is lcd display good for eyes supplier

Is LCD or AMOLED better for eyes?The full English name of LCD is Liquid Crystal Display, which is a general term. According to its driving method, it can be divided into various specifications. Most monitors and laptops on the market today are thin-film transistors. Because TFT has better color saturation and viewing angles than other technologies, it is also the mainstream specification on the market today. The models on the market are mainly based on TFT, and LCD has now become synonymous with the term TFT display. Next, I will tell you in detail which LCD screen or OLED screen is better for the eyes.
Both OLED and LCD can cause damage to the eyes, because both OLED and LCD emit blue light, which is unavoidable. However, users can turn on the eye protection mode of the mobile phone to reduce the damage of blue light to the eyes. In addition, OLED"s dimming technology and LCD"s blue backlight are also one of the reasons for the "eye-hurt". OLED adopts PWM low-frequency dimming technology, which is a technology that adjusts the brightness through the rapid flickering of the light-emitting unit, so looking at the screen for a long time will cause eye fatigue. The blue backlight of an LCD monitor emits high-energy short-wave blue light.
In terms of manufacturing process, OLED adopts self-luminous technology and has no backlight layer, so this screen can be made very thin. In addition, each light-emitting unit of OLED can emit light independently when it emits light, and has the function of color screen display. LCD is composed of backlight layer, liquid crystal layer, color filter and other components, and the screen is made of inorganic materials, so the service life of this screen is relatively long.
Is LCD or AMOLED better for eyes?The above is the difference between lcd and oled. Users should try to avoid staring at the phone screen for a long time. Reduce LCD and AMOLED viewing time in dark environments. If you have the habit of reading late at night, you also need to turn on a light to neutralize the strobe light. Moisten your eyes with eye drops when your eyes are dry.

As we all know, AMOLED screen is a screen made of self-luminous organic materials. It does not require LCD backlight. When current passes through organic materials, pixels will emit light by themselves. Therefore, compared to LCD screens, AMOLED has more Pure black, higher contrast and other display advantages.
However, being more "ideal" also means paying more. The "eye-damaging" of AMOLED displays stems from external dissatisfaction with the current widespread adoption of PWM low-frequency dimming by AMOLED manufacturers. Here is a brief explanation of the PWM low frequency dimming technology.
All displays have a brightness adjustment function, but due to the differences in materials, the dimming technology is different. The current mainstream brightness adjustment technologies for smart phones are DC dimming and PWM dimming.
LCD screens rely on LED backlight panels to emit light. Therefore, in the field of smart phones, LCD screens mostly use DC dimming. This is a technology that directly adjusts the brightness of the two sides of the light-emitting component to adjust the brightness. The smaller the current, the lower the brightness.
DC dimming is relatively straightforward, but it also has a big disadvantage. Due to the different wavelengths of the three primary colors, DC dimming can cause unavoidable color casts under extremely low brightness conditions, such as early LCD displays with DC dimming , At low brightness, there will be obvious problems of discoloration.
The DC dimming does not seem to be suitable for AMOLED screens. AMOLED screen is a technology that relies on organic materials to emit light. The display quality is greatly related to the material, and the color difference between pixels will be very obvious.
In fact, even though this problem has not been solved very well, maybe it is the case that PWM dimming has become another option and has entered everyone"s sight.
Unlike DC dimming, which directly adjusts the current to control brightness, PWM dimming is more clever. Everyone knows that switching the light source will cause flicker. The faster the switching speed, the faster the flicker. When the frequency of switching the light source exceeds the limit of the human eye, the brightness of all pictures is superimposed in the human eye, so the frequency will affect the brightness of the screen. This technique is called PWM dimming (pulse width modulation).
The introduction of PWM dimming solves the problem of low-brightness color cast in the early days of AMOLED displays, and in fact further improves color stability.
However, with PWM dimming, even if the human eye cannot sense the picture change during the switching process, we will respond to this phenomenon. It is more likely to cause fatigue on the muscles on both sides of the eyes, thereby stimulating the refraction system to accelerate vision Ageing.
At present, Samsung ’s AMOLED screens use 250Hz low-frequency PWM dimming technology. When the screen brightness is lower, the possibility that the human eye can perceive becomes larger, and it is more likely to affect sensitive people.
AMOLED displays that use PWM low-frequency dimming for a long time do seem to affect vision, but do n’t think that LCD can survive. Even with DC dimming, it also has an irreversible effect on vision-cannot be ignored Blu-ray hazard.
Different from the AMOLED self-emission mode, the LCD screen uses a combination of backlight and filter imaging. In mainstream technology, many LCD screens will use blue LED backlight panels, which are covered with red, green and colorless three. This kind of filter forms three primary colors of RGB when blue light passes through these three filters.
Among them, the short-wave blue light emitted by the blue backlight board can cause harm to human eyes. Because short-wave light has a greater capacity density and is more penetrating, it will directly penetrate the lens to the retina, causing atrophy or death of retinal pigment epithelium cells.
From a technical point of view, whether it is an LCD or an AMOLED screen, the impact on vision is universal. As far as smartphones are concerned, it cannot be said that AMOLED screens are more eye-damaging than LCD screens.
Even if the LCD party held high the banner that PWM low-frequency dimming is harmful, it could not fully prove that AMOLED screens have an impact on vision, because everyone"s habits of using mobile phones are different, and the impact on everyone is different. There is no doubt that in the end, it is still the habits that need attention. For example, users should try to avoid watching the phone screen for a long time; reduce the viewing time of LCD and AMOLED low brightness in the dark environment.

One of the biggest advantages of E Ink display, that of being eye-friendly is all too well known. However, many still seem to have some reservations with the front light feature which they easily confuse with backlight technology. Many even believe both to be similar and have the same negative effect on our eyes even though the reality is completely different. Read on to find the truth behind backlight and front light technology.
Now, going by their inherent working principle, OLED or LCD displays have a light source behind them that illuminates the content on the screen, thus making it possible for us to see what is on the screen. Put another way, it is light emanating from the display that reaches our eyes, which creates the image of what is on the screen in our eyes, thus enabling us to see things on the screen. All of this happens in real time, which makes sure we are able to catch up with even fast-moving scenes, be it in a movie or in a game. It is also for this reason that we refer to LCD or OLED as emissive displays because they emit light of their own which is part of how they are designed to operate.
However, going by the nature of our eyes – it is all about the presence of rod cells and cone cells in our eyes and how having more rod cells enables owls to see things distinctly at night while the converse is true of us – we need to have the light incident on objects that don’t have a light source of their own for us to see them. It is the same with E Ink displays which don’t have a light source of their own and hence need ambient lighting to illuminate the display so that we are able to see it. It’s how we see the everyday objects around us. It is also for this reason that E Ink displays, or for that matter, all e-paper displays are considered reflective displays. So, the more the external light is, the greater is going to be the visibility of the E Ink displays. This is also the reason E Ink displays are perfectly readable even in direct sunlight while emissive displays look washed out.
So, does that mean E Ink devices have no application at night or in dark conditions? Unfortunately, yes though this is also where front light technology comes into the picture. To mitigate the issue of E Ink displays being unreadable in the absence of external light, manufacturers hit upon the simple yet highly effective solution of introducing enough lights to illuminate the display. In effect, these are a string of tiny LED light sources that are placed underneath the bezel and along the side of the E Ink panels. When in operation, the light from these LED bulbs acts to light up the display so that we get to see the contents of the screen.
So, in effect, the front light is fundamentally different from the backlight as the display does not emit any light as such. It’s just that there are lights introduced that illuminate the display externally. Being under the bezels, users never get to have an inkling of the existence of such lights either. Also, this is fine with most e-reader devices with E Ink displays that typically have less than 7-inch sized displays. The real challenge is to have the display illuminated in large sized E Ink devices such as e-notes which can stretch to even 13.3-inch size as well without causing any dark patches as such.
Fortunately, manufacturers have done a fine job so far. Take for instance the Max Lumi or the Max Lumi 2 e-notes with 13.3-inch E Ink displays. Boox said they have managed to achieve the highest illuminance uniformity with both, which means the external light sources light up the display evenly. The Dasung Paperlike monitor with its 25.3-inch E Ink display is perhaps the biggest to have a front light feature. The new 11th-gen Kindle Paperwhite 2022 model comes with a 17-LED array, which is a huge improvement over the 5 LEDs that its predecessor came with.
Yet another area where E Ink display scores over its emissive counterparts, is the amount of blue light these emit. Blue light incident on our eyes can have varying degrees of effect on our physical health. These include macular degeneration so that our eyes end up being damaged over prolonged exposure to blue light. Those can also disrupt our sleep pattern when our eyes are subjected to blue light at night. We are subjected to blue light emission when viewing devices such as smartphones, tablets, smartwatches, or even e-readers having E Ink displays. The only silver lining here is that E Ink displays have less of it and are hence safer than other displays.
With a keen interest in tech, I make it a point to keep myself updated on the latest developments in the world of technology and gadgets. That includes smartphones or tablet devices but stretches to even AI and self-driven automobiles as well, the latter being my latest fad. Besides writing, I like watching videos, reading, listening to music, or experimenting with different recipes. Motion picture is another aspect that interests me a lot and maybe I’ll make a film sometime in the future.

see the light flickering at a very high frequency, thestroboscopicdoes exist. If thestroboscopicfrequency is very low, it can be easily observed by human eyes.

“I’ve changed to a high-end smartphone with an OLED screen, but my eyes feel uncomfortable.” More and more netizens have this problem. Do OLED screens really hurt our eyes? Recently, a reporter investigated this phenomenon.
“I would never have thought that my eyes were becoming uncomfortable after using a new mobile phone for a few days.” Recently, a netizen reported this issue.
She went to see a doctor and was diagnosed with floaters. The doctor advised her to use her mobile phone less. It is strange that her symptoms were relieved after she changed back to her old mobile phone.
According to the reporter’s investigation, quite a few users have such questions. There are nearly 400,000 related links in Google search for “Eyes hurt by OLED screens“. Many related posts have resonated with netizens because they also had this symptom.
The problem is, do OLED screens really hurt our eyes? The reason why you feel uncomfortable when using mobile phones with OLED screens is that they flicker.
LCD screen usually uses LCD backlight to realize screen luminescence, the flickering frequency of which can reach several kilohertz (Hz) that flickering will basically not occur. The pixels for OLED screens are self-luminous, the low power of which has limited its flickering frequency. At present, the flickering frequency of the PWM dimming of OLED screens on many mobile phones is about 215Hz-250Hz.
IEEE (Institute of Electrical and Electronics Engineers) once reported that the range of flickering frequency with low health risks is above 1250Hz. “Flickering may lead to migraine and other diseases.”
In the eyes of communication industry professionals, this value is not high. But even the medical circle has not given a clear answer to this question, which is a great controversy in the industry.
Jie Chuanhong is the director of the ophthalmology department of the Eye Hospital of China Academy of Chinese Medical Sciences. He said in an interview that whether you watch the mobile phone screen, computer screen, or iPad screen for a long time, it is easy to cause visual fatigue, which should not be directly related to the screen.
“There is no direct relationship between OLED screen and eye harm.” Communication industry professionals also said that human eyes are almost imperceptible to the flickering of OLED screens. “Visual fatigue may be caused by staring at the screen for too long.”
Some experts claim that both LCD and OLED screens can harm human eyes because they will emit blue light harmful to the eyes, which is inevitable. However, OLED has a way to avoid this problem, enabling the eye-protection mode (similar to PWM dimming) and changing the color tone of the screen to yellowish.
Many netizens also suggested that when using smartphones with OLED screens, we should increase the brightness as much as possible because the lower the brightness, the more harmful it will be to our eyes. When the brightness of the screen is reduced, the screen of the smartphone will further reduce the flickering frequency.
Some ophthalmologists suggest that “human eyes have different perceptions of OLED flickering, and some people are more sensitive. Sensitive users had better use smartphones with LCD screens.” There has not been a unified medical statement about this conclusion.
Some netizens even made a comparison experiment: you can obviously feel that the screen of P30 Pro is not as good as that of Mate20 Pro. This is easy to understand. Different mobile phones may use different screens, and manufacturers such as Samsung, LG, and BOE have different technologies and product quality.
Some experimental results have shown that screen size is not the main factor influencing visual fatigue but the material and physical properties of different electronic screens.
Even for the same mobile phone, whether the screen is good or not depends on “luck”. Because different brands of OLED screens may be used in the same mobile phone model, in many cases, the mobile phone manufacturer will not specify this, nor does it list the screen provider in detail in the user manual.
For example, Mate20 pro screen suppliers include BOE and LG, and some of their products have experienced “green screen” events after being released on the market. According to media reports, all the mobile phones with green screen problems are those with LG screens. That is to say, the screens in the same mobile phone model may be different for the same price. Whether the mobile phone is good or not depends on luck.
This is almost a common problem in the industry. Initially, both the iPhone XS and XS MAX were equipped with Samsung’s OLED screens. But then Apple listed LG as its second iPhone XS screen supplier. In other words, LG screens may be used in the subsequent batches of iPhone XS and XS MAX. Whether consumers buy LG screens or Samsung screens depends on luck.
The color of OELD screens is more vivid, fuller, and realistic. High-end smartphones have been equipped with OLED screens, which have become the mainstream; LCD screens have been used for low-end smartphones, which are no longer the preferred choice.
Why did this happen? “Terminal products such as the ones with fingerprints under the screen and ultra-thin products can only be realized by using OLED screens.” It has become a common recognition in the industry.
Now there is good news BOE suddenly announced that it has successfully developed fingerprint technology under LCD screen, which will be mass-produced by the end of this year.
It is unrealistic for the mobile phone industry to return to LCD screens from OLED screens, and even some people think it means the degeneration of technology. From the perspective of eye health alone, LCD screens will also emit blue light harmful to human eyes. If we really want to protect our eyes, we must reduce the time consumed by smartphones.

47% of U.S. consumers admitted to being unable to last a day without their mobile devices in a 2014 study done by the Bank of America, demonstrating the increasing prevalence of mobile devices. Mobile devices use LCD screens which emit blue light and thus negatively affects not only vision but also overall health. Continual extended screen time mainly can impact your eyes in two major ways.
Digital Eye StrainWhen we look at a screen, our blink rate drops significantly, thus causing digital eye strain. Signs of digital eye strain include slightly blurry vision after using LCD screens for prolonged periods, headaches, dry or tired eyes.
Though digital eye strain is temporary, if left unaddressed, it can turn into a chronic problem.The easiest way to address digital eye strain is to blink more as blinking helps to keep eyes lubricated. Alternatively, try using the “20-20-20 Rule”. Every 20 minutes, stare at something at least 20 feet away for at least 20 seconds. This exercise engages your distance vision and allows the eyes to rest.
Blue Light ExposureBlue light is the highest energy wavelength of visible light. This energy is able to penetrate all the way to the back of the eye, through the eyes’ natural filters. The rapidly increasing amount of blue light exposure that we get each day through digital device use is causing permanent damage to our eyes. The effects of blue light are cumulative and can lead to eye diseases like macular degeneration.
Children are especially at risk due to their developing eyes. Protective pigments which help filter out some of this harmful blue light are not yet present. The risk is worsened further due to their increased exposure to LCD screens.
Studies have also shown that exposure to blue light before bedtime actually suppresses melatonin secretion and delays deep REM sleep significantly. Your health is thus adversely affected. This may lead to reduced cognitive abilities and the development of chronic illnesses in the long run.
Try minimising usage of LCD screens by reading print media or using E Ink displays instead. The InkCase, for example, allows users to read for prolonged periods with minimal power consumption by adding a secondary E Ink screen on the back of your phone.

Chances are, you use computers in the workplace, and while they’re helpful in a multitude of ways, they can cause eye strain. That eye strain can lead to blurry vision and even headaches and neck pain.
According to recent studies, as many as 90% of people who spend extended time in front of digital screens experience some sort of eye strain or related eye issues. While giving up computers all together may not be an option, you can take steps to keep your eyes safe while on the job and at home. Our experts at McDonald Eye Care Associates discuss practical tips to protect your eyes from eye strain.
Scheduling a comprehensive eye exam is one of the key steps in preventing eye strain related to computer screens. Our team at McDonald Eye Associates offers comprehensive eye exams to detect any visual issues and can explain how to keep your eyes safe from eye strain while at work.
People have a habit of sitting close to their computer screen, but sitting too close to your screen contributes to eye strain. Adjusting your screen position is a simple and easy step you can take to protect your eyes. You should sit at least 20-30 inches away from your screen and position the top of your screen at eye level. This not only reduces the chances of eye strain; it prevents neck strain.
When it comes to screen time in the workplace, lighting is everything. Offices that have too much natural or artificial light increase glare on your screen, which spells trouble for your eyes. Try tackling the glare in your office to ease the strain on your eyes.
Anti-glare screen filters are a simple way to cut down on the amount of light that reflects off of your computer screen while you work. The result is a more pleasant viewing experience that won’t result in eye fatigue and strain.
Anti-glare glasses have a coating that reduces glare and reflections to protect your eyes. This is an excellent option if you use laptops, cell phones, and other devices along with standard desktop computers.
Rest breaks for your eyes are something your grandparents didn’t have to plan into their day. But today we spend more and more time at our computer screens and need to consider giving our eyes a rest throughout the day. It’s best to give your eyes a short break after every two hours of continuous screen time. This could mean taking a five-minute walk to the watercooler during your workday.
Electronic manufacturers are pushing the boundaries with vivid screens that display colors and images that appear vibrant and bright. While this may look stunning, your eyes weren’t meant to look at bright, vivid screens for hours at a time. Going into your computer’s settings and turning down the brightness and backlight can go a long way in preventing eye strain.
If you use a traditional desktop, consider upgrading your monitor. LCD monitors are more gentle on your eyes than older technologies. A high-resolution LCD monitor is able to display crisp, sharp images without problems with flicker, so your eyes are in less jeopardy when working at the computer.
Did you know that when you stare at a screen for long periods of time it causes you to blink less often? When you blink less, your eyes can become dry and irritated, increasing the risk of eye problems. When at the computer, make it a point to blink normally and fully. If you find that your eyes feel dry, use artificial years to keep them moist.
At McDonald Eye Care Associates, we are a full-service eye care practice. For more information or to schedule a routine exam, call our Lakeville, Minnesota, office.

If you’re always surrounded by displays—PCs, smartphones and tablets—are you placing too much strain on your eyes, neck and shoulders? If this sounds like you, read this article and take steps to address it right away before your symptoms worsen.
In recent years, many people would probably say the time they spend looking at displays has increased. In addition to televisions and PCs, smartphones and tablets have quickly become popular, and displays have penetrated every aspect of our lives.
Information technology has made our lives more convenient, but at the same time, eye fatigue caused by continuous viewing of displays has increasingly become a social problem. If you feel fatigue in your eyes, neck or shoulders, it"s important to properly address it rather than letting it go. If you let it go and your symptoms worsen, you could damage your mental and physical health, so be careful.
Some of the names for the various problems associated with displays and eyes are "computer vision syndrome," "VDT (visual display terminal) syndrome" and "technostress ophthalmopathy." They"re unavoidable problems when it comes to PC work in particular. There are various ways to address the problems, and the effects vary from person to person, but if you try one at a time, you"ll undoubtedly be able to experience a more pleasant digital life. It will also contribute to improved productivity in the office.
We"ve put together a list of 10 points about measures to address eye fatigue. We recommend checking the items that catch your eye first and then going back to the start and reading through all of them.
When you"re working on your PC, similar poor conditions may develop without you realizing it. For example, if the lights are near the center of the room, and your PC is set up with you facing the wall, although the level of brightness is different, you could experience something similar to sunlight shining on your screen from behind you like on the train. If that"s the case, consider changing the layout.
What can further worsen your eye fatigue in a situation like this is the light reflected from your display. Shiny glare panels are made to provide accurate blacks and colorful display, so they are good for watching videos, but they also tend to reflect outside light. In an office or similar setting, lights and other displays can be reflected on your screen, throwing off your focus and causing eye fatigue.
For regular PC work, an LCD with a non-glare panel that does not reflect light is easier to use. If the product you"re currently using has a glare panel, you can affix low-reflection film to the screen.
Fluorescent lights are brightly reflected on the glare panel, making the screen hard to see. These conditions can easily strain your eyes (left). A non-glare panel can substantially reduce the reflection of fluorescent lights and reduce the strain on your eyes (right). The difference is as plain as day.
It’s also important not to make the lights in the room too bright. It"s common for advice to focus on not letting the room be too dark, but if the lights are too bright, it creates a difference between the screen brightness and ambient light, and that"s also no good. More specific details on screen brightness are provided in Point 5. Also pay attention to the temperature setting on your air conditioner and the direction in which it blows. These things can cause dry eyes, and your seat should never be positioned so that the air conditioner is blowing directly in your face.
Generally speaking, the distance between the user and the screen should be at least 40 centimeters or 50 centimeters in the case of a wide screen. The reason you should be further away from a wide screen is that the wider screen will not fit completely into your field of vision unless you sit further back. The conditions will vary slightly depending on other factors as well, including screen resolution, text size and your eyesight.
No matter what the situation, if you are viewing a screen at a distance of less than 30 centimeters for long periods of time, your eyes are obviously going to become fatigued. If you have an A4-sized sheet of paper, hold it up longways between you and the screen on which this article is displayed and see if there is enough room for it to fit. An A4-sized sheet of paper is about 30 centimeters (297 millimeters) long, so if you"re viewing the screen from a shorter distance than this, you"re too close. If you"re viewing it at a distance of about 1.5 times that length, you"re safe for now.
Once you"re at the proper distance from the display, try to have it so that your line of sight is directly ahead or slightly downward when viewing the screen. You should avoid looking up at the screen, because that can cause dry eye.
Your posture sitting in your chair is also important. Sit back in the chair, sit up straight using the back rest, and keep the bottom of your feet completely on the floor. This eliminates extra strain on your neck, shoulders and lower back. Sitting hunchbacked can lead to health problems in the long run, so you need to exercise caution. If your feet don"t reach the floor, consider using a footrest.
Displays that do not allow sufficient adjustment of the angle and height of the screen can lead users to adjust their posture to the screen position, which prevents them from working in the correct posture. Choose a display that has rich features including a tilt function allowing the screen to be tilted up and down and a height adjustment function.
The adjustment mechanism of the LCD is also important for working on a PC in a posture that does not strain the eyes, neck and shoulders. Choose a product that allows the screen to be lowered just above the table top and flexible tilt adjustments (photograph: EIZO"s FlexScan EV2436W.
Even if the installation location of the display and your posture during use is proper, working in the same posture for extended periods of time is not good for your eyes. The reason is that constantly looking at something at a fixed distance causes a gradual decline in your eyes" ability to focus.
Take a 10-15 minute break at least once an hour. Look into the distance and move your eyes up, down, left and right to adjust your focus. It"s also good to regularly use eye drops.
A common mistake people make is looking at smartphone and tablet displays during their break. This does not allow your eyes to rest. Stretch to relieve tension, stand up and walk around, and look near and far either indoors or outdoors to adjust the focus of your eyes.
If you find yourself forgetting to take breaks, a smart trick is to use a PC software timer or your smartphone"s timer to remind yourself. There are also some displays that come with a function that prompts you to take breaks.
The suggestions up to this point have been predicated on the assumption that you have sufficient eyesight or that you use glasses or contact lens to properly correct your eyesight.
Eyesight changes gradually during daily life activities. Even if you wear glasses or contact lenses, if you stay at the same prescription for many years, your eyesight will change without you realizing it, and this could cause eye fatigue or migraine headaches. Using eye drops and adjusting the focus of your eyes during breaks does not help this problem.
Where you get in trouble is your eyesight doesn"t change suddenly one day, so even if you have symptoms like eye fatigue and headaches, it"s hard to identify the cause. If you let it go, it could lead to glaucoma and other worsening symptoms, so you should have your eyes checked at least once a year, which may be included in your company or school health examinations. Be vigilant about checking to make sure your prescription is not off.
The brightness of your display should not be left at the default setting but adjusted according to the brightness of the room where it"s installed. This can greatly reduce the strain on your eyes. For example, in an office with normal brightness of 300-500 lux, the display brightness should be adjusted to around 100-150 cd/m2.
But when you give specific numbers like this, most people have no idea what they mean. So what you want to remember is that the trick to adjusting the brightness is using white paper like copy paper. Compare the paper under the lighting in the room to the screen, and adjust the brightness of the display so that the brightness matches as closely as possible. This will put the brightness at about the right level.
Particularly, when using the display for work, you"ll often be comparing paper documents with documents on the screen, so by adjusting the brightness of the screen to the brightness of the paper under the lighting, you"ll reduce the strain on your eyes, making this an effective measure against eye fatigue.
Put white paper next to the screen as shown, and adjust the display brightness while comparing it to the paper. Screen too bright compared to the paper (left), and display brightness adjusted to appropriate level so that the brightness of the paper and the screen are roughly the same (right).
What you need to remember is that if the brightness of the room where the display is installed changes dramatically in the morning, afternoon and evening, the brightness of the screen needs to be changed accordingly, or there"s no point. If you have to adjust it frequently like that, doing it manually is bothersome, and keeping it up becomes difficult. Consider purchasing a display that comes with a function to automatically adjust screen brightness to the optimal setting according to external light.
The majority of LCDs today have LED backlights. In some cases, the brightness adjustment mechanism (dimming system) causes eye fatigue. Specifically, caution is required with the system called PWM (Pulse Modulation), which is employed by most displays. In this system, the LED element blinking time is adjusted to control the display brightness — extending the time that it"s on makes it brighter, and extending the time that it"s off makes it darker.
For some people, this blinking of the screen is experienced as flickering, leading to eye fatigue. There is a difference among individuals in how this flickering is experienced. Many people using the same display will not notice anything at all, so even in an office where the same model is purchased in bulk, it"s difficult to figure out that the display is the cause.
The only way to prevent this is to address it with the display itself. Some displays prevent flickering by employing special dimming systems such as DC (Direct Current), a system that, in principle, does not produce flickering, and EyeCare Dimming, a hybrid system used in some EIZO products. By purchasing a product like this, you may eliminate eye fatigue for which the cause was unknown.
We"d like to add a note about the EyeCare dimming system. This hybrid system uses DC dimming at high brightness settings and PWM dimming at low brightness settings as it does a better job than DC dimming at reproducing colors at low brightness. PWM dimming is only used at low brightness settings, so the blinking luminance difference is smaller, thereby controlling flickering.
If you feel like your eye fatigue has worsened since starting to use your current display, this could be the cause. If you"re in an office, switching out displays with another member of the staff is another effective way to identify the cause.
EIZO"s FlexScan EV series employs the unique EyeCare Dimming system. We put a small USB fan in front of the screen to check for flickering. At high brightness, DC dimming is used, and the light emitting elements do not blink, so the shape of the blades appears circular (left). At low brightness, PWM dimming is used, and the blades appear separate from each other, so you can see that high-speed blinking that can"t be perceived is taking place (right).
Recently, it has become common to hear blue light pointed out as a cause of eye fatigue. This refers to light that is visible to humans (visible light) with a wavelength close to that of ultraviolet rays. Because it has a high level of energy, it is generally said to place a strain on the eyes.
The reason it has recently been the subject of attention is that there are many LCD products with LED backlights that have a high color temperature display (white appears bluish), and there are more cases where the user is subjected to stronger blue light than with conventional displays, so this type of problem has come under closer scrutiny.
Some methods to address the problem are to wear blue light blocking glasses or to apply blue light reducing film to the LCD screen. Also remember that on products that allow the display picture quality to be adjusted, you can lower the color temperature on the display.
For example, results of an experiment (results of EIZO study) show that if you change the 6,500-7,000K color temperature used in common displays to 5,000K, the 400-500nm wavelengths corresponding to blue light can be cut by about 20%. Furthermore, by adjusting the screen brightness to a proper level that does not cause eye fatigue, you can reduce blue light by a total of 60-70%. Many of the aforementioned blue light blocking glasses only cut up to 50% of blue light, so this is more effective.
However, lowering the color temperature causes the screen display to change to reddish or yellowish in color, and color reproducibility is lowered. For that reason, it"s best if you can lower the color temperature for working with office documents and put it back to normal when doing creative work dealing with photographs and images.
Some display products come with a blue light suppression mode. Not only do they allow you to easily switch between modes, but in some cases there is software for automatically changing the display mode according to the application, practically eliminating the need to switch modes manually.
Same data displayed at color temperatures of 7500K, 6500K and 5000K (left to right). When the color temperature is lowered, the appearance changes from a bluish to a reddish display and you can see at a glance that the blue light is reduced.
It"s a little painful to hear, but in many cases, changing your lifestyle habits is a fundamental way that you can address eye fatigue. If you have poor lifestyle habits that can bring about poor physical health like lack of sleep, lack of exercise or nutritional deficiency from poor eating habits, take this opportunity to re-examine them.
Cutting down on PC and smartphone use before bedtime is also a surprisingly important point. The light put off by PC and smartphone screens, including the aforementioned blue light, is said to be effective in waking you up. Looking at these screens before bedtime tends to make it harder to fall asleep. Considering this, it"s actually not a good idea to read e-books on smartphones or tablets before bedtime.
As an aside, if you absolutely must read e-books before bedtime, you could switch to an electronic paper reader that does not emit this type of light instead of using a smartphone or tablet. You could also use the aforementioned blue light blocking glasses or blue light reducing film.
If you"ve taken the above steps and your eye fatigue has not gotten better or there are signs that it"s getting worse, you should consider undergoing an examination by an ophthalmologist. Not only will you receive expert advice on your symptoms but it may also lead to early detection of inconceivable eye diseases like the aforementioned glaucoma.
If you have advice from an ophthalmologist, it will be easier to talk with your company when you"re taking another look at your work environment in the office as mentioned at the beginning. Use it as a second opinion.
As you can see from the points we"ve already gone over, if you really want to address eye fatigue, you obviously have to put in effort yourself, but your choice of display is another important point. No matter how much you as the user address eye fatigue, if your display does not meet certain quality standards, the effectiveness of your efforts will be limited.
If you"ve checked off items 1-9 but your eye fatigue has remained unchanged for a long period of time, you may want to turn your attention to the display itself.
For example, EIZO"s FlexScan EV series of LCDs places emphasis on addressing eye fatigue and has features to address points 1 (installation environment), 2 (posture during use), 3 (proper rest), 5 (brightness), 6 (flickering) and 7 (blue light) above.
In Paper mode, the color and contrast display is similar to paper. With this excellent feature, the color temperature is lowered instantly with the touch of a button, and blue light is substantially reduced (left). If you use the Auto EcoView function, the built-in illuminance sensor detects ambient brightness and automatically takes the display brightness down to the optimal level in real time (right). The aforementioned EyeCare Dimming system suppresses flickering of the screen display at the same time.
Auto EcoView automatic brightness adjustment function detecting ambient brightness with built-in illuminance sensor and setting display brightness to optimal level
Paper mode display features color and contrast similar to paper. EyeCare Filter software applies filter pattern that controls brightness and contrast.
We"ve looked at various measures to address eye fatigue, but in cases where the user is required to remember to do them daily as they work, particularly when busy, people tend to neglect them. Moreover, when people make the effort to do these individual things to address eye fatigue but then don"t get much of a benefit due to the quality of the display, it"s really a waste if you think about it. Purchasing a replacement display requires an adequate expenditure, so people tend to hesitate, but if you"re purchasing a product that has excellent basic performance, eliminates the need for cumbersome manual settings and automatically lessens eye fatigue, isn"t it worth it?
The value of considering replacing the display itself is significant as a trump card for addressing eye fatigue. At home, it will help protect your eyes and the eyes of your loved ones, and at the office where you sit in front of the screen for long hours, it"s sure to contribute to greater efficiency and an improved working environment.

Are computers bad for your eyes? And if so, what can be done about it? These are questions that thousands of Australians ask every week. The past ten years has seen enormous changes in the use of computer screens.
Once a desktop screen used only at work, the computer screen has been promoted to a mobile device that is with us 24/7. The latest generation of teens and young adults stare at their smart phones, iPads and games consoles all day. Coupled with this increased exposure is the increased intensity of light emitted from these screens. Is this harming our eyes?
This is one of those questions that anyone buying a new TV asks but most people are unaware that it’s a misleading question. Technology manufacturers like to draw an artificial distinction between their LED and LCD monitors. This cons us into believing that the LCD has been superseded by the LED, when in actual fact all that’s changed is the way the LCD monitor is backlit.
LCD (liquid crystal display) technology – to the uninitiated – involves sandwiching a liquid layer between two layers of glass and backlighting it. Older technologies backlit the screen using fluorescent light – called CCFL (or cold cathode fluorescent light). This produced light across all parts of the spectrum, with the peak in the green light part of the spectrum (see image, left).
More modern computers still use LCD screens but the backlighting used is more often LED (light emitting diode) technology. This has many advantages over the older fluorescent light technology. It provides a thinner, lighter and more energy efficient display – generating less heat and consuming less power. However, the LED light spectrum is very different to the older fluorescent technology and emits a lot more light from the blue-violet end of the spectrum (see image, right).
UV light is invisible, but its very short wavelengths allow it to penetrate the delicate superficial tissues of our eyes and skin and cause oxidative damage. This is what leads to skin cancers as well as contributing to many eyes diseases particularly of the cornea and lens – i.e. cataract, pinguecula and pterygium.
Blue-violet light is visible light, but is on the part of the spectrum right next to ultra-violet. Blue-violet light has been shown to be toxic to the delicate structures of our eyes. It can penetrate deeper into the eye – as far as the retina – and it is emerging in clinical data that is has a negative effect on the health of our eyes, particularly for age-related macular degeneration. The mechanism by which blue-violet light damages the retina is still being studied but it is thought to disrupt cellular metabolism at the back of the eye. Blue blockers are glasses which filter out blue-violet light. The filter can be worn with or without a glasses prescription.
Not all blue light is bad! At the greener end of the spectrum is blue-turquoise light. Unlike blue-violet light this kind of blue light is beneficial to us. This is the light that helps regulate our bio-rhythms, telling our bodies when to wake up in the morning and slow down before sleep. Blue light suppresses melatonin production in our bodies, so it is not healthy to be exposed to artificial blue light late at night as it prevents us our natural winding down mechanism from kicking in. This is a good reason why digital screen use should be avoided in the hours preceding sleep, regardless of whether blue-blockers are worn.
The negative effects of blue light on the eye are especially true for children. We previously wrote about kids’ eyes and computers here. (Link to clock-lock-block article). The image below shows the relative intensity of light at various wavelengths for a typical L ED screen. It doesn’t matter what the device, if it’s modern, it’s typically emitting most light at the blue end of the spectrum. This is bad news for our kids, who often spend hours per day on digital devices such as tablets and smartphones.
Take home message? Exposure to blue-violet light should be limited as much as possible. Companies like BenQ now make all their screens with blue light filtering technology. Children’s use of digital screens should be limited, to protect their particularly delicate eyes. For the rest of us, blue blockers can provide protection from harmful blue-violet light but to get a good night’s sleep you should also limit screen exposure before bedtime. And yes, that means TV too!

AMOLED display is a screen composed of self-luminous organic materials. It does not require the LCD backlight, because when the beam passes through the organic material, the pixels will self-illuminate. Therefore, compared with the LCD screen, the AMOLED has higher contrast and other display advantages.
However, being more ‘ideal’ also means paying more. The AMOLED displays are thought to cause ‘eyes hurt’ because of low-frequency dimming by AMOLED manufacturers. Here is a simple explanation of PWM low-frequency dimming technology.
All monitors have brightness adjustment function. But due to the difference in materials, the dimming technology is different. The most popular current smartphones are DC dimming and PWM dimming. LCD screens rely on LED backlights for light emission. Therefore, in the field of smartphones, LCD screens mostly use DC dimming, which is a technology that adjusts the brightness by directly controlling the currents on both sides of the light-emitting device. The smaller the current, the lower the brightness.
DC dimming itself is a very straightforward method. But it has obvious drawbacks. As the wavelengths of the three primary colors are different, DC dimming can cause inevitable color casts at the extremely low brightness
The DC dimming and AMOLED screens are even more incompatible. As mentioned earlier, AMOLED displays are self-illuminating technologies that rely on organic materials. Therefore, the display quality of the AMOLED display is directly related to the quality of the screen materials. The color difference between pixels will be clearly demonstrated. Under DC dimming, early models such as the Galaxy S, S2, and Note suffered from uneven white color and serious color casts. What’s sadder, this problem has not been solved well even so far.
Due to the above mentioned reasons, PWM dimming comes out as a substitute. Unlike DC dimming, which directly adjusts the current level to control the brightness, the PWM dimming method is more ingenious. We know that the switching light source causes flickering. But when the frequency of the switching light source exceeds the limit of the human eye, since the luminance information of all the screens is superimposed on each other in the human eye, the speed of the frequency will only affect the brightness of the screen.
This technique, for controlling the brightness by rapidly switching the screen light source, is called PWM dimming (Pulse-Width Modulation). So we can state, the PWM dimming reference solves the problem of the early low-brightness color cast in the AMOLED display, and in fact further improves the color stability.
However, since PWM dimming is a technique that adjusts the brightness by fast flickering, even if the human eyes cannot perceive the screen changes in the switching process, our brain responds to this phenomenon. Frequent flickering cause fatigue, which stimulates the refraction system to work together to accelerate the aging of vision. Since all current Samsung AMOLED displays use 250Hz low-frequency PWM dimming technology, the lower the screen brightness, the lower the strobe rate, and the greater the possibility of human eyes being able to perceive, making it easier for sensitive people.
![]()
There is a constant debate on Amoled vs LCD, which is a better display? Where Amoled display offers some remarkable colors with deep black eye-soothing contrast ratio, LCD displays offer much more subtle colors with better off-axis angles for viewing & offers a much brighter picture quality.
While purchasing a new smartphone we consider various specifications like software, camera, processor, battery, display type etc. Among all the specifications display is something that most people are concerned about. 2 of the major competitors of smartphone display are AMOLED and LCD. Often in the LCD vs Amoled comparison, people get confused about which one to choose. In this article, we have explained a clear comparison of the Amoled vs LCD screen to find out which is actually better.
Amoled display is nothing but a part of OLED display which comes with some extra features. The first component is Light Emitting Diode (LED) and the second component is "O", here "O" stands for organic & together they make OLED. The real meaning derived from it is organic material placed with 2 conductors in every LED. And this is how light is produced.
The OLED display can generate light out of individual pixels. AMOLED displays contain Thin Film Translator (TLT) which makes the overall procedure of sourcing current to the correct pixel much quicker and smoother. The TXT further helps grab control for operating different pixels at a time. For example, some pixels could be absolutely switched off though others remain on in Amoled displays. This produces a deep black color.
Speaking about LCDs, it is relatively pretty much commonly found in today"s smartphones. LCD (Liquid Crystal Display) offers a devoted black light that is white or rather slightly blueish in color. Mostly here we get a blue light that is passed through some yellowish phosphor filter which brings out the white light. The white light is subsequently passed through multiple filters and thereafter the crystal elements are again passed through blue, red & green filters. Note that LCD displays have both passive and active matrix which depends on the cost and requirement involved.
Since the process involved in LCDs is much more complex than Amoled & requires extra steps, when compared to AMOLED displays, LCDs are less battery friendly. In the technological era where energy efficiency is the first priority, Amoled displays are certainly going to be the future of display technology. But both of them come with a separate set of pros and cons and it is only by knowing the pros and cons you will be able to choose the right one.
Amoled display technology is mostly used in smartphones, media players & digital cameras. Amoled is mostly used in low power, cost-effective & large application sizes.
Cost is one of the major factors that act as a differentiator between the two display types. Amoled displays are comparatively more expensive than LCD displays because LCD displays are much cheaper to manufacture. So while buying a low-budget smartphone, the probability to get a Amoled display is pretty less.
The quality of a display is mainly measured according to the colors and sharpness it offers. Also while comparing two displays, only technology comparison won"t work because often displays behave inversely even if a manufacturer is using the very same technology. If you consider colors especially contrasting colors such as blue, red or green, Amoled will serve better throughout the day. This happens mainly because in the case of AMOLED displays, as mentioned above, every pixel present in it emit its own light whereas in LCD light comes out of the backlight. Therefore Amoled displays offer high-end saturation and vibrant colors compared to LCD displays.
As Amoled displays put out vibrant colors, you will find Amoled displays to be warmer in nature compared to LCD displays which has a more neutral whitish tint. In short, the pictures seen on Amoled displays are more eye-soothing compared to LCD displays where the pictures appear more natural.
In the Amoled vs LCD screen display comparison, another thing to consider is the brightness offered by both of them. Compared to LCD displays, Amoled displays have lesser brightness levels. This is mainly because of the backlight in LCD displays which emits a higher brightness level. Therefore if you are a person who spends most of the time outdoors and mostly uses your smartphone under the sun, then LCD is the right choice for you. Although certain leading brands are working on the brightness level in Amoled displays.
The display is one such thing that sucks your phone"s battery to a great extent. In Amoled displays, the pixels can get absolutely switched off thereby saving a lot of battery. Whereas LCD displays remain dependent on the back light, as a result even if your screen is completely black, the backlight remain switched on throughout. This is why even though Amoled displays are more expensive than LCD displays as they consume much less battery than LCD displays.
In the battle between LCD display vs Amoled display both come with separate pros and cons. Well if battery consumption and color contrast or saturation is a concern then the Amoled display is going to win over LCD display anyway. While purchasing a smartphone, customers today mainly focus on two features- lesser battery consumption and a high-quality display. Amoled display offers both the benefits- high-end vibrant display and less battery consumption. The only criteria where LCD displays win over Amoled is the brightness level. But with brands coming with the latest technologies, Amoled is certainly going to catch up with the brightness level with LCD displays. Also, the brightness difference in current Amoled display smartphones that are available in the market is hardly noticeable.

I have a 3T on oxy 4.1.3. When I"m turning on the sRGB mode, my eyes begin to tire quickly.. Also sometimes I have a "sand effect", eyes become very heavy.. Am I only the one with this problem?P.s. I"ve been has phones with IPS/LCD screens for the last 5 years and this is my f...
You should"nt use the sickening yellow night light on the OP3/3T. It"s a truly inferior night light when compared to what you on the iPad. Best to avoid using it and just turn your displays brightness down

Sun Vision Display panels are100% reflective, meaning they have no backlight whatsoever. This makes them an excellent computer monitor solution for people looking to reduce blue light exposure or other common issues reported by people withcomputer-related vision syndromes. It also makes them an incredible solution for advertising in sunny places, where it can be difficult to view other display technologies - all without racking up hefty energy costs.

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

If you want to buy a new monitor, you might wonder what kind of display technologies I should choose. In today’s market, there are two main types of computer monitors: TFT LCD monitors & IPS monitors.
The word TFT means Thin Film Transistor. It is the technology that is used in LCD displays. We have additional resources if you would like to learn more about what is a TFT Display. This type of LCDs is also categorically referred to as an active-matrix LCD.
These LCDs can hold back some pixels while using other pixels so the LCD screen will be using a very minimum amount of energy to function (to modify the liquid crystal molecules between two electrodes). TFT LCDs have capacitors and transistors. These two elements play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy while still generating vibrant, consistent images.
Industry nomenclature: TFT LCD panels or TFT screens can also be referred to as TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology.
IPS (in-plane-switching) technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but has more enhanced features and more widespread usability.
These LCD screens offer vibrant color, high contrast, and clear images at wide viewing angles. At a premium price. This technology is often used in high definition screens such as in gaming or entertainment.
Both TFT display and IPS display are active-matrix displays, neither can’t emit light on their own like OLED displays and have to be used with a back-light of white bright light to generate the picture. Newer panels utilize LED backlight (light-emitting diodes) to generate their light hence utilizing less power and requiring less depth by design. Neither TFT display nor IPS display can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to produce the color consumers see. If you use a magnifier to inspect your monitor, you will see RGB color in each pixel. With an on/off switch and different level of brightness RGB, we can get many colors.
Wider viewing angles are not always welcome or needed. Image you work on the airplane. The person sitting next to you always looking at your screen, it can be very uncomfortable. There are more expensive technologies to narrow the viewing angle on purpose to protect the privacy.
Winner. IPS TFT screens have around 0.3 milliseconds response time while TN TFT screens responds around 10 milliseconds which makes the latter unsuitable for gaming
Winner. the images that IPS displays create are much more pristine and original than that of the TFT screen. IPS displays do this by making the pixels function in a parallel way. Because of such placing, the pixels can reflect light in a better way, and because of that, you get a better image within the display.
As the display screen made with IPS technology is mostly wide-set, it ensures that the aspect ratio of the screen would be wider. This ensures better visibility and a more realistic viewing experience with a stable effect.
Winner. While the TFT LCD has around 15% more power consumption vs IPS LCD, IPS has a lower transmittance which forces IPS displays to consume more power via backlights. TFT LCD helps battery life.
Normally, high-end products, such as Apple Mac computer monitors and Samsung mobile phones, generally use IPS panels. Some high-end TV and mobile phones even use AMOLED (Active Matrix Organic Light Emitting Diodes) displays. This cutting edge technology provides even better color reproduction, clear image quality, better color gamut, less power consumption when compared to LCD technology.
What you need to choose is AMOLED for your TV and mobile phones instead of PMOLED. If you have budget leftover, you can also add touch screen functionality as most of the touch nowadays uses PCAP (Projective Capacitive) touch panel.
This kind of touch technology was first introduced by Steve Jobs in the first-generation iPhone. Of course, a TFT LCD display can always meet the basic needs at the most efficient price. An IPS display can make your monitor standing out.

TFT (Thin Film Transistor) LCD (Liquid Crystal Display) we are talking here is TN (Twisted Nematic) type TFT displays which is align with the term in the TV and computer market. Now, TFT displays have taken over the majority of low-end color display market. They have wide applications in TV, computer monitors, medical, appliance, automotive, kiosk, POS terminals, low end mobile phones, marine, aerospace, industrial meters, smart h
Ms.Josey
Ms.Josey