sainsmart tft lcd display for arduino tutorial factory
SainSmart 2.8" TFT LCD Display is a LCD touch screen module. It has 40pins interface and SD card and Flash reader design. It is a powerful and mutilfunctional module for your project.The Screen include a controller ILI9325, it"s a support 8/16bit data interface , easy to drive by many MCU like arduino families,STM32 ,AVR and 8051. It is designed with a touch controller in it . The touch IC is XPT2046 , and touch interface is included in the 40 pins breakout. It is the version of product only with touch screen and touch controller.
Voltage type: 5v or 3v voltage input voltage,input is selectable. Because TFT can only work under 3.3 V voltage, so when the input voltage VIN is 5V, need through the 3.3 V voltage regulator IC step down to 3.3V , when the input voltage of 3.3 V, you need to use the zero resistance make J2 short , is equivalent to not through the voltage regulator IC for module and power supply directly.
Voltage type: 5v or 3v voltage input voltage,input is selectable. Because TFT can only work under 3.3 V voltage, so when the input voltage VIN is 5V, need through the 3.3 V voltage regulator IC step down to 3.3V , when the input voltage of 3.3 V, you need to use the zero resistance make J2 short , is equivalent to not through the voltage regulator IC for module and power supply directly.
SainSmart 2.8" TFT LCD Display is a LCD touch screen module. It has 40pins interface and SD card and Flash reader design. It is a powerful and mutilfunctional module for your project.The Screen include a controllerILI9325, it"s a support 8/16bit data interface , easy to drive by many MCU like arduino families,STM32 ,AVR and 8051. It is designed with a touch controller in it . The touch IC isXPT2046, and touch interface is included in the 40 pins breakout. It is the version of product only with touch screen and touch controller.
Voltage type: 5v or 3v voltage input voltage,input is selectable. Because TFT can only work under 3.3 V voltage, so when the input voltage VIN is 5V, need through the 3.3 V voltage regulator IC step down to 3.3V , when the input voltage of 3.3 V, you need to use the zero resistance make J2 short , is equivalent to not through the voltage regulator IC for module and power supply directly.(Click here)
Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big (7" diagonal) bright (14 white-LED backlight) and colorfu 800x480 pixels with individual pixel control. As a bonus, this display has a optional capacitive and resistive touch panel attached on screen by default.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Due/Mega 2560).
This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library at the bottom of this page that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x,y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!
For 7 inch screen,the high current is needed.But the current of arduino uno or arduino mega board is low, an external 5V power supply is needed. Refer to the image shows the external power supply position on shield ER-AS-RA8875.
If you"ve had a lot of Arduino DUEs go through your hands (or if you are just unlucky), chances are you’ve come across at least one that does not start-up properly.The symptom is simple: you power up the Arduino but it doesn’t appear to “boot”. Your code simply doesn"t start running.You might have noticed that resetting the board (by pressing the reset button) causes the board to start-up normally.The fix is simple,here is the solution.
We covered the basics of accelerometer previously inUsing Arduino with Parts and Sensors – Accelerometer Part 1andUsing Arduino with Parts and Sensors – Accelerometer Part 2. Today we’ll be testing KX022-1020 accelerometer using TFT liquid crystal panel. We’ll discuss how to control the TFT LCD in more detail in the next article. In addition, we’ll further exploreArduino Create. For more information about Arduino Create, please refer back tothisarticle.
Let’s briefly review what accelerometer is. An accelerometer is a sensor that can detect the state of motion, such as “tilt,” “shock,” “vibration” and so forth. Accelerometers are classified into one axis, two axes, and three axes. For example, one axis detects one direction (vertical only); two axes detects two directions (vertical and horizontal); and three axes three directions (vertical, horizontal and height).
We’ll continue using Arduino Create Web Editor as we did in our lasttutorial. To add the library, you can upload the zip file by selecting it from “Libraries” on the left menu and clicking on “ADD ZIP LIBRARY.”
Now the sample program is working fine, let’s try to display the values on a 1.8 inch TFT LCD monitor. Although this TFT liquid crystal monitor has a resolution slightly smaller than 126 x 160 px, it’ll be quite useful when displaying numbers or letters with Arduino etc.
In the past, we used 7-segment LED to display numerical values only. But this time, I tried to display the graph along with the values obtained from the accelerometer.
When using the TFT monitor, the connection method and the library used in the program may be different depending on the specification of each TFT monitor. The TFT monitor used in this tutorial is a monitorSainSmart ST7735R. In addition to Arduino, the monitor is also compatible with Raspberry.
In order to use the monitor to run the program in Arduino, we’ll have to modify the downloaded library a little bit.We’ll go over how to control the TFT LCD in more detail in the next article. Once everything is set, you will be able to output numerical values in the monitor as shown in the video below:
In the next part, we’ll create a simple device using the same accelerometer and TFT monitor. We’ll show how to create graphs and display the values obtained from the accelerometer on the TFT monitor.
Over the past year, I"ve ordered 47 of these SainSmart LCD displays. For a while, they had a good thing going, but in the Autumn of 2015, they changed their manufacturing and have utterly messed up this device. The first six that I ordered in the Summer of 2015 worked perfectly. But of the 41 devices that I"ve ordered after the change, 40% have failed right out of the box... 6 won"t power up at all, 4 have screen flicker, 2 the touch doesn"t work, 1 the LCD pixels were misaligned and 1 had a cracked screen.
What happened? Besides utter lack of quality control (these displays were obviously never tested), SainSmart changed the LCD screen hardware. Instead of using the LCD screen that would fit properly on the TFT_320QVT PCB (see pictures), they chose a slightly thinner, narrower LCD screen that normally fits the TFT_320QDT PCB. (notice the one letter difference). The problem is that the new screen DOES NOT FIT properly into the pin holes on the PCB and has a nasty habit of falling off (see pics). They obviously realized this at the factory, and rather than re-ordering the correct screens, they just tried to force them to stay on with double sided tape. But that hasn"t worked well. Many of my screens had fallen off by the time I received them! But because I own a business that uses these things and I didn"t know at the time that I could find alternative suppliers for this part, my work-around was to glue them into the best position possible using a hot glue gun. What a pain!
Moral of the story: Don"t order any of these from SainSmart LCDs until they have accepted they have screwed this up and fixed this problem. I suspect they will comment on this review once that has happened and I"ll make modifications to this review to let you know when the problem is fixed. Until then, BUYER BEWARE. And, any other SainSmart product that includes this 3.2" is very likely going to include this same problem - including the shield + LCD and Mega2560 + shield + LCD.
That all said, when this thing works, it works really well. I am satisfied with resolution and the touch is responsive. I use it in the product that our company sells. Just don"t get it from Sainsmart - for now. There are alternative suppliers.
* The SD slot will not work with any SDHC cards. And no, you can"t reformat a larger SDHC card down to 2GB and get it to work. Won"t work. You can however get a 2GB or 4GB SD Card (not SDHC) and it"ll work fine. You may see some documentation suggesting a 2GB limitation, but it"s really 4GB as long as you don"t use a SDHC card. Did I mention, do not use SDHC? If you need to understand the difference, google "SD vs SDHC".
* The screen IC driver comes in two flavors out there: SSD1289 and ILI9341. They both work, but the software configuration is slightly different. So, either use one or the other - or expect to somehow auto-detect which one connect to your Mega2560 (not possible directly) and then code for both possibilities. As far as I can tell, the SSD1289 is being phased out for the now more common ILI9341. I"ve ordered this device from a number of sites, but unfortunately they often list the item as SSD1289, but it arrives as a ILI9341. If you are new to this, my advice is to go with the ILI9341 driver. The UTFT library was updated in the Summer of 2016 to accommodate this newer driver. Another reason to pass on this Sainsmart device is that it uses the SSD1289 driver. How can you tell the difference? The model for SSD1289 is TFT_320QVT and the model for ILI9341 is TFT_320QVT_9341. Unfortunately, ads for these devices often have the wrong model number displayed!
This is a very popular LCD Keypad shield for Arduino or Freeduino board. It includes a 2x16 LCD display and 6 momentary push buttons. Pins 4, 5, 6, 7, 8, 9 and 10 are used to interface with the LCD. Analog Pin 0 is used to read the push buttons. The LCD shield supports contrast adjustment and backlit on/off functions. It also expands analog pins for easy analog sensor reading and display.
The LCD Keypad shield is developed for Arduino compatible boards, to provide a user-friendly interface that allows users to go through the menu, make selections etc. It consists of a 1602 white character blue backlight LCD. The keypad consists of 5 keys — select, up, right, down and left. To save the digital IO pins, the keypad interface uses only one ADC channel. The key value is read through a 5 stage voltage divider.
Creates a variable of type LiquidCrystal. The display can be controlled using 4 or 8 data lines. If the former, omit the pin numbers for d0 to d3 and leave those lines unconnected. The RW pin can be tied to ground instead of connected to a pin on the Arduino; if so, omit it from this function"s parameters. for example:
Initializes the interface to the LCD screen, and specifies the dimensions (width and height) of the display. begin() needs to be called before any other LCD library commands.for example:
The J1-J8 include the both the user interface, i.e. Analog pins, APC220(Serial) pins, Digital pins, and the pins connected with the lower Arduino card, e.g. Uno/ Leonardo. Here is a simple mapping picture.
It works well if uploaded by Arduino 1.5.3 version, however, the latest 1.6.* have discard pin Definition for Edison. So you have to add pinMode(); into the setup() like this:
@Johnny Yuen - I did a lot of purchases from DX.com back a long time ago. When then I found Banggood. I was starting to do a bunch of stuff with Multi-rotor aircraft. For many things their pricing is just as good as Hobbyking, or even better. Even their cheap (free) shipping gets me my order in about 2 weeks to the eastern U.S. If they have the same item in the US or UK warehouse, it"s like only about $2.00 more for the item, but you will get it within a week. Sometimes that works out cheaper than their expedited shipping from China.
They don"t have a lot of stuff for 3D printing yet, but their inventory is growing. I find their pricing better than Amazon and eBay. And don"t be fooled, a lot of the stuff posted on Amazon comes from the same suppliers in China.
The display is driven by a ST7735R controller ( ST7735R-specifications.pdf (2.1 MB) ), can be used in a “slow” and a “fast” write mode, and is 3.3V/5V compatible.
Adafruit_ST7735 is the library we need to pair with the graphics library for hardware specific functions of the ST7735 TFT Display/SD-Card controller.
In the file dialog select the downloaded ZIP file and your library will be installed automatically. This will automatically install the library for you (requires Arduino 1.0.5 or newer). Restarting your Arduino software is recommended as it will make the examples visible in the examples menu.
The easiest way to remedy this is by extracting the GitHub ZIP file. Place the files in a directory with the proper library name (Adafruit_GFX, Adafruit_ST7735 or SD) and zip the folder (Adafruit_GFX, Adafruit_ST7735.zip, SD.zip). Now the Arduino software can read and install the library automatically for you.
Basically, besides the obvious backlight, we tell the controller first what we are talking to with the CS pins. CS(TFT) selects data to be for the Display, and CS(SD) to set data for the SD-Card. Data is written to the selected device through SDA (display) or MOSI (SD-Card). Data is read from the SD-Card through MISO.
So when using both display and SD-Card, and utilizing the Adafruit libraries with a SainSmart display, you will need to connect SDA to MOSI, and SCL to SCLK.
As mentioned before, the display has a SLOW and a FAST mode, each serving it’s own purpose. Do some experiments with both speeds to determine which one works for your application. Of course, the need of particular Arduino pins plays a role in this decision as well …
Note: Adafruit displays can have different colored tabs on the transparent label on your display. You might need to adapt your code if your display shows a little odd shift. I noticed that my SainSmart display (gree tab) behaves best with the code for the black tab – try them out to see which one works best for yours.
Low Speed display is about 1/5 of the speed of High Speed display, which makes it only suitable for particular purposes, but at least the SPI pins of the Arduino are available.
After connecting the display in Low Speed configuration, you can load the first example from the Arduino Software (“File” “Example” “Adafruit_ST7735” – recommend starting with the “graphictest“).
Below the code parts for a LOW SPEED display (pay attention to the highlighted lines) – keep in mind that the names of the pins in the code are based on the Adafruit display:
#define sclk 4 // SainSmart: SCL#define mosi 5 // SainSmart: SDA#define cs 6 // SainSmart: CS#define dc 7 // SainSmart: RS/DC#define rst 8 // SainSmart: RES
#define sclk 13 // SainSmart: SCL#define mosi 11 // SainSmart: SDA#define cs 10 // SainSmart: CS#define dc 9 // SainSmart: RS/DC#define rst 8 // SainSmart: RES
The SD-Card needs to be FAT-16 or FAT-32 formatted, single partition, and the BMP file needs to be placed in the root (ie. not in a directory or anything like that).
You can name your BMP file “parrot.bmp” or modify the Sketch to have the proper filename (in “spitftbitmap” line 70, and in “soft_spitftbitmap” line 74).
#define SD_CS 4 // Chip select line for SD card#define TFT_CS 10 // Chip select line for TFT display#define TFT_DC 9 // Data/command line for TFT#define TFT_RST 8 // Reset line for TFT (or connect to +5V)
#define SD_CS 4 // Chip select line for SD card#define TFT_CS 10 // Chip select line for TFT display#define TFT_DC 9 // Data/command line for TFT#define TFT_RST 8 // Reset line for TFT (or connect to +5V)
As you have seen before the Adafruit_GFX library (supported by the Adafruit_ST7735 library) makes this easy for us – More information can be found at the GFX Reference page.
To use this in your Arduino Sketch: The first 2 characters represent RED, the second set of two characters is for GREEN and the last 2 characters represent BLUE. Add ‘0x’ in front of each of these hex values when using them (‘0x’ designates a hexadecimal value).
This function is used to indicate what corner of your display is considered (0,0), which in essence rotates the coordinate system 0, 90, 180 or 270 degrees.
However, if your application needs your screen sideways, then you’d want to rotate the screen 90 degrees, effectively changing the display from a 128×160 pixel (WxH) screen to a 160×128 pixel display. Valid values are: 0 (0 degrees), 1 (90 degrees), 2 (180 degrees) and 3 (270 degrees).
Based on these functions, I did create a little demo to show what these functions do. Either download the file or just copy the code and paste it into an empty Arduino Sketch.
tft.print("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, fringilla sed malesuada et, malesuada sit amet turpis. Sed porttitor neque ut ante pretium vitae malesuada nunc bibendum. Nullam aliquet ultrices massa eu hendrerit. Ut sed nisi lorem. In vestibulum purus a tortor imperdiet posuere. ");
Buying is a Type of Hunting Game. TFT LCD Display For Arduino Buying Guide is an Important Article as No Where There is Any Practical Guide. Practically we will use it as a base either as receiver or the central machinery for some stuffs around Internet of Things. Just for getting started with DIY electronics, we published some articles which possibly will help who are not exactly related to hardware but has more to do with software. Those articles mostly can be found by using the search option on this website, searching with Arduino will help to sort out.
We are avoiding the basic electronic displays like LED display, basic LCD display as we are NOT really related to so basic works of electronics. This website was never for so basic guides. There are hundreds of those basic websites for those guides. Hardware are time consuming to write, most importantly, testing the useless hardware hugely waste our space. It might dishearten our some readers, but basically we need a rapid shift towards our main niche. Ultimately we have to connect with the servers.
We will, ultimately work with creating devices related to Internet of Things. As we discussed before – mobile phone’s display is not exactly a time and cost saving option as alternative display.
We have three options – TFT LCD Display, TFT LCD Touch Display and OLED display. You can check various places, monochrome OLEDs are the choice right now for manufacturing electronic units. OLEDs are hugely power saving but are far better than monochrome LCDs. There is not HUGE options in OLEDs for Arduino. Usage is very lesser in most situations where we will need a display. TFT LCD Touch Display doubles up as an input too. Without a computer, we can do the desired works in the way, suppose we did with the old color mobile phones. Smartphones are mostly a full OS driven, hence can not be compared. Most works which other displays can perform a TFT LCD Touch Display is able to perform.
There are several things to consider. First, it is basically meaningless to buy a bigger display at higher cost. Second, we do not need Mac like beautiful display. Third, connecting the display with various types of Arduino is not exactly very easy. Forth, even the official TFT LCD Touch Display library of Arduino is not fully complete, Adafruit has Open Source contribution. Fifth, there is a firmware of the whole thing, it is kind of “self dependent”. If a cheaper stuff’s library or firm is not compatible, no body’s father reverse engineer it.
Unfortunately, quite oddly – China branding is too less in this market at the time of publishing this article. We want to avoid direct purchase from Adafruit. They are not within normal budget of many users. Most importantly, why spend more when there is a cheaper option?
We found two company’s name for 2.4″ TFT LCD Touch Displays – one is LuckSender, whose product sold around $4.99 in Ebay, but has a serious detailed pathetic, scary review by an Amazon customer. It probably has problem with compatibility.
Second company we found is named SainSmart. SainSmart is not exactly a small company, it has a modern website (we saw Affiliate link option in footer too – we are never interested to push anyone’s product to our readers), We noticed that, this company’s website has written :
But also we noticed that, SainSmart 3.2″ TFT LCD Display total unit for Arduino sells at Ebay at LESSER price than official website with free shipping. You can probably use the SainSmart’s forum for support. This display stuffs is probably less explored market.
For those who have lesser idea, this total stuff includes a board (shield) and a SD card slot too. $13.00 is not bad pricing for a TFT LCD Touch Display, although (as always) we think, the right price should be $1.30! We are kids, playing, we can not make money out of these, they should “sponsor” us. The market of Arduino is not exactly great right now unlike before, their monopoly is only in boards; Adafruit also not going great. Except display, the market is of China. Do not hurry, watch auctions and it is not improbable to get that brand’s at less than $10.00.
3.2 TFT Weather Station: Yes! It is the same weather station again, but it uses a bigger display. Pls take a look at previous instructables. I still had this 320X480 lcd display...
I have the afore mentioned display and i"ve been looking for help getting it up and running for some time. I found another person in the same situation as me, please help us:
I have been scouring the web to find all different bits of information for the Sainsmart 2.8 inch touch display with no avail on instructions on how to actually make it work.
I assumed that being it has a compatible 40 pin header that all I needed to do was put a 40 pin cable on it and install software and the os would pick up the display by default.
SainSmart 2.8" TFT LCD Display is a LCD touch screen module. It has 40pins interface and SD card and Flash reader design. It is a powerful and mutilfunctional module for your project.The Screen include a controller ILI9325, it"s a support 8/16bit data interface , easy to drive by many MCU like arduino families,STM32 ,AVR and 8051. It is designed with a touch controller in it . The touch IC is XPT2046 , and touch interface is included in the 40 pins breakout. It is the version of product only with touch screen and touch controller.
Voltage type: 5v or 3v voltage input voltage,input is selectable. Because TFT can only work under 3.3 V voltage, so when the input voltage VIN is 5V, need through the 3.3 V voltage regulator IC step down to 3.3V , when the input voltage of 3.3 V, you need to use the zero resistance make J2 short , is equivalent to not through the voltage regulator IC for module and power supply directly.(Click here)
So I contacted them and they sent me out the documentation etc. As I read all the documentation there was not one mention of how to get the PI to recognize the display. So I contacted them again and the response was to try element14.com. I went there and again no avail.
I am hoping that this is the last stop and that someone might have instructions on how to get the pi to recognize the display. Currently when hooked up the screen lights up, but that is about it, no output what so ever. The only output is what is going through the hdmi port to the tv.
This is SainSmart 2.4 inch TFT LCD module with the TFT LCD shield kit For arduino enthusiasts.It includes one pcs of 2.4 inch TFT LCD display and a TFT LCD shield for arduino UNO(R3) and the Arduino UNO R3
2.4" TFT LCD Display is a LCD touch screen module. It has 40pins interface and SD card and Flash reader design. It is a powerful and mutilfunctional module for your project.The Screen include a controller ILI9325, it"s a support 8/16bit data interface , easy to drive by many MCU like arduino familiesSTM32 ,AVR and 8051. It is designed with a touch controller in it . The touch IC is XPT2046 , and touch interface is included in the 40 pins breakout. It is the version of product only with touch screen and touch controller.
Voltage type: 5v or 3v voltage input voltage???input is selectable. Because TFT can only work under 3.3 V voltage, so when the input voltage VIN is 5V, need through the 3.3 V voltage regulator IC step down to 3.3V , when the input voltage of 3.3 V, you need to use the zero resistance make J2 short , is equivalent to not through the voltage regulator IC for module and power supply directly.