threshold (to activate/deactivate the heater or cooler), humidity (to activate/deactivate the humidifier or dehumidifier), and ambient light (to turn ON/OFF the lights). The mainboard is equipped with 4 Relays to activate/deactivate the aforementioned loads.
To design the schematic and PCB, I used Altium Designer 23. The fast component search engine (octopart) allowed me to quickly consider components’ information and also generate the BOM. To get high-quality fabricated boards, I sent the Gerber files to PCBWay. I used the Arduino IDE to write the MCU code, so it is pretty easy to follow and understand. Designing a GUI using the Nextion tools was a pleasant experience that I will certainly follow for similar projects in the future. So let’s get started :-)
The heart of the circuit is the IC1 (ATMega328 microcontroller) [4], the same chip as the Arduino Nano. I used a 16MHz crystal for the clock source. C9 ... C13 are decoupling capacitors. The ISP is a 5-pin male pin header to connect an ISP programmer (such as the USBasp or similar) to burn the HEX file into the chip. R1 is a 10K pull-up resistor for the Reset pin, to avoid unwanted triggering of the Reset (active-low).
There is a high similarity between the circuit of the panelboard and the mainboard, the main difference is the Nextion display connector. The Nextion display uses the UART or Serial interface. C16 and C17 are decoupling capacitors.
You must install several external libraries to be able to modify and re-compile the code if you like. The first one is the Adafruit SHTC3 library [8], the second is the RadioHead Packet Radio library [9], the third is the TaskScheduler library [10], and the last one is the Easy Nextion library [11]. I have provided the complied HEX file for the panelboard [12] and the mainboard [13] as well. Below is the code for the panelboard.
As I mentioned earlier, you should use an external AVR ISP programmer (such as the cheap USBasp [14], official Atmel programmer, or whatever similar) to program the microcontroller of both the panelboard and the mainboard. That’s why I have provided an ISP interface for the boards. To compile the code, you should select Arduino Nano in the “board” selection menu. To generate the HEX file, you can press Ctrl + Alt + S.
As it is clear in the YouTube video, I used a 4.3” Nextion HMI Display, Intelligent Series (Model: NX4827P043-011C-Y) [15]. The TFT file is available for download [16]. You must copy-paste this file into a MicroSD card and upgrade the Flash memory of your Nextion Display. There are many tutorials about this, so I skip this step. Figure 7 shows a picture of this display.
Figure 8 shows the assembled PCB boards and the Nextion display. The smallest component package size is 0805, you shouldn’t have any problem in soldering the components, however, if you have some difficulties to purchase the components or there is no time for hand soldering, you can order the boards assembled.
The Enhanced touch display by Nextion 7" now comes with an even more powerful onboard processor. This diplay is compatible with most Arduino and Raspberry Pi boards and can be driven with a standard UART. Display design and visualization is done inside the free Nextion IDE. This is one of the most powerful displays on the market. This is the enhanced model.
HMI module (Human-Machine Interface) with a color LCD TFT 3.5" display with a resolution of 480x320 px. It is equipped with a resistive touch panel that ensures user interaction with the system being built. The panel has a built-in microcontroller that controls the display, a microSD card slot and Flash memory The module communicates with an external driver via the UART interface, thanks to which it can work with popular development kits, such as Arduino, Raspberry Pi or STM32. It is powered with a voltage of 5 V using the attached module and cables. all projects where a user control panel is required, e.g. on production lines.
Designing the appearance and functionality of the graphical user interface (GUI) with Nextion is fast and intuitive thanks to the dedicated Nextion Editor graphic editor. It allows you to prepare the interface using universal blocks, buttons or sliders, thanks to which the user saves time and significantly speeds up the device design process. The project is uploaded to devices via the UART interface. The exact editor"s manual is available on the manufacturer"s website.
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work you can check my particular tutorial. Here you can download that file:
The editor claims to make the design of the GUI on a Nextion display very easy and fast because it uses a What You See Is What You Get editor. Well my initial opinion about the editor was not the best. The Nextion editor seems to be in an early stage of development and the documentation is almost inexistent. At first I was very disappointed, the software looks so primitive. After spending some time trying some things I managed to build something useful, a simple Weather Station. It consists of only one page, in which we display the temperature and the humidity we get from a DHT22 sensor using Arduino. Let’s see how to build it from the beginning. The procedure will be easier to follow if you watch the attached video as well.
We also create two more textboxes, one the degrees Celsius symbol and one with the percent symbol. These two textboxes won’t be updated. If we now press the Debug Button we can see how the interface will look in reality. But how can we change the values of the textboxes with the readings from the sensor? We need to send some commands to the display from the Arduino. We can emulate that from the debug window here. So, if we send the command temperature.txt=”30.5” to the Nextion display the textbox with the name temperature will be updated with the new value. We can do the same with the other textbox which is named humidity. Cool. It is so easy after all.
The Nextion code is ready, let’s load it on the display. We go to File -> Open Build Folder and we copy the WeatherStation.tft file. We paste this file in an empty micro sd card. We then place this SD card in the sd card slot at the back of the Nextion Display.If we now power up the display, it will update the code that the display is executing. If we now remove the SD card and power up the display one more time, the new graphical user interface will appear. Of course the values won’t change since we haven’t connected the Arduino yet. Now we are ready to build the Arduino part of the project.