direct lit va lcd panel for sale
*Purchase an eligible 70” or larger LG TV and receive free Wall mounting by Handy ($164.99 value). Savings will be reflected in the cart when all offer requirements are met. If any of the qualifying items are removed from the cart, returned or part of the order is cancelled, the promotional savings will be void. Handy wall mounting service must be added to the original TV order and is not redeemable separately. Wall mounting by Handy includes installation of TV mounting bracket, mounting of TV and load testing the hardware. Wall mount not included and must be purchased separately (unless noted for the OLED G series). Prices and offers are non-redeemable for cash and non-transferable. Available only on LG.com from January 22, 2023 through February 12, 2023. Availability, prices and terms of offer are subject to change without notice. [Click here for Handy full terms: LG + Handy.]
*Purchase an eligible TV and sound bar bundle package in a single transaction on LG.com and receive instant additional savings of up to $200 off the pre-tax sale price of the combined purchase of the TV and sound bar. Savings will be reflected in the cart when all offer requirements are met. If any of the qualifying items are removed from the cart, returned or part of the order is cancelled, the promotional savings will be void. TV and sound bar purchase must be in the same order. Amount of savings depend on the qualifying sound bar model purchased with the qualifying TVs. Prices and offers are non-redeemable for cash, non-transferable and may not be combined with other offers/discounts. Availability, prices and terms of offer are subject to change without notice.
Prices, promotions and availability may vary by model, store, and online. Prices subject to change without notice. Quantities are limited. Check with your local retailers for their final price and availability.
At LG USA,we create consumer electronics and home appliances to improve and innovate your home. Whether that means cooking a nutritious, delicious meal for your family with the latest kitchen technology, staying connected to creative projects on your LG gram laptop, watching a movie with your kids on an LG OLED TV or creating a modern, comfortable place to celebrate the moments that matter, LG electronics are there for you every step of the way.
LG Home Appliances feature modernly designed ranges and ovens, microwaves, cooktops, vacuums, washers, dryers, air conditioners, air purifiers and dishwashers. Upgrade your home applianceswith new technology from LG USAto cook healthy, delicious meals more efficiently, clean your dishes faster, do more laundry in less time, and even clean and cool your house so you can enjoy a comfortable space all year long.
Explore LG products to revamp and refresh your home on LG.com. Purchase modern appliances and smart home technology solutions from LG.com US and enjoy LG customer support like options for delivery, pickup, product registration, installation, customer service, and more.
LCD panels are backlit by LED lights, so they rely on a backlight behind the panel to make the picture visible, and the LCD layer can"t prevent all light from escaping out of the screen. This means that even in a black scene, the backlight is still on, and some light escapes, causing blacks to appear gray.
Contrast/Brightness: These settings aim to improve the contrast ratio by tinkering with the white and black levels. It doesn"t have a direct effect on the local dimming but can improve the picture quality. The contrast setting increases the luminosity of the brightest whites, while brightness (sometimes called black level), makes blacks darker. Keep in mind the brightness setting on some TVs controls the backlight, which doesn"t affect picture quality.
Frame dimming: Frame dimming, or CE dimming on Samsung TVs, is a basic version of local dimming, but it dims the entire backlight instead of zones. Usually found on edge-lit TVs, it causes small highlights to become dim as well. It may improve the contrast a bit, but it"s not very useful for most scenes.
Local dimming features on LED TVs are a way to improve the contrast ratio. Since these TVs consist of LED backlights behind an LCD panel, local dimming aims to turn off, or dim, certain zones of the LED backlight, making blacks look darker and highlights brighter. However, there may be some issues with local dimming on some TVs as it could cause blooming around bright objects or for entire zones to light up when there"s a small object. Overall, most local dimming features on modern TV do an effective job at improving the picture quality in dark scenes, and only some lower-end models will have glaring problems.
Modern LCD TVs rely on LED backlighting to produce the visuals you see on the screen. But their picture quality and price can differ based on their backlighting system. So, what are these backlighting systems, and how are they different?
LCD TVs can be grouped into three categories based on the type of LED backlighting system: Direct-lit, edge-lit, and full-array. As the name suggests, direct-lit TVs feature a panel of LEDs placed directly behind the display stack. Full-array TVs have a similar LED placement, but the number of LEDs is significantly more, and these LEDs are divided into different zones. But unlike both direct-lit and full-array TVs, edge-lit TVs have LEDs on the perimeter, and depending on the TV, these LEDs may or may not be grouped into multiple zones.
The LED backlight zones in full array and edge-lit TVs are significant as they enable the manufacturers to implement a feature called local dimming. It allows TVs to control the backlight on a scene-by-scene basis. So the TV can turn off LED backlighting in parts of the screen where it’s supposed to be darker while keeping other parts lit. As a result, LCD TVs with local dimming can produce deep, uniform blacks and have a better contrast ratio than the LCD TVs that don’t have this feature.
Direct lighting is the newest of the three types backlighting in LCD TVs. The first commercial direct-lit LCD TVs emerged around 2012 and are essentially an off-shoot of the full-array TVs.
As direct-lit TVs require fewer LEDs and no backlight control, they are cheaper to produce and thus typically limited to the entry-level and mid-range segments of a TV manufacturer’s portfolio.
But, the lower number of LEDs also means they have to be placed farther away from the screen to offer sufficient light coverage across the panel. As a result, direct-lit TVs are usually thicker than TVs with other backlighting systems.
Additionally, the lack of backlight control limits the contrast ratio of direct-lit LCD TVs to the native contrast ratio of the panel. So if a direct-lit TV uses a VA-type LCD panel, it will have a reasonable contrast ratio, but TVs with IPS-type panels have a poor contrast ratio.
Sony X85J is a direct-lit 4K LCD TV. It uses a VA-type panel and comes with features like HDMI 2.1 ports, VRR support, and Android TV operating system.
Edge LED backlighting first appeared in TVs in 2008, allowing for a thinner profile than LCD TVs with other backlighting solutions. But as the LEDs are placed on the rim of the screen, edge-lit TVs require a diffuser to light up the entire display adequately. This adds to their cost, making them slightly more expensive than direct-lit TVs. But given that backlighting is just one part of an LCD TV’s cost, you will find both cheap and costly edge-lit TVs on the market.
Some edge-lit TVs also come with local dimming support. But the number of backlight zones is typically far lower than in full-array TVs, and the individual LEDs are responsible for lighting up entire columns of the screen. So edge-lit local dimming is much less precise, and the benefit in terms of contrast ratio is minimal.
Full-array TVs have the best backlight implementation among LCD TVs. Not only do these TVs have a large number of LEDs, but the LEDs are also divided into multiple zones for dynamic backlight control. So, depending on the number of backlight zones and local dimming implementation, full-array TVs can have modest to excellent improvement over the native contrast ratio of the LCD panel.
Unfortunately, LCD TVs with full-array local dimming can also suffer from various screen artifacts, such as blooming and black crush, depending on the number of backlight zones and the overall local dimming implementation.
The Samsung QN90A is one of the best LCD TVs on the market and it uses full-array local dimming. The TV has 4K resolution, HDMI 2.1 port, and a 120Hz VA-type panel.
If you are shopping for a new TV and curious about its backlighting system, you can consult the TV’s specifications. Manufacturers generally mention whether an LCD TV is direct lit, edge lit, or full array. In the case of full-array TVs, the number of local dimming or backlight control zones is also listed in the TV’s specifications. This number is usually different for different sizes of a particular TV and can impact the amount of contrast ratio gain you can expect.
OLED TVs are self-emissive and don’t need a backlight, unlike LCD TVs. Instead, each pixel of an OLED panel can generate its own light and be switched off to display the perfect black color. So, OLED TVs essentially offer pixel-level local dimming. As a result, they have a near-infinite contrast ratio and are generally considered to have the best picture quality. But they are also typically more expensive than LCD TVs and can suffer from burn-in.
All-in-all, the backlight system of an LCD TV can impact its picture performance. And if you are shopping for a new TV, full-array TVs generally have the best picture quality. But if you are restricted by your budget, direct and edge-lit TVs can also deliver good visual performance. But make sure to read expert reviews to get a better idea about the overall quality of a particular television.
LED-backlit LCD, which uses light-emitting diodes for backlighting is a common type of display on televisions and laptops. Unlike pure LED screens these LCDs are not self-illuminating and are reliant on the backlighting for illuminating the display. It is an advancement on the preceding cold cathode fluorescent technology and some manufacturers and retailers may advertise this type of screen as an LED TV.
In this article, we are going to look at the importance of the arrangement of this lighting, rather than the type, as this is crucial for how light is directed into color filters and other critical layers. The three arrangements available are:
Edge-lit is a type of screen backlighting that has LED lights lining either the top and bottom edges of the screen or the perimeter of the screen. This form of backlighting differs from others as the screen is not lit from behind, and often produces a more muted effect. An opaque piece of plastic called a diffuser light guide distributes the lighting across the rear of an LCD panel.
Edge-lit LEDs can be individually brightened or dimmed to provide the high degree of backlight control that screened content demands. Edge-lit screens can achieve this in one of two ways:
Direct-lit backlighting uses LED lighting across a television back panel. This form of backlighting initially used Cold Cathode Fluorescent Lamps (CCFLs) before transitioning to LED. The lighting is behind the LCD panel to provide consistent lighting across the entire screen.
The use of LEDs creates an extremely bright picture. This can lead to black and naturally dark tones appearing too bright, a phenomenon known as ‘elevated black levels’. This appearance can really affect wide-screed films, especially as there is no way to alter the backlight of specific portions of the screen. This has led to the development of alternative backlighting arrangements that minimize the greying of black sections of the screen.
Both types of backlighting provide the illumination LED screens required to produce a visible image. The main difference is that direct-lit backlights sit behind the LCD panel to provide the necessary lighting whereas edge-lit screens have LEDs sitting at the perimeter of the screen. Here are some other notable differences:
The first generation of LED backlighting was edge-lit. However, this early form of edge-lit technology caused the development of hotspots on the screen and the overall lighting was inadequate. As LED design became more efficient and effective, Samsung revisited this type of backlighting with a market-leading edge-lit LED television in 2009.
Direct-lit panels use a simple array of LEDs to provide uniform lighting across an entire LCD panel. The adoption of direct-lit screen technology in the 2000s was driven by the availability of white LEDs that could replace existing CCFL technology.
Direct-lit performs across a range of viewing angles and colors, but it is limited by not being able to increase contrast, as the entire backlight has to be dimmed to change color intensity. This affects the ability of a screen to achieve a deep black tone. Full array lighting and flexible backlight technologies have superseded direct-lit lighting. They are more advanced and can achieve more nuanced imaging effects.
Edge Lit screens can achieve full, deep blacks as they can use local dimming technology to reduce lighting in areas of the screen that display black or dark colors.
There are two types of LED TV - edge-lit and back-lit televisions. So what is the difference, and is it important? Find out everything you need to know.
This type of lamp has managed to produce high-quality televisions. But, there have always been disadvantages to this technology, such as poor contrast ratios and color reproduction.
Different parts of the screen can have the blocks of lights switched on or off at any time, which gives the TV a much better contrast ratio than a traditional LCD TV.
Therefore, a back-lit LED TV with local dimming produces a better picture, which helps it to create an image comparable with other TV technologies like OLED.
A downside is that the power consumption of these TVs can be greater than standard LCD or edge-lit televisions – especially those models which use RGB LEDs.
The advantage over an edge-lit TV is that the lighting will usually be more uniform across the screen – eliminating the light-pooling of edge-lit screens.
The lights in edge-lit LED televisions are placed around the perimeter of the LCD screen – and the light they emit spreads across the back of the panel using a series of ‘light guides.’
Paul started the Home Cinema Guide to help less-experienced users get the most out of today"s audio-visual technology. He has been a sound, lighting and audio-visual engineer for around 20 years. At home, he has spent more time than is probably healthy installing, configuring, testing, de-rigging, fixing, tweaking, re-installing again (and sometimes using) various pieces of hi-fi and home cinema equipment. You can find out more here.
Industry standards for flat-screen televisions have transitioned away from LCD in the past few years due to several factors. Not only were they slower to respond, but they also increased your electric bill in the long run. Additionally, the contrast of the presentation of colors was off making shades of blacks appear grey.
These aforementioned problems with LCD screen televisions made way for LED TVs to take over the market, as they resolve all of the negative attributes associated with LCD televisions. In comparison, LED TVs have better response time, more brightness, and are more energy efficient. However, there are different types of LED TV’s that affect the picture and look of the screen.
Edge Lit LED TVs are TVs with LED lighting that surrounds the perimeter of the TV. These types of TVs are thinner, cool off more easily, and they are cheaper to manufacture.
Direct Lit LED TVsare televisions that have LED lighting located directly in back of the LCD panel. With the amount of coverage this execution has, overall all brightness and contrast is better than Edge Lit LED TVs. Direct Lit LED TVs are generally thicker and more expensive to produce.
There isn’t a direct answer to this, as it really depends on the purpose of the TV. For example, the best professional monitors use Direct Lit LEDs, since overall image quality is better. However, for those who want a slim-profile TV, Edge lit is the way to go.
Need help making a decision regarding what hospitality television would best suit your business? Contact our hotel technology experts directly. They will help guide you through the different options available in our inventory.
In this succinct guide, we"ll provide a brief overview of common initialisms found in the world of TV, PC monitor, and laptop displays. To keep things simple, we"ll focus on how each technology impacts expected image quality. Whether you"re looking for a handy refresher for the next time you"re shopping or a quick, digestible guide to give to inquisitive friends and family, we"ve got you covered.
You"re likely reading this article on a liquid crystal display (LCD). "LCD" refers to any display type that uses liquid crystals, including TN, IPS, and VA (which we"ll get into shortly). Even an old-school calculator or digital watch can use an LCD. But a simple "LCD" designation doesn"t tell you how a screen will perform. You need more information, like the backlight type the panel uses—usually LED, followed by the more expensive Mini LED.
LCDs long ago ousted cathode ray tube (CRT) and plasma displays as the dominant consumer display tech. In the past, it was common to find LCDs with cold cathode fluorescent lamp (CCFL) backlights, but most LCD displays today use LED backlights (more on that below).
TN, IPS, and VA are the three primary types of LCD displays you"ll find in TVs, monitors, and laptops. They all vary in how they use their liquid crystals. Each could warrant its own article, but we"ll keep it simple here by focusing on the differences you can expect to see in real life. Advertisement
It"s easier to reach high refresh rates and low response times with TN displays, although pricier IPS and VA are catching up. It"s worth noting that the upcoming Asus ROG Swift 500 Hz Gaming Monitor, which should be the fastest monitor on the market, purportedly achieves its refresh rate via an "E-TN" panel that claims 60 percent better response times than regular TN. So while you can buy a supremely fast IPS (up to 360 Hz) or VA monitor, TN is still the technology pushing the limits of refresh rates.
VA panels excel in contrast, which is often considered the most important factor in image quality. VA monitors commonly have contrasts of 3,000:1, while a typical IPS comes in at 1,000:1. IPS Black displays, which started coming out this year, claim to double the contrast of typical IPS monitors to up to 2,000:1. We reviewed the IPS Black-equipped Dell UltraSharp U2723QE, and the difference was noticeable.
The Hisense U8H matches the excellent brightness and color performance of much pricier LCD TVs, and its Google TV smart platform is a welcome addition. But it’s available in only three screen sizes.
The Hisense U8H is the best LCD/LED TV for most people because it delivers the performance of a much pricier TV yet starts at under $1,000, for the smallest (55-inch) screen size. This TV utilizes quantum dots, a full-array backlight with mini-LEDs, and a 120 Hz refresh rate to deliver a great-looking 4K HDR image. It’s compatible with every major HDR format. And it’s equipped with two full-bandwidth HDMI 2.1 inputs to support 4K 120 Hz gaming from the newest Xbox and PlayStation consoles. Add in the intuitive, fully featured Google TV smart-TV platform, and the U8H’s price-to-performance ratio is of inarguable value.
Key to this functionality is the U8H’s employment of mini-LED backlighting with local dimming, which allows this TV to produce very bright light while still maintaining satisfyingly deep black levels that are typically free of blooming (or light bleed that’s visible around bright objects against a dark backdrop). This not only ensures impressive image contrast, it also makes the U8H a viable choice for most rooms, whether they’re brighter than average or dimmed down like a movie theater.
That’s not to say the U8H has pixel-precise light control—it’s not an OLED TV, after all—but it does a terrific job most of the time. In fact, in our tests, the U8H bested last year’s upgrade pick, the Samsung QN90A, in certain scenarios: The intro to Guillermo del Toro’s Cabinet of Curiosities on Netflix features the filmmaker against a pitch-black backdrop. Though last year’s QN90A failed to maintain perfect control over dimming elements during this scene (the black backdrop brightened distractingly once a sufficient amount of brighter content appeared on screen), the U8H did not. (For the record, the newer QN90B also passed this test.) The U8H’s mini-LEDs also help the screen look uniformly bright: Although the U8H is still not as good as an OLED TV in this respect, it shows very little indication of being a backlight-driven display, even during tricky scenes with large swaths of dim lighting.
The U8H’s brightness, black-level integrity, and local-dimming abilities make this an excellent TV for watching HDR content. The U8H is capable of playing HDR content in all of the major formats (HDR10, HDR10+, Dolby Vision, and HLG), but when it comes to impressive HDR, what’s under the hood is much more important than format compatibility. The most crucial thing for good HDR is high brightness and deep color saturation, and the U8H’s quantum dots achieve the latter. It’s not as simple as just having quantum dots, however: While many TVs (even the budget options) have quantum dots nowadays, what is often not taken into account is that brightness directly affects color saturation. For example, both the 2022 TCL 6-Series and the Hisense U8H are equipped with quantum dots, mini-LED backlights, and local dimming. But because the U8H is notably brighter than the 6-Series, it also achieves a higher total color volume. During our color-volume testing, the U8H exhibited color ranges at more than 100% of the DCI-P3 color space (the range of color needed to properly display HDR content), and it is capable of roughly 10% more total color volume compared with the 6-Series.
What does this mean in real-world terms? It means that the Hisense U8H truly excels as a modern 4K HDR TV, whether you’re watching the latest episode of Rings of Power or playing Overwatch 2. While watching HDR content side by side on the U8H and on our upgrade pick, the Samsung QN90B, I was truly surprised by how similar they looked at times, given that our upgrade pick is much more expensive. That said, though the U8H achieves impressive results where light output and color volume are concerned, it also exhibited some occasional video processing and upscaling issues (see Flaws but not dealbreakers), which videophiles and AV enthusiasts may take umbrage with. But in general, the picture quality punches well above its weight, metaphorically speaking.
And thanks to Hisense’s inclusion of Filmmaker Mode, it’s easy to rein in the U8H’s brightness abilities for a more-subdued and filmic experience in a darker room. Our measurements revealed that this mode has a very accurate white balance, mostly accurate colors (green is a bit oversaturated, but not egregiously so), and a perfect “dark room” gamma (which controls how quickly the video signal transitions from dark to light). Additionally, the TV’s 120 Hz refresh rate means it can play Blu-ray discs at 24 fps without the judder that’s usually present on TVs with 60 Hz refresh rates.
The TV’s higher refresh rate also reduces motion blur in faster-moving sports and allows for smoother, more stable motion in games. Two of the four HDMI inputs support 4K gaming at 120 Hz. The U8H measured low input lag while playing in 4K resolution, and Hisense’s helpful GameZone setting in the picture menu allowed me to confirm the presence of 120 Hz playback and variable refresh rate during games.
The onboard Google TV smart platform is another feather in this TV’s cap. As usual, however, it will be much more satisfying to use if you have a Google account and already take advantage of Google’s connected services, like Photos. The experience of navigating the TV’s smart features—scanning QR codes to sign into apps, using the onscreen keyboard, and browsing your Google Photos to set a photo as a screensaver—was very satisfying in terms of responsiveness and speed. Powering on the TV and booting into an app took just seconds. The included Bluetooth remote is also equipped with a handy “Hey Google” button, allowing you to pull up Google’s assistant and use voice commands to search for content or set a reminder. If you have multiple users with their own Google accounts, you can designate separate profiles (attached to a Gmail account) so that each user can customize the experience to their liking, as well as access their own Google Drive or Photos. While some reviewers have reported instances of momentary freezing while using the U8H’s platform, I didn’t personally experience any instances of slowdown that were egregiously worse than with any other smart-TV platform.
In terms of design, the Hisense U8H is not as svelte as our upgrade pick, but it’s plenty sturdy and doesn’t look or feel cheap. Two narrow, metal feet jut out from beneath the panel and steadily hold the TV. They can be attached in two separate spots, either closer in toward the middle of the panel or out toward the edges, to account for different-size TV stands. The feet are also equipped with cable organization clasps—a nice touch for keeping your TV stand free of cable clutter. Though the TV is primarily plastic, its bezels are lined with metal strips, providing a bit more durability in the long run. I moved it around my home, and it was no worse for wear, but we’ll know more after doing some long-term testing.
The Hisense U8H has some difficulties with banding, or areas of uneven gradation, where transitions that should appear smooth instead look like “bands” of color (sometimes also called posterization). Like many current 4K HDR TVs, the U8H uses an 8-bit panel rather than a 10-bit panel, which affects the color decoding and color presentation process. This is usually relevant only with HDR video and games. When playing games on the PlayStation 5 and Xbox Series X, I saw a few instances where the content wasn’t rendered correctly and displayed ugly splotches of color on the screen. However, this almost always occurred during static screens (such as a pause menu or loading screen); I rarely spotted it during actual gameplay. Hisense has stated that it would address the problem in a future firmware update, but at the time of writing it was still present. This is a flaw that may give dedicated gamers pause, but we don’t consider it to be a dealbreaker for most people.
I also saw occasional instances of banding with TV shows and movies, though they were few and far between. The U8H isn’t the best at upscaling sub-4K content, so videos with a 1080p or lower resolution looked a little soft. You can get better overall video processing and upscaling by springing for our upgrade pick (this is one reason it’s more expensive, after all).
Although the UH8 TV has four HDMI inputs, only two of them are fully HDMI 2.1–compatible. And one of those is designated as the eARC input (intended as an audio connection for a soundbar or AV receiver connection). So if you’re pairing an external audio system with the U8H, you may have only one input remaining that can support HDMI 2.1 features like 4K 120 Hz playback, variable refresh rate, and auto game mode; this could be a dealbreaker if you own more than one current-gen gaming console. If you’re in that boat, you may want to splash out some extra dough for our upgrade pick. Additionally, folks using pre-HDMI source devices—like the five-cable composite connector with green, red, blue, and red/white audio inputs—should be aware that this TV requires an adapter to allow those devices to connect, and an adapter is not included in the box.
Finally, like most TVs that use vertical alignment (VA) LCD panels, the U8H has a limited horizontal viewing angle, which may be a bit annoying if you’re hoping to entertain a large crowd. Our upgrade pick uses a special wide-angle technology to address this.
If you’re watching in a darker room and want the most accurate picture you can get—preserving the director’s intent—select the U8H’s Filmmaker Mode as your picture mode. In a brighter room, we recommend the Theater Day picture mode. In either case, you should go into the backlight settings, disable the automatic light sensor, and set the backlight to your personal preference. This is true whether you’re watching SDR or HDR content.
Because OLED TVs are newer and generally more expensive, the average buyer is looking at LED/LCD TVs right now. And although there are several features and specifications to consider while shopping—the brand name, HDR compatibility, and refresh rate, just to name a few—there’s one important hardware spec that isn’t widely advertised: LCD panel type.
LED/LCD TVs are so called because of the two things that make up their displays: an LED (Light Emitting Diode) backlight and an LCD (Liquid Crystal Display) panel for that backlight to shine through. LED backlights vary between a variety of implementations, but modern LCDs generally come in one of two panel technologies: IPS (In-Plane Switching) and VA (Vertical Alignment).
Unlike other hardware specifications (which are usually listed on the side of a TV box or on the manufacturer’s website), information about a TV’s LCD panel type is a bit more inside baseball. But panel type has a far greater impact on a TV’s performance than you might expect—it affects contrast, color, and viewing angle as well.
Individual pixels in an LCD display are made up of liquid crystals activated by voltage. How the display arranges its crystals is part of what sets IPS panels apart from VA panels.
IPS (In-Plane Switching) panels are a common display type for both the best computer monitors and TVs. Without getting too far down the rabbit hole, let’s talk a little about how IPS panels distinguish themselves from other types.
Every non-OLED TV on the market today is an LCD TV powered by LED lighting. Individual pixels in an LCD display are made up of liquid crystals activated by voltage—this is what produces color. An IPS panel aligns its crystals horizontally, parallel to the glass substrate.
IPS technology was developed in part to improve the color and wide viewing angle performance of a display. There"s also a range of variations under the IPS umbrella, including ADS, S-IPS, H-IPS, e-IPS, P-IPS, and PLS (Plane-to-Line Switching). But, while they all differ marginally from one another in operation, their core functionality (as compared to VA panels) is the same.
VA (Vertical Alignment) panels represent another common display type, used for both computer monitors and TVs, but especially for the latter where they greatly outnumber their IPS counterparts. Most LED/LCD TVs you"ll find on the market use a VA panel. While IPS panels align their liquid crystals horizontally, VA panels align them—you guessed it—vertically. They run perpendicular to the glass substrate rather than parallel to it. When met with voltage, the crystals tilt, letting light through and producing color.
This positioning changes how the liquid crystals behave. Without any voltage, the liquid crystals in a VA panel do not tilt, which is a better outcome if your goal is to block light and create image depth. Like with IPS, VA panels also come in a few varieties: PVA, S-PVA, and MVA, though again, their core functionality (as compared to IPS panels) is the same.
TN (Twisted Nematic) is an older LCD display type. They"re still relatively common display types for computer monitors—thanks to their lightning fast response times and excellent handling of motion blur. TN panels aren"t typically used in TV production anymore, though.
The cornerstone of picture quality, contrast ratio refers to the range between a display’s darkest black levels and brightest highlights. Because VA-style panels excel at producing deep, dark black levels, this is arguably their biggest strength. VA panels almost always feature deeper black levels than their IPS counterparts, and this goes a long way in creating a detail-rich picture. An IPS panel can mitigate this by serving up an exceptionally bright image to offset relatively shallow black levels.
A TV’s total viewing angle describes how much a viewer can move away from an ideal, head-on viewing position before the contrast and color of the picture begins to deteriorate. Due to the positioning of their liquid crystals, IPS panels excel in this department; they typically offer significantly more viewing flexibility than TVs with VA-style panels. In other words, IPS panels are more reliable for group viewings (or any situation where a viewer might need to sit at an off-angle).
While impressive color production is possible on both display types, IPS panels tend to offer wider colors, given the nature of their hardware. While a wider range of colors tends to spell better color accuracy, the advent of additional TV technologies like quantum-dot color have evened the playing field considerably. In other words, you’re far more likely to notice the benefits of an IPS TV’s wider viewing angle than you are to notice its tendency for wider color.
Here’s the final takeaway: IPS panels are significantly better than VA panels when it comes to viewing angle and somewhat better than VA panels when it comes to color. VA panels, however, almost always offer deeper black levels and better overall contrast. And because they block light better, TVs and monitors using VA panels tend to have better backlight uniformity regardless of LED backlight type.
Unfortunately, not only is it rare to find a TV’s panel type listed on a manufacturer’s website, but it’s increasingly rare for a brand to reveal a TV’s panel type at all—even when we contact brands directly for information. The reason for this caginess has everything to do with marketing; it’s better to keep shoppers focused on the bells, whistles, and impressive performance specs of a TV rather than its potential shortcomings.
To add to the confusion, it’s common for different sizes of the same TV series to mix and match display types; you might find that the 55-inch version of a TV features a VA-style display while the 75-inch model uses IPS.
Fortunately, it’s relatively easy to determine panel type if you have the proper equipment and you know what to look for. Certain test results and viewing characteristics act as tell-tale signs. This is why my colleagues and I make a point of discussing panel type in just about every TV review we publish, and why you should make a point of reading reviews before making a purchase.
Panel type is not the end-all-be-all for LED/LCD TVs. Many other factors, most of them related to the style and intensity of the LED backlight, can have a major impact on factors like contrast, viewing angle, and color intensity. Ultimately, you need to see a TV in person (and ideally in the space it’s going to live in) to get the best idea of how well it creates an image. But by knowing the core differences of IPS vs VA LCD panels, you can at least make some good guesses before you buy.
Unlike the best gaming monitors, IPS and VA TV panels are on an even playing field. TVs with both technologies are capable of high refresh rates of 120Hz, or occasionally 240Hz (although it usually comes at a premium).
If you focus on single-player gaming, or your multiplayer gaming happens online, the excellent contrast of VA is the way to go. The most gaming benefits you’ll see will come from extra features like Variable Refresh Rate (VRR), Auto Low Latency Mode (ALLM), or cloud game capabilities.
If you’re buying a large screen and intend to host movie nights with friends and family, a TV with an IPS-style panel is far more accommodating thanks to its superior viewing angle. Just be aware that certain content—particularly dark content—won’t pop as much on account of the panel’s shallower black levels.
On the other hand, if you want the best possible picture overall, we recommend investing in a TV with a VA-style panel. They’re not always ideal candidates for group viewings, but the vast majority of the best non-OLED TVs you can buy feature this display type.
Even after the introduction of newer display technologies, LCDs still remain relevant even today.LCD displays are used for multiple purposes (TV, Monitor, Mobile Phones, Laptops, Automobiles, etc.) and one single configuration cannot satisfy all the purposes. So, LCD displays come with two different panels – VA (Vertical Alignment) and IPS (In-Plane Switching) to satisfy the different viewing needs of consumers.
A VA panel offers a superior contrast ratio but a narrow viewing angle. Contrarily, an IPS panel offers a wide viewing angle but a low contrast ratio.
As mentioned earlier, displays with VA Panels provide a great contrast ratio. You can find VA panels that typically come with contrast ratios of 3000:1 or 6000:1. A comparable IPS panel will only have a contrast ratio of 1000:1.
But they fall behind when it comes to viewing angles. Viewing angle denotes the angle at which you can sit and watch the TV / monitor without a drop in the picture quality.
VA panels have narrow viewing angles. You will only be able to have an immersive experience when you sit straight opposite the display. The wider angles will not provide you the same experience.
In this, the liquid crystals are arranged parallel to the glass substrate instead of the perpendicular alignment. Furthermore, the structure of crystals and the placement of electrodes differ from the one used in VA panels. The electrodes occupy more space that results in lower contrast and brightness of the screen.
With the IPS panels, you can view the TV / monitor from a wide-angle and still get an impressive picture quality. Unlike VA panels, you will notice very little difference in color reproduction when you sit at a wide-angle from the display.
But when it comes to black uniformity, the IPS panels are sub-par. These panels do a poor job in displaying a bright image in the center of a completely black screen.
One more major drawback with the IPS panels is that they exhibit a distinct phenomenon called ‘IPS Glow’. You will notice some light patches on the corners of the screen. This happens when excessive light is passed through the screen.
Initially, IPS panels are mainly used in TVs due to their wide viewing angles, as we can watch TV in our living room from anywhere. But due to their better quality, color accuracy and response time, LCD panels gradually occupied the high-end computer monitor and laptop screens
IPS:These panels have the highest color range. You will be able to enjoy a realistic gaming experience. Besides, they have better viewing angles. So, you won’t notice any drop in picture quality even when you are not sitting in front of your TV / monitor.
VA:Even though the color range is not as great as the IPS panel, it does a pretty good job in showing the color variations. But the viewing angle is narrow. So, you have to sit straight opposite the TV / monitor.
VA panel compensates for its decent color range with an impressive contrast ratio. You will be able to see great detailing in the difference between light and dark colors.
IPS:IPS panels have one of the highest refresh rates. While you easily find an IPS panel with a refresh rate of 144Hz, some of the latest ones come with a refresh rate of 360Hz. If you are a serious online-gamer, digital artist, or video editor, then you have to go with the highest refresh rate within your budget.
VA:VA panels have lower refresh rates than IPS panels. Most VA panels come with a refresh rate of 120Hz. If you want to have a higher refresh rate, then you have to be willing to spend extra. VA panels have a maximum refresh rate of 240Hz.
IPS:IPS panels generally come with a response time of 4 milliseconds. This would suffice for watching TV or playing most games. But, if you are playing racing games or first-person shooting games, you need to have a response time of less than 2 milliseconds.
VA:VA panels generally have a slower response time than IPS panels with 5 milliseconds. So, there is a higher chance for you to experience motion blur. But, some of the VA panels that come with an expensive price tag have faster response times.
IPS:When it comes to the viewing angle, IPS panels far outweigh the VA panels. They have wider viewing angles. You will experience no drop in picture quality even if you sit and watch the TV from an extreme angle.
VA:The VA panels have a very narrow viewing angle. You have to sit as close to the straight axis of the TV to enjoy the picture quality. If you sit wider, there will be a significant loss in the picture quality.
IPS:IPS panels do a decent job in the contrast ratio segment but they are nowhere close to that of VA panels. An IPS panel offers a contrast ratio of 1000:1. When you watch a black color environment in an IPS panel, the black color will be slightly greyed out.
VA:VA panels offer a superior contrast ratio of 6000:1 that is very impressive. It has the capacity to show dark environments as darker. So, you will enjoy the picture detailing shown by the VA panels.
IPS:IPS panels are not really great at displaying the uniform black color throughout the screen. Due to the low contrast ratio, the black color will appear slightly greyed out.
VA:VA panels have a good black uniformity. But it also depends on the TV model you go with. Not all TV models with a VA panel have good black uniformity. But it is safe to say that in general, VA panels have better black uniformity than an IPS panel.
To put it short, the main difference between the panels lies in the alignment of the liquid crystals. The alignment results in the differences in the performance and picture quality of the panels.
The VA panels are ideal for office/study use, high-end PC games, and online games. If you are looking for a panel for mixed usage, the VA panel should still suffice your needs.
Shopping for a new TV is like wading through a never-ending pool of tech jargon, display terminology, and head-spinning acronyms. It was one thing when 4K resolution landed in the homes of consumers, with TV brands touting the new UHD viewing spec as a major marketing grab. But over the last several years, the plot has only continued to thicken when it comes to three- and four-letter acronyms with the introduction of state-of-the-art lighting and screen technology. But between OLEDs, QLEDs, mini-LEDs, and now QD-OLEDs, there’s one battle of words that rests at the core of TV vocabulary: LED versus LCD.
Despite having a different acronym, LED TV is just a specific type of LCD TV, which uses a liquid crystal display (LCD) panel to control where light is displayed on your screen. These panels are typically composed of two sheets of polarizing material with a liquid crystal solution between them. When an electric current passes through the liquid, it causes the crystals to align, so that light can (or can’t) pass through. Think of it as a shutter, either allowing light to pass through or blocking it out.
Since both LED and LCD TVs are based around LCD technology, the question remains: what is the difference? Actually, it’s about what the difference was. Older LCD TVs used cold cathode fluorescent lamps (CCFLs) to provide lighting, whereas LED LCD TVs used an array of smaller, more efficient light-emitting diodes (LEDs) to illuminate the screen.
Since the technology is better, all LCD TVs now use LED lights and are colloquially considered LED TVs. For those interested, we’ll go deeper into backlighting below, or you can move onto the Local Dimming section.
Three basic illumination forms have been used in LCD TVs: CCFL backlighting, full-array LED backlighting, and LED edge lighting. Each of these illumination technologies is different from one another in important ways. Let’s dig into each.
CCFL backlighting is an older, now-abandoned form of display technology in which a series of cold cathode lamps sit across the inside of the TV behind the LCD. The lights illuminate the crystals fairly evenly, which means all regions of the picture will have similar brightness levels. This affects some aspects of picture quality, which we discuss in more detail below. Since CCFLs are larger than LED arrays, CCFL-based LCD TVs are thicker than LED-backlit LCD TVs.
Full-array backlighting swaps the outdated CCFLs for an array of LEDs spanning the back of the screen, comprising zones of LEDs that can be lit or dimmed in a process called local dimming. TVs using full-array LED backlighting to make up a healthy chunk of the high-end LED TV market, and with good reason — with more precise and even illumination, they can create better picture quality than CCFL LCD TVs were ever able to achieve, with better energy efficiency to boot.
Another form of LCD screen illumination is LED edge lighting. As the name implies, edge-lit TVs have LEDs along the edges of a screen. There are a few different configurations, including LEDs along just the bottom, LEDs on the top and bottom, LEDs left and right, and LEDs along all four edges. These different configurations result in picture quality differences, but the overall brightness capabilities still exceed what CCFL LCD TVs could achieve. While there are some drawbacks to edge lighting compared to full-array or direct backlight displays, the upshot is edge lighting that allows manufacturers to make thinner TVs that cost less to manufacture.
To better close the local-dimming quality gap between edge-lit TVs and full-array back-lit TVs, manufacturers like Sony and Samsung developed their own advanced edge lighting forms. Sony’s technology is known as “Slim Backlight Master Drive,” while Samsung has “Infinite Array” employed in its line of QLED TVs. These keep the slim form factor achievable through edge-lit design and local dimming quality more on par with full-array backlighting.
Local dimming is a feature of LED LCD TVs wherein the LED light source behind the LCD is dimmed and illuminated to match what the picture demands. LCDs can’t completely prevent light from passing through, even during dark scenes, so dimming the light source itself aids in creating deeper blacks and more impressive contrast in the picture. This is accomplished by selectively dimming the LEDs when that particular part of the picture — or region — is intended to be dark.
Local dimming helps LED/LCD TVs more closely match the quality of modern OLED displays, which feature better contrast levels by their nature — something CCFL LCD TVs couldn’t do. The quality of local dimming varies depending on which type of backlighting your LCD uses, how many individual zones of backlighting are employed, and the quality of the processing. Here’s an overview of how effective local dimming is on each type of LCD TV.
TVs with full-array backlighting have the most accurate local dimming and therefore tend to offer the best contrast. Since an array of LEDs spans the entire back of the LCD screen, regions can generally be dimmed with more finesse than on edge-lit TVs, and brightness tends to be uniform across the entire screen. Hisense’s impressive U7G TVs are great examples of relatively affordable models that use multiple-zone, full-array backlighting with local dimming.
“Direct local dimming” is essentially the same thing as full-array dimming, just with fewer LEDs spread further apart in the array. However, it’s worth noting that many manufacturers do not differentiate “direct local dimming” from full-array dimming as two separate forms of local dimming. We still feel it’s important to note the difference, as fewer, further-spaced LEDs will not have the same accuracy and consistency as full-array displays.
Because edge lighting employs LEDs positioned on the edge or edges of the screen to project light across the back of the LCD screen, as opposed to coming from directly behind it, it can result in very subtle blocks or bands of lighter pixels within or around areas that should be dark. The local dimming of edge-lit TVs can sometimes result in some murkiness in dark areas compared with full-array LED TVs. It should also be noted that not all LED edge-lit TVs offer local dimming, which is why it is not uncommon to see glowing strips of light at the edges of a TV and less brightness toward the center of the screen.
Since CCFL backlit TVs do not use LEDs, models with this lighting style do not have dimming abilities. Instead, the LCD panel of CCFL LCDs is constantly and evenly illuminated, making a noticeable difference in picture quality compared to LED LCDs. This is especially noticeable in scenes with high contrast, as the dark portions of the picture may appear too bright or washed out. When watching in a well-lit room, it’s easier to ignore or miss the difference, but in a dark room, it will be, well, glaring.
An OLED display uses a panel of pixel-sized organic compounds that respond to electricity. Since each tiny pixel (millions of which are present in modern displays) can be turned on or off individually, OLED displays are called “emissive” displays (meaning they require no backlight). They offer incredibly deep contrast ratios and better per-pixel accuracy than any other display type on the market.
Because they don’t require a separate light source, OLED displays are also amazingly thin — often just a few millimeters. OLED panels are often found on high-end TVs in place of LED/LCD technology, but that doesn’t mean that LED/LCDs aren’t without their own premium technology.
QLED is a premium tier of LED/LCD TVs from Samsung. Unlike OLED displays, QLED is not a so-called emissive display technology (lights still illuminate QLED pixels from behind). However, QLED TVs feature an updated illumination technology over regular LED LCDs in the form of Quantum Dot material (hence the “Q” in QLED), which raises overall efficiency and brightness. This translates to better, brighter grayscale and color and enhances HDR (High Dynamic Range) abilities.
And now to make things extra confusing, part of Samsung’s 2022 TV lineup is being billed as traditional OLEDs, although a deeper dive will reveal this is actually the company’s first foray into a new panel technology altogether called QD-OLED.
For a further description of QLED and its features, read our list of the best TVs you can buy. The article further compares the qualities of both QLED and OLED TV; however, we also recommend checking outfor a side-by-side look at these two top-notch technologies.
In this article we give you an insight into the different panel types which are used in the screens of the current televisions. We explain what is behind the abbreviations LCD, VA, IPS, FALD and OLED.
Most TVs available today feature LED-LCD panels. This means that the backlight is created by LEDs and an LCD layer creates colors on the screen. Televisions almost exclusively use VA or IPS LCD displays. Terms such as “QLED” or “NanoCell” refer to additional layers on the screen for more accurate colors.
Normally, each individual pixel consists of three subpixels in the colors red, green and blue. If you mix these three light colors, you get white. In order to create a color other than white, the crystals of the corresponding subpixel must be charged by an electric voltage and change their orientation so that they no longer let the light of their color through. This is where the term LCD (Liquid Crystal Display) comes from.
VA stands for “Vertical Allignment“, which means that the crystals do not transmit light in the vertical orientation. As soon as they are electrically charged, their orientation changes to the horizontal and they let the light of their color through.
In their name-giving vertical orientation, VA panels can very well block the light from the backlight, creating deep blacks. This usually results in a contrast ratio of over 4000:1.
The disadvantage of VA panels is that the picture quality decreases rapidly as the viewing angle increases. If viewed at an angle, the contrast drops considerably and the image looks washed-out quickly.
So IPS-LCD TVs don’t have such deep blacks and typically only a contrast of about 1000:1.The advantage of an IPS panel is that the picture quality remains fairly consistent if viewed at an angle.
The contrast and color intensity as well as the authenticity of the colors are largely retained. IPS panels are somewhat cheaper in production than VA panels, which is why they are used in the majority of entry-level devices.
As mentioned at the beginning, they are actually LED-LCD televisions. Because every LCD TV needs a backlight and this is nowadays generated by LEDs. The LEDs either sit at the edge (usually the lower edge) of the screen (= Edge Lit) or directly behind the screen (= Direct LED).
While 2018 models often had Edge Lit Local Dimming, which could only dim (mostly) vertical stripes, from 2019 you will usually get Full Array Local Dimming (FALD) if a TV has a Local Dimming feature.
Full Array Local Dimming divides the backlight LEDs into different zones, which can then be dimmed separately. How well the Full Array Local Dimming influences contrast ratio and picture quality depends on several factors, namely the number of zones, the dimming algorithm and of course the type of panel. Too few zones or a bad dimming algorithm can lead to unwanted issues such as clouding or blooming. With IPS panels, the problems are generally greater because of the lower native contrast ratio.
One of the cheapest current TVs with local dimming would be the LG NANO85, which has a very poor Edge Lit Local Dimming feature. TheSony X90J, for example, has a solid Full Array Local Dimming, with 24 dimming zones and a good algorithm delivers a really high-contrast picture. The best Full Array Local Dimming currently available (under 10.000$) can be found in the Samsung Q90B. For example, the 65-inch variant has 720 individual dimming zones and a very good algorithm.
OLED panels are a completely different technology than LCDs, because OLED panels do not require backlighting. OLED stands for “organic light emitting diode“, which means that all subpixels emit light themselves or not.
This, however, makes it difficult for the display to display bright, popping (= saturated) colors. In large bright scenes, all pixels must be dimmed down to avoid damage to the panel (ABL: Automatic Brightness Limiter).
OLED televisions are available from more and more manufacturers. That’s why there is now a healthy competition. You get OLED TVs of course from LG, but also from Sony, Hisense or Metz Blue and many more. Even Samsung, who have actually retired from the OLED sector, want to start producing OLED TVs again under the name QD-OLED.
LCD LED is the screen technology most will be familiar with (or already own). These screens use a backlight to illuminate their pixels, of which there’s usually a choice between full-array and edge-lit backlighting.
DLED stands for Direct Light Emitting Diode. It’s where Full-Array backlighting is derived from but is less advanced, with fewer LEDs behind the screen. It’s likely a display termed as DLED won’t have local dimming i.e. control over how bright or dark an area of an image can be. As such, the LEDs are always ‘on’ and while colours can be bright and punchy, DLED screens without local dimming are less effective at reproducing blacks, producing a washed out appearance in dark scenes with bright elements.
OLED stands for Organic Light Emitting Diode. It’s a self-emissive screen technology and that means every pixel has the ability to produce its own light when electricity is applied. The more electricity applied, the brighter they glow, with different materials used to deliver different colours.
Every single pixel works independently of its nearest neighbours, offering dimming abilities at a pixel level. You can have a pixel that’s ‘on’ next to one that’s ‘off’ (literally black), and that creates some of the best contrast ratios and black levels of any TV.
By reducing the size of the LED form, it means more can be squeezed in, allowing for up to thousands of LEDs to be deployed depending on the screen size. Much like Spider-Man’s ‘with great power comes great responsibility’, with more LEDs comes more dimming zones, leading to greater control over how bright and dark an image can be.
Unlike an LCD LED or Quantum Dot TV, Micro-LED combines the LCD layer and LED backlight. What that means is that a pixel is a cluster of three LEDs (a red, green and blue) to create the colours seen on screen.
However, MicroLEDis expensive to produce on a mass scale and in smaller sizes. The smallest MicroLED screen so far is a 76-inch option, but Samsung hasn’t provided a hard date for availability.
QLED (Quantum Dot Light-emitting Diode, forget about the missing ‘D’) is a fancier take on LCD TVs made popular by Samsung. After some to-ing and fro-ing on what it means, it now refers to a TV that combines traditional LCD technology with Quantum Dots.
What are Quantum Dots we hear you ask? They are filters that use an array of tiny dots of slightly different sizes to produce different wavelengths (and therefore colours) when light is applied. As each dot is focused on one colour, Quantum Dots can produce more precise colours, as well as a wider range of colours, and when you factor in its inherent ability to cope with high brightness, you get spectacularly colourful, bright and varied images.
Although not every Quantum Dot TV is equal. Match a Quantum Dot TV with a full array backlight and you get more precise black levels and brightness, but you’ll also have to pay more. Edge-lit Quantum Dot TVs boast a colourful image, but without a full-array dimming system, black levels and contrast can suffer.
IPS and VA are both screen technologies and you’ll find them in LCD LED TVs, as well as Quantum Dot and Mini-LED. IPS stands for In-Plane Switching and offers consistent, accurate colours at wide viewing angles, as well as quick response times.
VA stands for Vertical Alignment and while viewing angles are poorer compared to IPS, contrast and black levels are better. If you like watching movies in a dark room, VA is the panel to plump for.
Of the two, VA is more popular among TV manufacturers due to its contrast and black levels, but some still use IPS, Panasonic for some of their edge-lit displays, LG with their QNED Mini-LEDs and Sony in their more affordable LED TVs.
TV manufacturers also develop their own technologies on top of IPS and VA panels (such as Samsung’s Viewing angle technology on its VA displays) but you often have to pay a premium for that.
In short, with LCD LED, for the best possible picture quality, a TV with a VA panel and full-array local dimming is your best bet. If you’re aren’t swayed by best image quality, or are purchasing a smaller screen, a standard DLED or edge-lit display will likely suit.
There are plenty of new and confusing terms facing TV shoppers today, but when it comes down to the screen technology itself, there are only two: Nearly every TV sold today is either LCD or OLED.
The biggest between the two is in how they work. With OLED, each pixel provides its own illumination so there"s no separate backlight. With an LCD TV, all of the pixels are illuminated by an LED backlight. That difference leads to all kinds of picture quality effects, some of which favor LCD, but most of which benefit OLED.
LCDs are made by a number of companies across Asia. All current OLED TVs are built by LG Display, though companies like Sony and Vizio buy OLED panels from LG and then use their own electronics and aesthetic design.
So which one is better? Read on for their strengths and weaknesses. In general we"ll be comparing OLED to the best (read: most expensive) LCD has to offer, mainly because there"s no such thing as a cheap OLED TV (yet).
At the other side of light output is black level, or how dark the TV can get. OLED wins here because of its ability to turn off individual pixels completely. It can produce truly perfect black.
The better LCDs have local dimming, where parts of the screen can dim independently of others. This isn"t quite as good as per-pixel control because the black areas still aren"t absolutely black, but it"s better than nothing. The best LCDs have full-array local dimming, which provides even finer control over the contrast of what"s onscreen -- but even they can suffer from "blooming," where a bright area spoils the black of an adjacent dark area.
Contrast ratio is the most important aspect of picture quality. A high contrast-ratio display will look more realistic than one with a lower contrast ratio.
One of the main downsides of LCD TVs is a change in picture quality if you sit away from dead center (as in, off to the sides). How much this matters to you certainly depends on your seating arrangement, but also on how much you love your loved ones.
A few LCDs use in-plane switching (IPS) panels, which have better off-axis picture quality than other kinds of LCDs, but don"t look as good as other LCDs straight on (primarily due to a lower contrast ratio).
OLED doesn"t have the off-axis issue LCDs have; i