open smart tft lcd shield arduino free sample

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.

The third example is a game. Actually it’s a replica of the popular Flappy Bird game for smartphones. We can play the game using the push button or even using the touch screen itself.

As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.

Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.

I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.

After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.

So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels  down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.

In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work  you can check my particular tutorial. Here you can download that file:

open smart tft lcd shield arduino free sample

-Select-AfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijan RepublicBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia and HerzegovinaBotswanaBrazilBritish Virgin IslandsBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape Verde IslandsCayman IslandsCentral African RepublicChadChileChinaColombiaComorosCongo, Democratic Republic of theCongo, Republic of theCook IslandsCosta RicaCroatia, Republic ofCyprusCzech RepublicCôte d"Ivoire (Ivory Coast)DenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Islas Malvinas)FijiFinlandFranceFrench GuianaFrench PolynesiaGabon RepublicGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHondurasHong KongHungaryIcelandIndiaIndonesiaIraqIrelandIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, SouthKuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacauMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorwayOmanPakistanPalauPanamaPapua New GuineaParaguayPeruPhilippinesPolandPortugalPuerto RicoQatarReunionRomaniaRwandaSaint HelenaSaint Kitts-NevisSaint LuciaSaint Pierre and MiquelonSaint Vincent and the GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSpainSri LankaSurinameSwazilandSwedenSwitzerlandTaiwanTajikistanTanzaniaThailandTogoTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVatican City StateVenezuelaVietnamVirgin Islands (U.S.)Wallis and FutunaWestern SaharaWestern SamoaYemenZambiaZimbabwe

open smart tft lcd shield arduino free sample

Arduino has always helped to build projects easily and make them look more attractive.  Programming an LCD screen with touch screen option might sound as a complicated task, but the Arduino libraries and shields had made it really easy. In this project we will use a 2.4” Arduino TFT LCD screen to build our own Arduino Touch Screen calculator that could perform all basic calculations like Addition, Subtraction, Division and Multiplication.

Before we actually dive into the project it is important to know, how this 2.4” TFT LCD Module works and what are the types present in it. Let us take a look at the pinouts of this 2.4” TFT LCD screen module.

As you can see there are 28 pins which will perfectly fit into any Arduino Uno / Arduino Mega Board. A small classification of these pins is given in the table below.

As you can see the pins can be classified in to four main classifications such as LCD Command Pins, LCD Data Pins, SD Card Pins and Power Pins, We need not know much about the detailed working of these pins since they will be take care by our Arduino Library.

You can also find an SD card slot at the bottom of the module shown above, which can be used to load an SD card with bmp image files, and these images can be displayed in our TFT LCD screen using the Arduino Program.

Another important thing to note is your Interface IC. There are many types of TFT modules available in the market starting from the original Adafruit TFT LCD module to cheap Chinese clones. A program which works perfectly for your Adafruit shield might not work the same for Chinese breakout boards. So, it is very important to know which types of LCD display your are holding in hand. This detail has to be obtained from the vendor. If you are having a cheap clone like mine then it is most probably using the ili9341 driver IC.You can follow this TFT LCD interfacing with Arduino tutorial to try out some basic example programs and get comfortable with the LCD screen. Also check out our other TFT LCD projects with Arduino here:

If you planning to use the touch screen function of your TFT LCD module, then you have to calibrate it to make it work properly.  A LCD screen without calibration might work unlikely, for instance you might touch at one place and the TFT might respond for a touch at some other place. These calibrations results will not be similar for all boards and hence you are left on your own to do this.

The 2.4” TFT LCD screen is a perfect Arduino Shield. You can directly push the LCD screen on top of the Arduino Uno and it will perfectly match with the pins and slid in through. However, as matters of safety cover the Programming terminal of your Arduino UNO with a small insulation tape, just in case if the terminal comes in contact with your TFT LCD screen. The LCD assembled on UNO will look something like this below.

We are using the SPFD5408 Library to get this arduino calculator code working. This is a modified library of Adafruit and can work seamlessly with our LCD TFT Module. You can check the complete program at the end of this Article.

Now, open Arduino IDE and select Sketch -> Include Librarey -> Add .ZIP library. A browser window will open navigate to the ZIP file and click “OK”. You should notice “Library added to your Libraries” on the bottom-left corner of Arduino, if successful. A detailed guide to do the same is given in the Interfacing Tutorial.

Now, you can use the code below in your Arduino IDE and upload it to your Arduino UNO for the Touch Screen Calculator to work. Further down, I have explained the code into small segments.

As said earlier we need to calibrate the LCD screen to make it work as expected, but don’t worry the values given here are almost universal. The variables TS_MINX, TS_MINY, TS_MAXX, and TS_MAXY decide the calibration of the Screen. You can toy around them if you feel the calibration is not satisfactory.

As we know the TFT LCD screen can display a lot of colours, all these colours have to be entered in hex value. To make it more human readable we assign these values to a variable as shown below.

The final step is to calculate the result and display them on TFT LCD Screen. This arduino calculator can perform operation with 2 numbers only. These two numbers are named as variables “Num1” and “Num2”. The variable “Number” gives and takes value from Num1 and Num2 and also bears the result.

The working of this Arduino Touch Screen Calculator is simple. You have to upload the below given code on your Arduino and fire it up. You get the calculator displayed on your LCD screen.

open smart tft lcd shield arduino free sample

In this article, you will learn how to use TFT LCDs by Arduino boards. From basic commands to professional designs and technics are all explained here.

There are several components to achieve this. LEDs,  7-segments, Character and Graphic displays, and full-color TFT LCDs. The right component for your projects depends on the amount of data to be displayed, type of user interaction, and processor capacity.

TFT LCD is a variant of a liquid-crystal display (LCD) that uses thin-film-transistor (TFT) technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

In Arduino-based projects, the processor frequency is low. So it is not possible to display complex, high definition images and high-speed motions. Therefore, full-color TFT LCDs can only be used to display simple data and commands.

There are several components to achieve this. LEDs,  7-segments, Character and Graphic displays, and full-color TFT LCDs. The right component for your projects depends on the amount of data to be displayed, type of user interaction, and processor capacity.

TFT LCD is a variant of a liquid-crystal display (LCD) that uses thin-film-transistor (TFT) technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

In Arduino-based projects, the processor frequency is low. So it is not possible to display complex, high definition images and high-speed motions. Therefore, full-color TFT LCDs can only be used to display simple data and commands.

After choosing the right display, It’s time to choose the right controller. If you want to display characters, tests, numbers and static images and the speed of display is not important, the Atmega328 Arduino boards (such as Arduino UNO) are a proper choice. If the size of your code is big, The UNO board may not be enough. You can use Arduino Mega2560 instead. And if you want to show high resolution images and motions with high speed, you should use the ARM core Arduino boards such as Arduino DUE.

In electronics/computer hardware a display driver is usually a semiconductor integrated circuit (but may alternatively comprise a state machine made of discrete logic and other components) which provides an interface function between a microprocessor, microcontroller, ASIC or general-purpose peripheral interface and a particular type of display device, e.g. LCD, LED, OLED, ePaper, CRT, Vacuum fluorescent or Nixie.

The LCDs manufacturers use different drivers in their products. Some of them are more popular and some of them are very unknown. To run your display easily, you should use Arduino LCDs libraries and add them to your code. Otherwise running the display may be very difficult. There are many free libraries you can find on the internet but the important point about the libraries is their compatibility with the LCD’s driver. The driver of your LCD must be known by your library. In this article, we use the Adafruit GFX library and MCUFRIEND KBV library and example codes. You can download them from the following links.

You must add the library and then upload the code. If it is the first time you run an Arduino board, don’t worry. Just follow these steps:Go to www.arduino.cc/en/Main/Software and download the software of your OS. Install the IDE software as instructed.

First you should convert your image to hex code. Download the software from the following link. if you don’t want to change the settings of the software, you must invert the color of the image and make the image horizontally mirrored and rotate it 90 degrees counterclockwise. Now add it to the software and convert it. Open the exported file and copy the hex code to Arduino IDE. x and y are locations of the image. sx and sy are sizes of image. you can change the color of the image in the last input.

Upload your image and download the converted file that the UTFT libraries can process. Now copy the hex code to Arduino IDE. x and y are locations of the image. sx and sy are size of the image.

In this template, We converted a .jpg image to .c file and added to the code, wrote a string and used the fade code to display. Then we used scroll code to move the screen left. Download the .h file and add it to the folder of the Arduino sketch.

In this template, We used sin(); and cos(); functions to draw Arcs with our desired thickness and displayed number by text printing function. Then we converted an image to hex code and added them to the code and displayed the image by bitmap function. Then we used draw lines function to change the style of the image. Download the .h file and add it to the folder of the Arduino sketch.

In this template, We added a converted image to code and then used two black and white arcs to create the pointer of volumes.  Download the .h file and add it to the folder of the Arduino sketch.

In this template, We added a converted image and use the arc and print function to create this gauge.  Download the .h file and add it to folder of the Arduino sketch.

while (a < b) { Serial.println(a); j = 80 * (sin(PI * a / 2000)); i = 80 * (cos(PI * a / 2000)); j2 = 50 * (sin(PI * a / 2000)); i2 = 50 * (cos(PI * a / 2000)); tft.drawLine(i2 + 235, j2 + 169, i + 235, j + 169, tft.color565(0, 255, 255)); tft.fillRect(200, 153, 75, 33, 0x0000); tft.setTextSize(3); tft.setTextColor(0xffff); if ((a/20)>99)

while (b < a) { j = 80 * (sin(PI * a / 2000)); i = 80 * (cos(PI * a / 2000)); j2 = 50 * (sin(PI * a / 2000)); i2 = 50 * (cos(PI * a / 2000)); tft.drawLine(i2 + 235, j2 + 169, i + 235, j + 169, tft.color565(0, 0, 0)); tft.fillRect(200, 153, 75, 33, 0x0000); tft.setTextSize(3); tft.setTextColor(0xffff); if ((a/20)>99)

In this template, We display simple images one after each other very fast by bitmap function. So you can make your animation by this trick.  Download the .h file and add it to folder of the Arduino sketch.

In this template, We just display some images by RGBbitmap and bitmap functions. Just make a code for touchscreen and use this template.  Download the .h file and add it to folder of the Arduino sketch.

open smart tft lcd shield arduino free sample

There comes a time, when you want to have a touchscreen display connected to your Arduino board. There are many different Display options and sizes available, but most of them require considerable amount of code to be controlled, and it is not easy to create cool looking user interface.

4D Systems has found a great solution for the problem. They have designed advanced, smart programmable displays that have their own controller, serial interface, and even built-in GPIO. The folks at 4D Systems have also created an easy to use graphical development environment called 4D Systems Workshop that allows you to design the user interface and program the Displays.

Last year the folks at 4D Systems were nice enough to donate couple of displays and I added support for them in Visuino, making it very easy not only to design the User Interface for the display, but also to program the Arduino to work with the user interface.

In this Instructable, I will show you how easy it is to add touchscreen user interface to your Arduino board, display data from sensors in cool gauges, and control Servo and Relay with the touchscreen Display.

Optionally: One 4D Arduino Adaptor Shield (rev 2.0) - you can also connect the Display directly with wires, however the shield makes connecting the display to Arduino easier

Connect with a Female-Male jumper wire (Brown wire) the RX pin (Picture 4) of the channel of the 4D Arduino Adaptor Shield to the RX1 pin of the Arduino Mega board (Picture 5 and 6)

Connect with a Female-Male jumper wire (Orange wire) the TX pin (Picture 4) of the channel of the 4D Arduino Adaptor Shield to the TX1 pin of the Arduino Mega board (Picture 5 and 6)

Connect the Other ends of the 4Power wires(Red wires) - from the DHT11, the RelayModule, the Servo, and the Arduino togetheras example with the help of a Breadboard (Picture 2) - In my case I used a small Breadboard (To simplify the Instructable I powered the Servo from the Arduino board. It is recommended however to power it with a dedicated power supply as shown in this Instructable)

Connect the Other ends of the 4Ground wires(Black wires) - from the DHT11, the RelayModule, the Servo, and the Arduino togetheras example with the help of a Breadboard (Picture 2) - In my case I used a small Breadboard

Before you can use the 4D Systems Smart Display, you need to design the user interface, and program it. To program the display, you need to connect it directly to the computer with a uUSB-PA5 programming adapter . You also will need to upload some automatically generated images to the MicroSD card.Connect the Display connector cable to the Display matching the labels on the cable connector to the labels on the pins on the board (Picture 1)

The Display is programmed, and the generated images are uploaded into the MicroSD. Now we need to connect the Display to Arduino and install the MicroSD:Unplug the MicroSD card from the computer, and plug it into the MicroSD slot of the Display (Pictures 1 and 2)

Connect the "Out" output pin of the Display4DSystems1 component to the to the "In" input pin of the "Serial[ 1 ]" channel of the Arduinocomponent (Picture 2)

Connect the "Reset" output pin of the Display4DSystems1 component to the to the "Digital" input pin of the "Digital[ 4 ]" channel of the Arduino component (Picture 3)

Connect the "Sensor" pin of the HumidityThermometer1component (Picture 3) to the "Digital" input pin of the "Digital[ 2 ]" channel of the Arduinocomponent (Picture 4)

Congratulations! You have learned how to connect 4D Systems Smart Display to Arduino, display data from sensors, and control Servo and Relay modules with the Display.

If you power Arduino, you will see the Temperature and Humidity shown on the Display. You can use the buttons to control the Relay, and the Track Bar to control the Servo.

Also attached as ViSiGenieDHT11ServoRelayInstructable.zip is the Visuino project, that I created for this Instructable. You can download and open it in Visuino: https://www.visuino.com

Have just received the latest gen4-uLCD-70DT and Arduino adaptor, but forgot to order the programming adaptor. Hope it gets here before the weekend! Looking forward to playing with the display, and connecting it to my LoRa project ... ;-)

hello. i am trying to do that stuff. but i have a problem with controling the relay. could u send me your arduino code? u can send to my email: leminhhuy3337@gmail.com.

open smart tft lcd shield arduino free sample

This library enables you to use Hardware-based PWM channels on Arduino AVR ATtiny-based boards (ATtiny3217, etc.), using megaTinyCore, to create and output PWM to pins.

This library enables you to use ISR-based PWM channels on Arduino AVR ATtiny-based boards (ATtiny3217, etc.), using megaTinyCore, to create and output PWM any GPIO pin.

Small low-level classes and functions for Arduino: incrementMod(), decToBcd(). strcmp_PP(), PrintStr, PrintStrN, printPad{N}To(), printIntAsFloat(), TimingStats, formUrlEncode(), FCString, KString, hashDjb2(), binarySearch(), linearSearch(), isSorted(), reverse(), and so on.

Cyclic Redundancy Check (CRC) algorithms (crc8, crc16ccitt, crc32) programmatically converted from C99 code generated by pycrc (https://pycrc.org) to Arduino C++ using namespaces and PROGMEM flash memory.

Various sorting algorithms for Arduino, including Bubble Sort, Insertion Sort, Selection Sort, Shell Sort (3 versions), Comb Sort (4 versions), Quick Sort (3 versions).

Date, time, timezone classes for Arduino supporting the full IANA TZ Database to convert epoch seconds to date and time components in different time zones.

Clock classes for Arduino that provides an auto-incrementing count of seconds since a known epoch which can be synchronized from external sources such as an NTP server, a DS3231 RTC chip, or an STM32 RTC chip.

Useful Arduino utilities which are too small as separate libraries, but complex enough to be shared among multiple projects, and often have external dependencies to other libraries.

Fast and compact software I2C implementations (SimpleWireInterface, SimpleWireFastInterface) on Arduino platforms. Also provides adapter classes to allow the use of third party I2C libraries using the same API.

Enables Bluetooth® Low Energy connectivity on the Arduino MKR WiFi 1010, Arduino UNO WiFi Rev.2, Arduino Nano 33 IoT, Arduino Nano 33 BLE and Nicla Sense ME.

Fully Asynchronous UDP Library for RASPBERRY_PI_PICO_W using CYW43439 WiFi with arduino-pico core. The library is easy to use and includes support for Unicast, Broadcast and Multicast environments.

The last hope for the desperate AVR programmer. A small (344 bytes) Arduino library to have real program traces and to find the place where your program hangs.

Simple Blynk Credentials Manager for STM32 boards using built-in LAN8742A Ethernet, LAN8720, ENC28J60 or W5x00 Ethernet shields, with or without SSL, configuration data saved in EEPROM.

Simple GSM shield Credentials Manager for Blynk and ESP32 / ESP8266 boards, with or without SSL, configuration data saved in LittleFS / SPIFFS / EEPROM.

Simple GSM shield Credentials Manager for Blynk and ESP32 / ESP8266 boards, with or without SSL, configuration data saved in LittleFS / SPIFFS / EEPROM.

Simple WiFiManager for Blynk with MultiWiFi Credentials, for Mega, SAM DUE, SAMD21, SAMD51, nRF52, STM32F/L/H/G/WB/MP1, Teensy, RP2040-based RASPBERRY_PI_PICO, etc. boards running ESP8266/ESP32-AT shields. Configuration data saved in EEPROM, EEPROM-emulated FlashStorage_STM32 or FlashStorage_SAMD, SAM-DUE DueFlashStorage or nRF52/TP2040 LittleFS.

Simple WiFiManager for Blynk and Mega, UNO WiFi Rev2, Teensy, SAM DUE, SAMD21, SAMD51, STM32, nRF52, RP2040-based boards, etc. using WiFiNINA shields, configuration data saved in EEPROM, FlashStorage_SAMD, FlashStorage_STM32, DueFlashStorage, nRF52/RP2040 LittleFS

An Arduino library that takes input in degrees and output a string or integer for the 4, 8, 16, or 32 compass headings (like North, South, East, and West).

Directly interface Arduino, esp8266, and esp32 to DSC PowerSeries and Classic security systems for integration with home automation, remote control apps, notifications on alarm events, and emulating DSC panels to connect DSC keypads.

This library enables you to use Hardware-based PWM channels on Arduino AVRDx-based boards (AVR128Dx, AVR64Dx, AVR32Dx, etc.), using DxCore, to create and output PWM.

This library enables you to use ISR-based PWM channels on Arduino AVRDx-based boards (AVR128Dx, AVR64Dx, AVR32Dx, etc.), using DxCore, to create and output PWM any GPIO pin.

Small and easy to use Arduino library for using push buttons at INT0/pin2 and / or any PinChangeInterrupt pin.Functions for long and double press detection are included.Just connect buttons between ground and any pin of your Arduino - that"s itNo call of begin() or polling function like update() required. No blocking debouncing delay.

Arduino library for controlling standard LEDs in an easy way. EasyLed provides simple logical methods like led.on(), led.toggle(), led.flash(), led.isOff() and more.

OpenTherm Library to control Central Heating (CH), HVAC (Heating, Ventilation, Air Conditioning) or Solar systems by creating a thermostat using Arduino IDE and ESP32 / ESP8266 hardware.

Simple WebServer library for AVR, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, SIPEED_MAIX_DUINO and RP2040-based (RASPBERRY_PI_PICO) boards using ESP8266/ESP32 AT-command shields with functions similar to those of ESP8266/ESP32 WebServer libraries

An ESP8266/ESP32-AT library for Arduino providing an easy-to-use way to control ESP8266-AT/ESP32-AT WiFi shields using AT-commands. For AVR, Teensy, SAM DUE, SAMD21, SAMD51, STM32, nRF52, SIPEED_MAIX_DUINO and RP2040-based (Nano_RP2040_Connect, RASPBERRY_PI_PICO, etc.) boards using ESP8266/ESP32 AT-command shields.

WiFi/Credentials Manager for nRF52, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, RP2040-based Nano_RP2040_Connect, RASPBERRY_PI_PICO, etc. boards using ESP8266/ESP32-AT-command shields with fallback web configuration portal. Credentials are saved in EEPROM, SAMD FlashStorage, DueFlashStorage or nRF52/RP2040 LittleFS.

Light-Weight WiFi/Credentials Manager for AVR Mega, SAM DUE, SAMD, nRF52, STM32, RP2040-based Nano_RP2040_connect, RASPBERRY_PI_PICO boards, etc. using ESP8266/ESP32-AT-command shields. Powerful-yet-simple-to-use feature to enable adding dynamic custom parameters.

Simple Ethernet WebServer, HTTP Client and WebSocket Client library for AVR, AVR Dx, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52 and RASPBERRY_PI_PICO boards using Ethernet shields W5100, W5200, W5500, ENC28J60 or Teensy 4.1 NativeEthernet/QNEthernet

Simple TLS/SSL Ethernet WebServer, HTTP Client and WebSocket Client library for for AVR, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52 and RASPBERRY_PI_PICO boards using Ethernet shields W5100, W5200, W5500, ENC28J60 or Teensy 4.1 NativeEthernet/QNEthernet. It now supports Ethernet TLS/SSL Client.

Simple TLS/SSL Ethernet WebServer, HTTP Client and WebSocket Client library for STM32F/L/H/G/WB/MP1 boards running WebServer using built-in Ethernet LAN8742A, Ethernet LAN8720, W5x00 or ENC28J60 shields. It now supports Ethernet TLS/SSL Client.

EthernetWebServer_STM32 is a simple Ethernet WebServer, HTTP Client and WebSocket Client library for STM32F/L/H/G/WB/MP1 boards using built-in Ethernet LAN8742A, LAN8720, Ethernet W5x00 or ENC28J60 shields

Simple Ethernet library for AVR, AVR Dx, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52 and RASPBERRY_PI_PICO boards using Ethernet shields W5100, W5200, W5500, W5100S

Simple Ethernet Manager for STM32F/L/H/G/WB/MP1 boards with Ethernet LAN8720, W5x00, ENC28J60 or built-in LAN8742A shields, with or without SSL, configuration data saved in EEPROM. With DoubleResetDetect feature.

ezTime - pronounced "Easy Time" - is a very easy to use Arduino time and date library that provides NTP network time lookups, extensive timezone support, formatted time and date strings, user events, millisecond precision and more.

A library for implementing fixed-point in-place Fast Fourier Transform on Arduino. It sacrifices precision and instead it is way faster than floating-point implementations.

The GCodeParser library is a lightweight G-Code parser for the Arduino using only a single character buffer to first collect a line of code (also called a "block") from a serial or file input and then parse that line into a code block and comments.

Enables GSM/GRPS network connection using the Generic GSM shields/modules. Supporting ESP32 (including ESP32-S2, ESP32-C3), ESP8266, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based boards, etc.

Arduino library for the Flysky/Turnigy RC iBUS protocol - servo (receive) and sensors/telemetry (send) using hardware UART (AVR, ESP32 and STM32 architectures)

An Arduino library to control the Iowa Scaled Engineering I2C-IRSENSE ( https://www.iascaled.com/store/I2C-IRSENSE ) reflective infrared proximity sensor.

This library provides an interface to control a stepper motor through Infineon’s Stepper Motor Control Shield "KIT_XMC1300_IFX9201" with h-bridge IFX9201 and XMC1300 microcontroller.

This library uses polymorphism and defines common interfaces for reading encoders and controlling motors allowing for easy open or closed loop motor control.

Convinient way to map a push-button to a keyboard key. This library utilize the ability of 32u4-based Arduino-compatible boards to emulate USB-keyboard.

This library allows you to easily create light animations from an Arduino board or an ATtiny microcontroller (traffic lights, chaser, shopkeeper sign, etc.)

LiquidCrystal fork for displays based on HD44780. Uses the IOAbstraction library to work with i2c, PCF8574, MCP23017, Shift registers, Arduino pins and ports interchangably.

This library enables you to use ISR-based PWM channels on RP2040-based boards, such as Nano_RP2040_Connect, RASPBERRY_PI_PICO, with Arduino-mbed (mbed_nano or mbed_rp2040) core to create and output PWM any GPIO pin.

Arduino library for MCP4728 quad channel, 12-bit voltage output Digital-to-Analog Convertor with non-volatile memory and I2C compatible Serial Interface

mDNS Library for ESP32, ESP8266, nRF52, SAMD21, SAMD51, SAM DUE, STM32F/L/H/G/WB/MP1, Portenta_H7, AVR Mega, RP2040-based boards, etc. using Ethernet W5x00, ESP WiFi, WiFiNINA or ESP8266-AT shields

This library enables you to use ISR-based PWM channels on an Arduino megaAVR board, such as UNO WiFi Rev2, AVR_Nano_Every, etc., to create and output PWM any GPIO pin.

Replace Arduino methods with mocked versions and let you develop code without the hardware. Run parallel hardware and system development for greater efficiency.

A library package for ARDUINO acting as ModBus slave communicating through UART-to-RS485 converter. Originally written by Geabong github user. Improved by Łukasz Ślusarczyk.

Connects to MySQL or MariaDB using ESP8266/ESP32, WT32_ETH01 (ESP32 + LAN8720A), nRF52, SAMD21/SAMD51, STM32F/L/H/G/WB/MP1, Teensy, SAM DUE, Mega, RP2040-based boards, Portenta_H7, etc. with W5x00, ENC28J60 Ethernet, Teensy 4.1 NativeEthernet/QNEthernet, WiFiNINA modules/shields or Portenta_H7 WiFi/Ethernet. W5x00 can use Ethernet_Generic library. ENC28J60 can use either EthernetENC or UIPEthernet Library.

This library enables you to use ISR-based PWM channels on an nRF52-based board using Arduino-mbed mbed_nano core such as Nano-33-BLE to create and output PWM any GPIO pin.

This library enables you to use ISR-based PWM channels on an nRF52-based board using Adafruit_nRF52_Arduino core such as Itsy-Bitsy nRF52840 to create and output PWM any GPIO pin.

An Arduino library for the Nano 33 BLE Sense that leverages Mbed OS to automatically place sensor measurements in a ring buffer that can be integrated into programs in a simple manner.

The library for OpenBCI Ganglion board. Please use the DefaultGanglion.ino file in the examples to use the code that ships with every Ganglion board. Look through the skimmed down versions of the main firmware in the other examples.

OpenDevice is a set of tools and APIs to build solutions for the "Internet of Things" like home automations systems, robotics, smart city, energy monitoring, security, sensor monitoring

Simple Async HTTP Request library, supporting GET, POST, PUT, PATCH, DELETE and HEAD, on top of Portenta_H7_AsyncTCP library for Portenta_7, using Vision-shield thernet or Murata WiFi.

his library enables you to use Hardware-based PWM channels on RP2040-based boards, such as Nano_RP2040_Connect, RASPBERRY_PI_PICO, with either Arduino-mbed (mbed_nano or mbed_rp2040) or arduino-pico core to create and output PWM to any GPIO pin.

This library enables you to use SPI SD cards with RP2040-based boards such as Nano_RP2040_Connect, RASPBERRY_PI_PICO using either RP2040 Arduino-mbed or arduino-pico core.

This library enables you to use ISR-based PWM channels on RP2040-based boards, such as ADAFRUIT_FEATHER_RP2040, RASPBERRY_PI_PICO, etc., with arduino-pico core to create and output PWM any GPIO pin.

The most powerful and popular available library for using 7/14/16 segment display, supporting daisy chaining so you can control mass amounts from your Arduino!

Enables smooth servo movement. Linear as well as other (Cubic, Circular, Bounce, etc.) ease movements for servos are provided. The Arduino Servo library or PCA9685 servo expanders are supported.

Enables reading and writing on SD card using SD card slot connected to the SDIO/SDMMC-hardware of the STM32 MCU. For slots connected to SPI-hardware use the standard Arduino SD library.

Menu library for Arduino with IoT capabilities that supports many input and display devices with a designer UI, code generator, CLI, and strong remote control capability.

A library for creating Tickers which can call repeating functions. Replaces delay() with non-blocking functions. Recommanded for ESP and Arduino boards with mbed behind.

This library enables you to use Interrupt from Hardware Timers on an Arduino, Adafruit or Sparkfun AVR board, such as Nano, UNO, Mega, Leonardo, YUN, Teensy, Feather_32u4, Feather_328P, Pro Micro, etc.

This library enables you to use Interrupt from Hardware Timers on supported Arduino boards such as AVR, Mega-AVR, ESP8266, ESP32, SAMD, SAM DUE, nRF52, STM32F/L/H/G/WB/MP1, Teensy, Nano-33-BLE, RP2040-based boards, etc.

Really tiny library to basic RTC functionality on Arduino. DS1307, DS3231 and DS3232 RTCs are supported. See https://github.com/Naguissa/uEEPROMLib for EEPROM support. Temperature, Alarms, SQWG, Power lost and RAM support.

Monochrome LCD, OLED and eInk Library. Display controller: SSD1305, SSD1306, SSD1309, SSD1312, SSD1316, SSD1318, SSD1320, SSD1322, SSD1325, SSD1327, SSD1329, SSD1606, SSD1607, SH1106, SH1107, SH1108, SH1122, T6963, RA8835, LC7981, PCD8544, PCF8812, HX1230, UC1601, UC1604, UC1608, UC1610, UC1611, UC1617, UC1638, UC1701, ST7511, ST7528, ST7565, ST7567, ST7571, ST7586, ST7588, ST75160, ST75256, ST75320, NT7534, ST7920, IST3020, IST3088, IST7920, LD7032, KS0108, KS0713, HD44102, T7932, SED1520, SBN1661, IL3820, MAX7219, GP1287, GP1247, GU800. Interfaces: I2C, SPI, Parallel.

True color TFT and OLED library, Up to 18 Bit color depth. Supported display controller: ST7735, ILI9163, ILI9325, ILI9341, ILI9486,LD50T6160, PCF8833, SEPS225, SSD1331, SSD1351, HX8352C.

RFC6455-based WebSockets Server and Client for Arduino boards, such as nRF52, Portenta_H7, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, Teensy, SAM DUE, RP2040-based boards, besides ESP8266/ESP32 (ESP32, ESP32_S2, ESP32_S3 and ESP32_C3) and WT32_ETH01. Ethernet shields W5100, W5200, W5500, ENC28J60, Teensy 4.1 NativeEthernet/QNEthernet or Portenta_H7 WiFi/Ethernet. Supporting websocket only mode for Socket.IO. Ethernet_Generic library is used as default for W5x00. Now supporting RP2040W

Light-Weight MultiWiFi/Credentials Manager for Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RTL8720, etc. boards running Generic WiFi (WiFiNINA, WiFi101, ESP8266-AT, ESP32-AT, etc.) modules/shields. Powerful-yet-simple-to-use feature to enable adding dynamic custom parameters.

Light-Weight MultiWiFi/Credentials Manager for AVR Mega, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based (Nano RP2040 Connect, RASPBERRY_PI_PICO) boards, etc. using u-blox WiFiNINA / WiFi101 modules/shields. Powerful-yet-simple-to-use feature to enable adding dynamic custom parameters.

Light-Weight MultiWiFi/Credentials Manager for Portenta_H7 boards using built-in WiFi (Murata) modules/shields. Powerful-yet-simple-to-use feature to enable adding dynamic custom parameters.

Enables network connection (local and Internet) and WiFiStorage for SAM DUE, SAMD21, SAMD51, Teensy, AVR (328P, 32u4, 16u4, etc.), Mega, STM32F/L/H/G/WB/MP1, nRF52, NINA_B302_ublox, NINA_B112_ublox, RP2040-based boards, etc. in addition to Arduino MKR WiFi 1010, Arduino MKR VIDOR 4000, Arduino UNO WiFi Rev.2, Nano 33 IoT, Nano RP2040 Connect. Now with fix of severe limitation to permit sending much larger data than total 4K and using new WiFi101_Generic library

Simple WiFiWebServer, HTTP Client and WebSocket Client library for AVR Mega, megaAVR, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based (Nano-RP2040-Connect, RASPBERRY_PI_PICO, RASPBERRY_PI_PICO_W, ESP32/ESP8266, etc.) boards using WiFi, such as WiFiNINA, WiFi101, CYW43439, U-Blox W101, W102, ESP8266/ESP32-AT modules/shields, with functions similar to those of ESP8266/ESP32 WebServer libraries.

Universal Timer with 1 millisecond resolution, based on system uptime (i.e. Arduino: millis() function or STM32: HAL_GetTick() function), supporting OOP principles.

open smart tft lcd shield arduino free sample

The display demand for every project is unique, a project may require just a simple, single character OLED display, while another project may require something bigger, all based on the function the display is to perform. For this reason, as a maker or electronics hobbyist, anyone needs to know how to work with as many displays as possible, that’s why today, we will take a look at how to use the super cheap, 3.2″ color TFT display with Arduino.

For this tutorial, we will use the 3.2″ TFT display from banggood. The display which is based on the HX8357B LCD Controller, supports 16-wire DataBus interface and comes with 262K color at 480 x 320 resolution. The module includes an SD card socket, an SPI FLASH circuit and a 5V-3.3V power and Logic Level conversion circuit which makes it easy to use with any microcontroller that uses either 5v or 3.3v  logic voltage level. The module can be directly inserted into an Arduino Mega or Due board.

To demonstrate how the display works, we will use the UTFT LCD library for Arduino to display some images and text on the display including an animated graph. All these will show how the display could be used for something like an oscilloscope.

These components can each be bought via the links attached. The 3.2″ TFT display, as at the time I bought it was listed on the website as a 3″ display but after buying and measuring, the size of the display is 3.2″.

The display comes in a shield form, which means it can be plugged directly into the Arduino with which it is going to be used, as such, no schematic is needed. Plug the display into your Arduino Mega or Due as shown in the image below.

To achieve the goals of this tutorial, we will use a simple sample code attached to the UTFT library. The UTFT library is a library created to facilitate easy interaction between a microcontroller and several LCD displays. Unfortunately, the latest versions of the UTFT library has no support for the HX8357B LCD controller which is used to our 3.2″ TFT display. To go round this hurdle, we will be installing a previous version of the library on the Arduino IDE.

The wonderful library written by Henning Karlsen can be downloaded from the link below. The libraries are pre-built for each Arduino board so choose the right one that matches the board you are using from the link below.

Use your favorite library installation method to install the library after downloading and launch an Instance of the Arduino IDE. With the IDE opened, click on file, select examples, select UTFT then select the Display Demo or the UTFT_Demo_480x320 example.

We will attempt to do a brief explanation of the code. The code starts by setting the speed (the wait variable) at which it runs to 2000. This speed can be reduced to zero so the demo can play slowly. After this, we include the utft library and invoke the custom library for the for Arduino Due.

with that done, we proceed to the void setup() function. Under the setup() function, we initialize the LCD using the init command and we ensure the LCD display is on landscape using the set rotation function with a value of 1.

Upload the code to your Arduino board and you should see the display come up after a few minutes, displaying texts, and different other graphics. A view of the display in action is shown in the image below.

You can use either of the two Arduino boards mentioned above for this tutorial. The Arduino due is faster than the Arduino mega so it will run the code faster than the mega. For instance, on the Arduino Due, the code took 23 seconds to get to the end while on the Arduino Mega, it took 44 seconds to get to the end confirming the speed of the Due.

open smart tft lcd shield arduino free sample

This post is an introduction to the Nextion display with the Arduino. We’re going to show you how to configure the display for the first time, download the needed resources, and how to integrate it with the Arduino UNO board. We’ll also make a simple graphical user interface to control the Arduino pins.

The best model for you, will depend on your needs. If you’re just getting started with Nextion, we recommend getting the 3.2” size which is the one used in the Nextion Editor examples (the examples also work with other sizes, but you need to make some changes). Additionally, this is the most used size, which means more open-source examples and resources for this size.

Connecting the Nextion display to the Arduino is very straightforward. You just need to make four connections: GND, RX, TX, and +5V. These pins are labeled at the back of your display, as shown in the figure below.

You can power up the Nextion display directly from the Arduino 5V pin, but it is not recommended. Working with insufficient power supply may damage the display. So, you should use an external power source. You should use a 5V/1A power adaptor with a micro USB cable. Along with your Nextion display, you’ll also receive a USB to 2 pin connector, useful to connect the power adaptor to the display.

The best way to get familiar with a new software and a new device is to make a project example. Here we’re going to create a user interface in the Nextion display to control the Arduino pins, and display data.

The user interface has two pages: one controls two LEDs connected to the Arduino pins, and the other shows data gathered from the DHT11 temperature and humidity sensor;

Open Nextion Editor and go to File > New to create a new file. Give it a name and save it. Then, a window pops up to chose your Nextion model, as show in the figure below.

All components have an attribute called objname. This is the name of the component. Give good names to your components because you’ll need them later for the Arduino code. Also note that each component has one id number that is unique to that component in that page. The figure below shows the objname and id for the slider.

You should trigger an event for the touchable components (the buttons and the slider) so that the Arduino knows that a component was touched. You can trigger events when you press or when you release a component.

Notice that we have labels to hold the units like “ºC”, “ºF” and “%”, and empty labels that will be filled with the readings when we have our Arduino code running.

Once the GUI is ready, you need to write the Arduino code so that the Nextion can interact with the Arduino and vice-versa. Writing code to interact with the Nextion display is not straightforward for beginners, but it also isn’t as complicated as it may seem.

A good way to learn how to write code for the Arduino to interact with the Nextion display is to go to the examples folder in the Nextion library folder and explore. You should be able to copy and paste code to make the Arduino do what you want.

The first thing you should do is to take note of your components in the GUI that will interact with the Arduino and take note of their ID, names and page. Here’s a table of all the components the code will interact to (your components may have a different ID depending on the order you’ve added them to the GUI).

In this post we’ve introduced you to the Nextion display. We’ve also created a simple application user interface in the Nextion display to control the Arduino pins. The application built is just an example for you to understand how to interface different components with the Arduino – we hope you’ve found the instructions as well as the example provided useful.

open smart tft lcd shield arduino free sample

That would be better. My advise is to avoid using Stings (big S) if you can. The String functions are part of the Arduino core and I believe they were added to make it easier for novice Arduino users to handle strings. The problem with them (besides taking up extra memory) is that if not used carefully they can lead to out off memory errors at run time which is problematic to say the least. The irony being that a novice user is probably not going to know these potential pitfalls are.