c berry tft display free sample
The LCD module C-Berry designed by Admatec comes as a 3.5-inch diagonal TFT screen [1]. It also includes an adapter for the GPIO interface of the Rasp Pi, which makes it possible to integrate the hardware without much effort into your projects. The screen has an off-the-shelf price tag of about EUR 40 at dealers like Conrad or ELV Electronics.
The easy-to-understand documentation for the module and the source code that accompany it form a solid foundation for building your own applications. You will be able to create programs quickly that can be controlled from one script. This solution is just right if you want to supplement the QR code player [2] presented in the previous edition of Raspberry Pi GEEK with a graphical output feature. The player as described already lets children select the music they want to hear through with the use of QR codes and a small remote control.
It would be nice, however, if the player could provide ongoing feedback about its operating status. Hooking up a full-fledged monitor and a bulky X server does not sound practical, because the player is supposed to help protect CDs from the rough and tumble of everyday life in a play room. Adding a monitor would defeat the entire purpose of the music player.
LCD modules can function with limited power input. The module considered in this article uses just 2 watts, and with its 3.5-inch diagonal dimension, it is suited for incorporation into your own hardware. One inherent disadvantage of this kind of module is that you are responsible for arranging the output of graphical elements and text because the X server does not drive these. The effort required to arrange this output varies according to the use to which you put the module.
The C-Berry module (Figure 1) can display 320 pixels horizontally and 240 pixels vertically. It emits a relatively strong 600 lumen, which means the visual display is easy to see even in daylight. At 5 volts, the module pulls about 350mA from the GPIO port and thus does not need its own power supply.
Although the adapter takes up the entire GPIO port, it loops through the unused connections. Therefore, it is definitely possible to run other projects that access the interface in parallel.
The controller is set up to output simple graphics, text, and bitmaps. You can combine these elements according to need. For example, you can place text on top of bitmaps or even create diagrams by means of graphical elements. The example programs provided by the manufacturer show that the programming process for combining elements is relatively uncomplicated. The graphics controller also has external typeface storage into which you can load your own fonts as needed.
The LCD module comes in three parts: the basic TFT screen, an adapter for the GPIO port, and the connection cable that runs between the adapter and the screen. To put the parts together, you just connect the flat ribbon cable to both the screen and the adapter and then plug the adapter into the GPIO port. You need to make sure the ribbon cable is positioned correctly: Be sure the metal contact points on the cable point upward and away from the board when it is connected (Figure 2).
This project uses the SPIFFS (ESP32 flash memory) to store images used as background. You"ll need to upload these to the ESP32 before you upload the sketch to the ESP32. For this you"ll need the ESP32 Sketch Data Upload tool.
You can download this from Github: "https://github.com/me-no-dev/arduino-esp32fs-plugin". Follow the instructions on the Github to install the tool:Download the tool archive from releases page.
Before you upload the data folder to the ESP32, you"ll first have to select the right partitioning scheme.Go to Tools -> Board and select ESP32 Dev Module.
On Github you can find the full source code for this project. Go to the Bluetooth-System-Monitor Github repository and click "Code" and "Download .ZIP": https://github.com/DustinWatts/Bluetooth-System-M...
Extract and rename the extracted folder to "Bluetooth-System-Monitor". This is so the Arduino IDE does not complain that the folder and the sketch do not have the same name. If this happens, you will get a popup asking you if it should move the sketch. The dangerous thing here is, that it will only move the sketch and not the Data folder. This will result in errors when uploading!
Firstly, depending on the board you are using (with resistive touch, capacitive touch, or no touch) you will have to uncomment the correct one. For example, if you are using the ESP32 TouchDown uncomment: "#define ENABLE_CAP_TOUCH". If you are using a DevKitC with separate TFT, uncomment "#define ENABLE_RES_TOUCH".
In the sketch you can set some warning levels. This will make the text under the icons red. Scroll down until you see "// Define warning levels, change this as you like".Here you can set some warning levels.
You can also set the scale of the y-axis of the graphs. This is done under "// The scale of the Y-axis per graph". If these are to big or to small, the data will not be displayed correctly on the graph. You might have to experiment with these.
Go ahead and upload the Bluetooth-System-Monitor.ino sketch to the ESP32. The settings under tools besides the Partition Scheme can be left to the default (see image). Go to "Sketch" and select "Upload". This may take a while because it is a large sketch.
Anyway now I commented that line, beacuse I am not interested in speed right now. But now the problem seems to be the programation code. the error message is as follows: ( I am using Arduino 1.8.7)
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:101:37: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:106:42: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:118:39: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:121:42: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:151:40: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:163:39: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:176:37: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:183:38: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:188:38: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:193:38: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:198:38: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:205:39: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:210:39: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:215:39: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:220:39: warning: ISO C++ forbids converting a string constant to "char*" [-Wwrite-strings]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino: In function "void drawBMP(char*, int, int, boolean)":
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:267:40: warning: converting to non-pointer type "int" from NULL [-Wconversion-null]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino: In function "void drawRAW(char*, int16_t, int16_t, int16_t, int16_t)":
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2\ILI9341_draw_bitmap_v2.ino:377:40: warning: converting to non-pointer type "int" from NULL [-Wconversion-null]
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2/ILI9341_draw_bitmap_v2.ino:355: undefined reference to `FatFile::close()"
C:\Users\ADMIRAL\Videos\arduino\Libraries\Adafruit_ILI9341_AS\examples\ILI9341_draw_bitmap_v2/ILI9341_draw_bitmap_v2.ino:338: undefined reference to `FatFile::read(void*, unsigned int)"
The display driver is able to display predefined setups of text or user defined text. To display text using DisplayText set DisplayMode to 0, or set DisplayMode to 1 for the HT16K33 dot-matrix display.
To use the seven-segment-specific TM1637, TM1638 and MAX7219 Display- commands, set DisplayMode to 0. Parameter LCD Display OLED Display TFT Display 7-segment Display (TM163x and MAX7219) 0 DisplayText DisplayText DisplayText All TM163x Display- functions
The DisplayText command is used to display text as well as graphics and graphs on LCD, OLED and e-Paper displays (EPD). The command argument is a string that is printed on the display at the current position. The string can be prefixed by embedded control commands enclosed in brackets [].
In order to use the DisplayText command the DisplayMode must be set to 0 (or optional 1 on LCD displays) or other modes must be disabled before compilation with #undef USE_DISPLAY_MODES1TO5.
In the list below p stands for parameter and may be a number from 1 to n digits. On monochrome graphic displays things are drawn into a local frame buffer and sent to the display either via the d command or automatically at the end of the command.
Text is printed at the last provided position, either l or y for the vertical position, and either x or x for the horizontal position. Neither x nor y are advanced/updated after printing text.
fp = set font (1=12, 2=24,(opt 3=8)) if font==0 the classic GFX font is used, if font==7 RA8876 internal font is used, if font==4 special 7 segment 24 pixel number font is used, a ram based font is selected if font==5
Pfilename: = display an rgb 16-bit color (or jpg on ESP32) image when file system is present, Scripteditor contains a converter to convert jpg to special RGB16 pictures See ScriptEditor Ffilename: = load RAM font file when file system is present. the font is selected with font Nr. 5, these fonts are special binary versions of GFX fonts of any type. they end with .fnt. an initial collection is found in Folder BinFonts
Draw up to 16 GFX buttons to switch real Tasmota devices such as relays or draw Sliders to dimm e.g. a lamp Button number + 256 - a virtual touch toggle button is created (MQTT => TBT)
The size of the picture is not scaled and the dimensions of the button must fit the picture size. Clicked buttons will invert the colors of the picture.
You may specify a picture for selected and unselected button state. Picture filename ending with "1" is used for unselected state and ending "2" is for selected state.
When a file system is present you may define displaytext batch files. If a file named "display.bat" is present in the file system this batch file is executed. The file may contain any number of diplaytext cmds, one at a line. You may have comment lines beginning with a ;
While computers and web design are generally using a 24-bit RGB888 color code built from a byte-triplet such as (255, 136, 56) or #FF8038, small color panels often use a more compact code 16-bit RGB565 color code. This means that the R, G and B coefficient are coded on less number of bits: Red on 5 bits = 0..31
E-Paper displays have 2 operating modes: full update and partial update. While full update delivers a clean and sharp picture, it has the disadvantage of taking several seconds for the screen update and shows severe flickering during update. Partial update is quite fast (300 ms) with no flickering but there is the possibility that erased content is still slightly visible. It is therefore useful to perform a full update in regular intervals (e.g., each hour) to fully refresh the display.
The typical specifications for the lifetime of an OLED when permanently on is about 10000 hours (416 days). Dimming to 50% expands the lifetime to about 25000 hours.
The data sheets of the TFT and OLED displays mention burn-in effects when a static display is shown for extended periods of time. You may want to consider turning on the display on demand only.
The EPD font contains 95 characters starting from code 32, while the classic GFX font contains 256 characters ranging from 0 to 255. Custom characters above 127 can be displayed. To display these characters, you must specify an escape sequence (standard octal escapes do not work). The ~character followed by a hex byte can define any character code.
The I2C address must be specified using DisplayAddress XX, e.g., 60. The model must be specified with DisplayModel, e.g., 2 for SSD1306. To permanently turn the display on set DisplayDimmer 100. Display rotation can be permanently set using DisplayRotate X (x = 0..3).
E-Paper displays are connected via software 3-wire SPI (CS, SCLK, MOSI). DC should be connected to GND , Reset to 3.3 V and busy may be left unconnected. The jumper on the circuit board of the display must be set to 3-wire SPI.
The ILI9488 is connected via hardware 3-wire SPI (SPI_MOSI=GPIO13, SPI_SCLK=GPIO14, CS=GPIO15) and must also be connected to the backlight pin The SSD1351 may be connected via hardware 3-wire SPI or 4-wire SPI with support for dimmer. The ILI9341 is connected via hardware 4-wire SPI, Backlight and OLEDRESET (dimmer supported on ESP32) Wiring
The RA8876 is connected via standard hardware 4-wire SPI (SPI_MOSI=GPIO13, SPI_SCLK=GPIO14, RA_8876_CS=GPIO15, SSPI_MISO=GPIO12). No backlight pin is needed, dimmer supported, on ESP32 gpio pins may be freeley defined (below gpio 33).
Waveshare has two kinds of display controllers: with partial update and without partial update. The 2.9 inch driver is for partial update and should also support other Waveshare partial update models with modified WIDTH and HEIGHT parameters. The 4.2 inch driver is a full update display.
The drivers are subclasses of the Adafruit GFX library. The class hierarchy is LOWLEVEL :: Paint :: Renderer :: GFX, where: GFX: unmodified Adafruit library
In black and white displays, a local RAM buffer must be allocated before calling the driver. This must be set to zero on character or TFT color displays.
Universal Display Driver or uDisplay is a way to define your display settings using a simple text file and easily add it to Tasmota. uDisplay is DisplayModel 17. It supports I2C and hardware or software SPI (3 or 4 wire), 8,16 Bit parallel and RGB interface. The driver must be enabled by OPTION A3 on any GPIO pin.
Initial register setup for the display controller. (IC marks that the controller is using command mode even with command parameters) All values are in hex. On SPI the first value is the command, then the number of arguments and the the arguments itself. Bi7 7 on the number of arguments set indicate a wait of 150 ms. On I2C all hex values are sent to I2C.
rotation pseudo opcode for touch panel, in case of RGB panel use only these entries the appropriate coordinate convervsions are defined via pseudo opcodes 0 = no conversion 1 = swap and flip x 2 = flipx, flip y 3 = swap and flip y 4 = flip x 5 = flip y bit 7 = swap x,y
bit 2: enable async DMA, 0 wait for DMA to complete before returning, 4 run DMA async in the background. This later mode is only valid if the SPI bus is not shared between the display and any other SPI device like SD Card Reader,
# Scripter is the nost convenient way to edit and develop a uDisplay driver. On every scripter save the display is reinitialized and you immediately see results of your changes.
There are also many variants of each display available and not all variants may be supported. #define directive Description USE_DISPLAY Enable display support. Also requires at least one of the following compilation directives
The Transmissive polarizer is best used for displays that run with the backlight on all the time. This polarizer provides the brightest backlight possible. If you have a need for a bright backlight with lower power drain, transmissive is a good choice for this TFT LCD.
TheCapacitive touch panel is activated with anything containing an inductive load such as a finger or stylus. It allows for multi-touch options. When using the capacitive touch screen, the display needs a separate controller to interface with the touch panel. The display for capacitive touch is brighter since the touch panel is transparent.
Focus LCDs can provide many accessories to go with your display. If you would like to source a connector, cable, test jig or other accessory preassembled to your LCD (or just included in the package), our team will make sure you get the items you need.Get in touch with a team member today to accessorize your display!
Focus Display Solutions (aka: Focus LCDs) offers the original purchaser who has purchased a product from the FocusLCDs.com a limited warranty that the product (including accessories in the product"s package) will be free from defects in material or workmanship.
Popular Create by 300+ developers, used by 100,000+ people and downloaded in every minute. LVGL is available in Arduino, PlatformIO, ESP32, MCUXpresso, Zephyr, NuttX, RT-Thread, ARM CMSIS-Pack and many more.
Cross-platform Has no external dependencies and can be compiled for any vendor"s any MCU or MPU, and (RT)OS to drive ePaper, OLED or TFT displays, or even monitors.
Style system 100 style properties(radius, opacity, gradient, border, shadow, etc.) to customize any part of the widgets (background, scrollbar, indicator, knob, etc) in any state.
Typography UTF-8 encoding supporting CJK, Thai, Hindi, Arabic and Persian writing systems with word wrapping, kerning, text scrolling, Pinyin-IME input, and inline Emojis.
The NuMaker-HMI-MA35D1-S1 is an evaluation board for Nuvoton NuMicro MA35D1 series microprocessors, and consists of three parts: a NuMaker-SOM-MA35D16A81 SOM board, a NuMaker-BASE-MA35D1B1 base board and a 7” TFT-LCD daughter...
This is the copy of the monthly newsletter sent out to our subscribers. I’m sure when you read this email either you will prepare for the new year celebration or you...
New Features feat(keyboard): ported arabic keyboard from release 7.10.0 3728 feat(table): scroll to the selected cell with key navigation 39d03a8 Fixes fix(rt-thread): sync rt-thread v5.0.0 rt_align 3864 fix(draw): SDL2 gradient...
The STM32H7B3I-DK Discovery kit is a complete demonstration and development platform for STMicroelectronics Arm® Cortex®-M7 core-based STM32H7B3LIH6QU microcontroller. The full range of hardware features available on the board helps users...
This is the copy of the monthly newsletter sent out to our subscribers. Bindings LVGL got a new JavaScript binding which allows creating UIs in a React-ish style. Actually now...
This is the copy of the monthly newsletter sent out to our subscribers. New bugfix release We have released v8.3.2 with these changes. By accident the version number in lvgl.h...
Fixes fix(fragment): fixed child fragment event dispatch 3683 fix(sdl): clear streaming/target texture with FillRect 3682 fix(sdl): transformation with alpha (#3576) 3678 fix(draw_sw): fix image cache to access the freed stack...
This is the copy of the monthly newsletter sent out to our subscribers. New features As you might know that we develop v9 (the new major version) in the master...
– Arduino is an open-source platform used for building electronics projects. Arduino consists of both a physical programmable microcontroller and a piece of software, or IDE (Integrated Development Environment) that runs on your computer, used to write and upload computer code to the physical board.
– The Arduino platform unlike most previous programmable circuit boards, the Arduino does not need a separate programmer to load new code onto the board — you can simply use a USB cable. Additionally, the Arduino IDE uses a simplified version of C++, making it easier to learn to program.
– The open sources and extensible language: Arduino IDE is based on open source tool. The programming language used can be extended through the C++ library.
– The open source and expandable hardware: Arduino is based on Atmel’s ATMEGA 8-bit microcontrollers and its SAM3X8E and SAMD21 32-bit microcontrollers. Development boards and modules are planned to be released under the premise of following the “Creative Commons License Agreement”, so experienced circuit designers can make their own modules and carry out corresponding expansions and improvements. Even users who are relatively inexperienced can make a trial version of the basic Uno development board, which is easy to understand the principle of its operation and save costs.
– The Arduino hardware and software were designed for artists, designers, hobbyists, hackers, newbies, and anyone interested in creating interactive objects or environments. Arduino can interact with buttons, LEDs, motors, speakers, GPS units, cameras, the internet, and even your smart-phone or your TV.
Arduino Leonardo: Arduino’s first development board to use one microcontroller with built-in USB. It is cheaper and simpler. The code libraries allow the board to emulate a computer keyboard, mouse, and more.
LCD means liquid crystal display. Basically, any displays can be used with Arduino, including alphanumeric character LCD display, monochrome graphic LCD display, color TFT LCD display, IPS LCD display. It can also be used for non LCD displays like: PMOLED display, AMOLED display, E-ink (E-paper) displays. Orient Display developed easy interface (SPI, I2C) displays which can be easily used with Arduino.
LCD displays were first used for watches and calculators. Now, LCD display technology dominants the display world, it can be found in wearables, smart homes, mobile phones, TVs, laptops, monitors, kiosks, aircraft cockpit, digital cameras, lab instrument, power grid etc.
LCD itself can emit light itself. It has to utilize outside light sources. LCD display module normally includes LCD glass (or LCD panel), LCD driving circuitry ( can be COG, COB or TAB) and a backlight.
A LCD display 16*2 is actually a basic and simple to use LCD module. It includes LCD glass, COB (Chip on PCB Board) LCD control board, backlight, zebra to connect LCD glass and control board and a bezel to hold everything together. 16×2 LCD display can display 16 characters per line and there are two lines. Each character has 5×7 dot matrix pixels and the cursor underneath. All 16×2 LCD display originally used standard Hitachi HD44780 driver. Of course the legendary HD44780 controller had EOL long time ago. All the 16×2 LCD displays use HD44780 compatible LCD controllers. Some of them are drop replacement, some of them need to modify the initialization code a little.
Pin4 (RS pin or Register Select/Control Pin): This pin toggles among command or data register, used to connect a microcontroller unit pin and obtains either 0 or 1(0 = data mode, and 1 = command mode).
Pin5 (Read/Write/Control Pin): This pin toggles the display among the read or writes operation, and it is connected to a microcontroller unit pin to get either 0 or 1 (0 = Write Operation, and 1 = Read Operation).
Pin 6 (Enable pin/Control Pin): This pin should be held high to execute Read/Write process, and it is connected to the microcontroller unit & constantly held high.
Pins 7-14 (Data Pins): These pins are used to send data to the display. These pins are connected in two-wire modes like 4-bit mode and 8-bit mode. In 4-wire mode, only four pins are connected to the microcontroller unit like 0 to 3, whereas in 8-wire mode, 8-pins are connected to microcontroller unit like 0 to 7.
A 16×2 LCD has two registers like data register and command register. The RS (register select) is mainly used to change from one register to another. When the register set is ‘0’, then it is known as command register. Similarly, when the register set is ‘1’, then it is known as data register.
Command Register: The main function of the command register is to store the instructions of command which are given to the display. So that predefined tasks can be performed such as clearing the display, initializing, set the cursor place, and display control. Here commands processing can occur within the register.
Data Register: The main function of the data register is to store the information which is to be exhibited on the LCD screen. Here, the ASCII value of the character is the information which is to be exhibited on the screen of LCD. Whenever we send the information to LCD, it transmits to the data register, and then the process will be starting there. When register set =1, then the data register will be selected.
The resistor in the diagram above sets the LED backlight brightness. A typical value is 220 Ohms resistor, but other values will work too. Smaller resistors will make the backlight brighter. The potentiometer is used to adjust the screen contrast. I typically use a 10K Ohm potentiometer, but other values will also work.
All of the code below uses the LiquidCrystal library that comes pre-installed with the Arduino IDE. A library is a set of functions that can be easily added to a program in an abbreviated format. In order to use a library, it needs be included in the program. Line 1 in the code below does this with the command #include
Now we’re ready to get into the programming! I’ll go over more interesting things you can do in a moment, but for now let’s just run a simple test program. This program will print “hello, world!” to the screen. Enter this code into the Arduino IDE and upload it to the board:
There are 19 different functions in the LiquidCrystal library available for us to use. These functions do things like change the position of the text, move text across the screen, or make the display turn on or off. What follows is a short description of each function, and how to use it in a program.
The LiquidCrystal() function sets the pins the Arduino uses to connect to the LCD. You can use any of the Arduino’s digital pins to control the LCD. Just put the Arduino pin numbers inside the parentheses in this order:
This function sets the dimensions of the LCD. It needs to be placed before any other LiquidCrystal function in the void setup() section of the program. The number of rows and number of columns are specified as lcd.begin(columns, rows). For a 16×2 LCD, you would use lcd.begin(16, 2), and for a 20×4 LCD you would use lcd.begin(20, 4).
This function clears any text or data already displayed on the LCD. If you use lcd.clear() with lcd.print() and the delay() function in the void loop() section, you can make a simple blinking text program.
Similar, but more useful than lcd.home() is lcd.setCursor(). This function places the cursor (and any printed text) at any position on the screen. It can be used in the void setup() or void loop() section of your program.
The cursor position is defined with lcd.setCursor(column, row). The column and row coordinates start from zero (0-15 and 0-1 respectively). For example, using lcd.setCursor(2, 1) in the void setup() section of the “hello, world!” program above prints “hello, world!” to the lower line and shifts it to the right two spaces:
This function creates a block style cursor that blinks on and off at approximately 500 milliseconds per cycle. Use it in the void loop() section. The function lcd.noBlink() disables the blinking block cursor.
This function turns on any text or cursors that have been printed to the LCD screen. The function lcd.noDisplay() turns off any text or cursors printed to the LCD, without clearing it from the LCD’s memory.
These two functions can be used together in the void loop() section to create a blinking text effect. This code will make the “hello, world!” text blink on and off.
This function takes anything printed to the LCD and moves it to the left. It should be used in the void loop() section with a delay command following it. The function will move the text 40 spaces to the left before it loops back to the first character. This code moves the “hello, world!” text to the left, at a rate of one second per character.
This function takes a string of text and scrolls it from right to left in increments of the character count of the string. For example, if you have a string of text that is 3 characters long, it will shift the text 3 spaces to the left with each step.
lcd.noAutoscroll() turns the lcd.autoscroll() function off. Use this function before or after lcd.autoscroll() in the void loop() section to create sequences of scrolling text or animations.
This function sets the direction that text is printed to the screen. The default mode is from left to right using the command lcd.leftToRight(), but you may find some cases where it’s useful to output text in the reverse direction.
This command allows you to create your own custom characters. Each character of a 16×2 LCD has a 5 pixel width and an 8 pixel height. Up to 8 different custom characters can be defined in a single program. To design your own characters, you’ll need to make a binary matrix of your custom character from an LCD character generator or map it yourself. This code creates a degree symbol (°).
The detailed LCD tutorial can be found in the article. ARDUINO LCD SET UP AND PROGRAMMING GUIDE or to check https://github.com/arduino-libraries/LiquidCrystal
color_palette (Optional): The type of color pallet that will be used in the ESP’s internal 8-bits-per-pixel buffer. This can be used to improve color depth quality of the image. For example if you know that the display will only be showing grayscale images, the clarity of the display can be improved by targeting the available colors to monochrome only. Options are:
New functions have been added to draw smooth (antialiased) arcs, circles, and rounded rectangle outlines. New sketches are provided in the "Smooth Graphics" examples folder. Arcs can be drawn with or without anti-aliasing (which will then render faster). The arc ends can be straight or rounded. The arc drawing algorithm uses an optimised fixed point sqrt() function to improve performance on processors that do not have a hardware Floating Point Unit (e.g. RP2040). Here are two demo images, on the left smooth (anti-aliased) arcs with rounded ends, the image to the right is the same resolution (grabbed from the same 240x240 TFT) with the smoothing diasbled (no anti-aliasing):
An excellent new compatible library is available which can render TrueType fonts on a TFT screen (or into a sprite). This has been developed by takkaO, I have created a branch with some bug fixes here. The library provides access to compact font files, with fully scaleable anti-aliased glyphs. Left, middle and right justified text can also be printed to the screen. I have added TFT_eSPI specific examples to the OpenFontRender library and tested on RP2040 and ESP32 processors, the ESP8266 does not have sufficient RAM due to the glyph render complexity. Here is a demo screen where a single 12kbyte font file binary was used to render fully anti-aliased glyphs of gradually increasing size on a 320x480 TFT screen:
Support has been added in v2.4.70 for the RP2040 with 16 bit parallel displays. This has been tested and the screen update performance is very good (4ms to clear 320 x 480 screen with HC8357C). The use of the RP2040 PIO makes it easy to change the write cycle timing for different displays. DMA with 16 bit transfers is also supported.
Support for the ESP32-S2, ESP32-S3 and ESP32-C3 has been added (DMA only on ESP32 S3 at the moment). Tested with v2.0.3 RC1 of the ESP32 board package. Example setups:
Smooth fonts can now be rendered direct to the TFT with very little flicker for quickly changing values. This is achieved by a line-by-line and block-by-block update of the glyph area without drawing pixels twice. This is a "breaking" change for some sketches because a new true/false parameter is needed to render the background. The default is false if the parameter is missing, Examples:
New anti-aliased graphics functions to draw lines, wedge shaped lines, circles and rounded rectangles. Examples are included. Examples have also been added to display PNG compressed images (note: requires ~40kbytes RAM).
Frank Boesing has created an extension library for TFT_eSPI that allows a large range of ready-built fonts to be used. Frank"s library (adapted to permit rendering in sprites as well as TFT) can be downloaded here. More than 3300 additional Fonts are available here. The TFT_eSPI_ext library contains examples that demonstrate the use of the fonts.
Users of PowerPoint experienced with running macros may be interested in the pptm sketch generator here, this converts graphics and tables drawn in PowerPoint slides into an Arduino sketch that renders the graphics on a 480x320 TFT. This is based on VB macros created by Kris Kasprzak here.
The RP2040 8 bit parallel interface uses the PIO. The PIO now manages the "setWindow" and "block fill" actions, releasing the processor for other tasks when areas of the screen are being filled with a colour. The PIO can optionally be used for SPI interface displays if #define RP2040_PIO_SPI is put in the setup file. Touch screens and pixel read operations are not supported when the PIO interface is used.
The use of PIO for SPI allows the RP2040 to be over-clocked (up to 250MHz works on my boards) in Earle"s board package whilst still maintaining high SPI clock rates.
An Arduino IDE compatible graphics and fonts library for 32 bit processors. The library is targeted at 32 bit processors, it has been performance optimised for RP2040, STM32, ESP8266 and ESP32 types, other processors may be used but will use the slower generic Arduino interface calls. The library can be loaded using the Arduino IDE"s Library Manager. Direct Memory Access (DMA) can be used with the ESP32, RP2040 and STM32 processors with SPI interface displays to improve rendering performance. DMA with a parallel interface (8 and 16 bit parallel) is only supported with the RP2040.
For other processors only SPI interface displays are supported and the slower Arduino SPI library functions are used by the library. Higher clock speed processors such as used for the Teensy 3.x and 4.x boards will still provide a very good performance with the generic Arduino SPI functions.
"Four wire" SPI and 8 bit parallel interfaces are supported. Due to lack of GPIO pins the 8 bit parallel interface is NOT supported on the ESP8266. 8 bit parallel interface TFTs (e.g. UNO format mcufriend shields) can used with the STM32 Nucleo 64/144 range or the UNO format ESP32 (see below for ESP32).
The library supports some TFT displays designed for the Raspberry Pi (RPi) that are based on a ILI9486 or ST7796 driver chip with a 480 x 320 pixel screen. The ILI9486 RPi display must be of the Waveshare design and use a 16 bit serial interface based on the 74HC04, 74HC4040 and 2 x 74HC4094 logic chips. Note that due to design variations between these displays not all RPi displays will work with this library, so purchasing a RPi display of these types solely for use with this library is NOT recommended.
A "good" RPi display is the MHS-4.0 inch Display-B type ST7796 which provides good performance. This has a dedicated controller and can be clocked at up to 80MHz with the ESP32 (125MHz with overclocked RP2040, 55MHz with STM32 and 40MHz with ESP8266). The MHS-3.5 inch RPi ILI9486 based display is also supported, however the MHS ILI9341 based display of the same type does NOT work with this library.
Some displays permit the internal TFT screen RAM to be read, a few of the examples use this feature. The TFT_Screen_Capture example allows full screens to be captured and sent to a PC, this is handy to create program documentation.
The library supports Waveshare 2 and 3 colour ePaper displays using full frame buffers. This addition is relatively immature and thus only one example has been provided.
The library includes a "Sprite" class, this enables flicker free updates of complex graphics. Direct writes to the TFT with graphics functions are still available, so existing sketches do not need to be changed.
A Sprite is notionally an invisible graphics screen that is kept in the processors RAM. Graphics can be drawn into the Sprite just as they can be drawn directly to the screen. Once the Sprite is completed it can be plotted onto the screen in any position. If there is sufficient RAM then the Sprite can be the same size as the screen and used as a frame buffer. Sprites by default use 16 bit colours, the bit depth can be set to 8 bits (256 colours) , or 1 bit (any 2 colours) to reduce the RAM needed. On an ESP8266 the largest 16 bit colour Sprite that can be created is about 160x128 pixels, this consumes 40Kbytes of RAM. On an ESP32 the workspace RAM is more limited than the datasheet implies so a 16 bit colour Sprite is limited to about 200x200 pixels (~80Kbytes), an 8 bit sprite to 320x240 pixels (~76kbytes). A 1 bit per pixel Sprite requires only 9600 bytes for a full 320 x 240 screen buffer, this is ideal for supporting use with 2 colour bitmap fonts.
One or more sprites can be created, a sprite can be any pixel width and height, limited only by available RAM. The RAM needed for a 16 bit colour depth Sprite is (2 x width x height) bytes, for a Sprite with 8 bit colour depth the RAM needed is (width x height) bytes. Sprites can be created and deleted dynamically as needed in the sketch, this means RAM can be freed up after the Sprite has been plotted on the screen, more RAM intensive WiFi based code can then be run and normal graphics operations still work.
Drawing graphics into a sprite is very fast, for those familiar with the Adafruit "graphicstest" example, this whole test completes in 18ms in a 160x128 sprite. Examples of sprite use can be found in the "examples/Sprite" folder.
If an ESP32 board has SPIRAM (i.e. PSRAM) fitted then Sprites will use the PSRAM memory and large full screen buffer Sprites can be created. Full screen Sprites take longer to render (~45ms for a 320 x 240 16 bit Sprite), so bear that in mind.
The "Animated_dial" example shows how dials can be created using a rotated Sprite for the needle. To run this example the TFT interface must support reading from the screen RAM (not all do). The dial rim and scale is a jpeg image, created using a paint program.
The XPT2046 touch screen controller is supported for SPI based displays only. The SPI bus for the touch controller is shared with the TFT and only an additional chip select line is needed. This support will eventually be deprecated when a suitable touch screen library is available.
The library supports SPI overlap on the ESP8266 so the TFT screen can share MOSI, MISO and SCLK pins with the program FLASH, this frees up GPIO pins for other uses. Only one SPI device can be connected to the FLASH pins and the chips select for the TFT must be on pin D3 (GPIO0).
The library contains proportional fonts, different sizes can be enabled/disabled at compile time to optimise the use of FLASH memory. Anti-aliased (smooth) font files in vlw format stored in SPIFFS are supported. Any 16 bit Unicode character can be included and rendered, this means many language specific characters can be rendered to the screen.
The library is based on the Adafruit GFX and Adafruit driver libraries and the aim is to retain compatibility. Significant additions have been made to the library to boost the speed for the different processors (it is typically 3 to 10 times faster) and to add new features. The new graphics functions include different size proportional fonts and formatting features. There are lots of example sketches to demonstrate the different features and included functions.
Configuration of the library font selections, pins used to interface with the TFT and other features is made by editing the User_Setup.h file in the library folder, or by selecting your own configuration in the "User_Setup_Selet,h" file. Fonts and features can easily be enabled/disabled by commenting out lines.
Anti-aliased (smooth) font files in "vlw" format are generated by the free Processing IDE using a sketch included in the library Tools folder. This sketch with the Processing IDE can be used to generate font files from your computer"s font set or any TrueType (.ttf) font, the font file can include any combination of 16 bit Unicode characters. This means Greek, Japanese and any other UCS-2 glyphs can be used. Character arrays and Strings in UTF-8 format are supported.
The .vlw files must be uploaded to the processors FLASH filing system (SPIFFS, LittleFS or SD card) for use. Alternatively the .vlw files can be converted to C arrays (see "Smooth Font -> FLASH_Array" examples) and stored directly in FLASH as part of the compile process. The array based approach is convenient, provides performance improvements and is suitable where: either use of a filing system is undesirable, or the processor type (e.g. STM32) does not support a FLASH based filing system.
It would be possible to compress the vlw font files but the rendering performance to a TFT is still good when storing the font file(s) in SPIFFS, LittleFS or FLASH arrays.
Anti-aliased fonts can also be drawn over a gradient background with a callback to fetch the background colour of each pixel. This pixel colour can be set by the gradient algorithm or by reading back the TFT screen memory (if reading the display is supported).
The common 8 bit "Mcufriend" shields are supported for the STM Nucleo 64/144 boards and ESP32 UNO style board. The STM32 "Blue/Black Pill" boards can also be used with 8 bit parallel displays.
Unfortunately the typical UNO/mcufriend TFT display board maps LCD_RD, LCD_CS and LCD_RST signals to the ESP32 analogue pins 35, 34 and 36 which are input only. To solve this I linked in the 3 spare pins IO15, IO33 and IO32 by adding wires to the bottom of the board as follows:
If the display board is fitted with a resistance based touch screen then this can be used by performing the modifications described here and the fork of the Adafruit library:
If you load a new copy of TFT_eSPI then it will overwrite your setups if they are kept within the TFT_eSPI folder. One way around this is to create a new folder in your Arduino library folder called "TFT_eSPI_Setups". You then place your custom setup.h files in there. After an upgrade simply edit the User_Setup_Select.h file to point to your custom setup file e.g.:
You must make sure only one setup file is called. In the custom setup file I add the file path as a commented out first line that can be cut and pasted back into the upgraded User_Setup_Select.h file. The ../ at the start of the path means go up one directory level. Clearly you could use different file paths or directory names as long as it does not clash with another library or folder name.
You can take this one step further and have your own setup select file and then you only need to replace the Setup.h line reference in User_Setup_Select.h to, for example:
If you ended up on this page doing normal allowed operations, please contact our support at support@mdpi.com. Please include what you were doing when this page came up and the Ray ID & Your IP found at the
Focus Displays offers a wide range of standard full color TFT displays. 64 million unique colors, high brightness, sharp contrast, -30C operating temperature, and fast response time are all good descriptions of a TFT display. This is why TFT technology is one of the most popular choices for a new product.
Thin Film Transistor (TFT) display technology can be seen in products such as laptop computers, cell phones, tablets, digital cameras, and many other products that require color. TFT’s are active matrix displays which offers exceptional viewing experiences especially when compared to other passive matrix technologies. The clarity on TFT displays is outstanding; and they possess a longer half-life than some types of OLEDs and range in sizes from less than an inch to over 15 inches.
Cold-Cathode Fluorescent Lamp (CCFL) is an AC driven backlight that requires an inverter to convert DC to AC. The AC signal and inverter may generate EMI (Electromagnetic interference) and arcing; Arcing must be eliminated for Intrinsically Safe products.
CCFL’s are still available, but are becoming a legacy (obsolete) component. TFT displays equipped with a CCFL require higher MOQs (Minimum Order Quantities) than displays with LED backlights.
Red, Green and Blue (RGB) backlights are built with either a single LED that produces red, green and blue colors or with three separate Red, Green or Blue LEDs.
RGB backlights require a controller to regulate the different intensities of each color. The controller’s function is to combine unique levels of Red, Green and Blue to produce any of 64M different colors.
Backlight brightness (Luminance) is measured in nits. A nit being the amount of light that one candle delivers in a 1 square meter box. The intensity of the LED backlight can be critical when operating in low light or in direct sun light and is usually controlled by adjusting the DC voltage. In many applications this is accomplished through pulse-width modulation (PWM)
The majority of TFT displays contain a touch panel, or touch screen. The touch panel is a touch-sensitive transparent overlay mounted on the front of the display glass. Allowing for interaction between the user and the LCD display.
Some touch panels require an independent driver IC; which can be included in the TFT display module or placed on the customer’s Printed Circuit Board (PCB). Touch screens make use of coordinate systems to locate where the user touched the screen.
Resistive touch panels are the lowest cost option and are standard equipment on many TFT modules. They are more common on smaller TFT displays, but can still be incorporated on larger modules.
Resistive touch panels are constructed using flexible materials with an air gap between and are coated with a resistive layer. When an object applies pressure to the top layer, it makes contact with microdots located on the bottom layer. This allows the touch screen to find the location of the touch using X and Y coordinates.
Custom resistive touch screens are an option if the customer requires a seal or gasket to be in contact with the glass and not in contact with the touch panel.
Resistive touch panels allow a single touch, although advances in new resistive technology will allow multi-touch operation in the near future. One main advantage of a resistive touch screen is the ability to be activated by the touch of any material. This includes a range of items from a bare finger, to a pencil, to even the edge of a credit card; regardless of its composition.
They also have the added advantage of operating in a wide temperature range and environments, including anything from the arctic cold of Alaska to the extreme heat of Death Valley.
Capacitive touch panels have become popular with such software as Windows 8®, Android® and Apple®. Additionally it is used in products such as cell phones and tablets, where multi-touch and zoom capabilities are important.
Current capacitive touch technology is limited to a conductive stylus such as a finger. The touch screen operates on capacitive sensing, based on capacitive coupling. A capacitive touch screen detects any material that is conductive or has a different dielectric then the air around it.
Contrast ratio, or static contrast ratio, is one way to measure the sharpness of the TFT LCD display. This ratio is the difference between the darkest black and the brightest white the display is able to produce. The higher the number on the left, the sharper the image. A typical contrast ratio for TFT may be 300:1. This number ratio means that the white is 300 times brighter than the black.
TFT LCD displays are measured in inches; this is the measurement of the diagonal distance across the glass. Common TFT sizes include: 1.77”, 2.4”, 2.8”, 3”, 4.3”, 5”, 5.7”, 5.8”, 7”, 10.2”, 12.1 and 15”.
As a general rule, the larger the size of the glass the higher the cost of the display, but there are exceptions to this rule. A larger display may be less expensive than a smaller display if the manufacture produces higher quantities of the larger displays. When selecting your color display, be sure to ask what the cost is for one size smaller and one size larger. It may be worth modifying your design requirements.
TFT resolution is the number of dots or pixels the display contains. It is measured by the number of dots along the horizontal (X axis) and the dots along the vertical (Y axis).
The higher the resolution, the more dots per square inch (DPI), the sharper the display will look. A higher resolution results in a higher cost. One reason for the increase in cost is that more driver chips are necessary to drive each segment.
Certain combinations of width and height are standardized and typically given a name and a letter representation that is descriptive of its dimensions. Popular names given to the TFT LCD displays resolution include:
Transmissive displays must have the backlight on at all times to read the display, but are not the best option in direct sunlight unless the backlight is 750 Nits or higher. A majority of TFT displays are Transmissive, but they will require more power to operate with a brighter backlight.
Transflective displays are readable with the backlight off provided there is enough ambient light. Transflective displays are more expensive than Transmissive also there may be a larger MOQ for Transflective. However, Transflective displays are the best option for direct sunlight.
Drivers update and refresh the pixels (Picture Elements) of a display. Each driver is assigned a set number of pixels. If there are more pixels than a single driver can handle, then an additional drivers are added.
A primary job of the driver is to refresh each pixel. In passive TFT displays, the pixel is refreshed and then allowed to slowly fade (aka decay) until refreshed again. The higher the refresh frequency, the sharper the displays contrast.
The controller does just what its name suggest. It controls the drivers. There is only one controller per display no matter how many drivers. A complex graphic display with several thousand pixels will contain one controller and several drivers.
The TFT display (minus touch screen/backlight) alone will contain one controller/driver combination. These are built into the display so the design engineer does not need to locate the correct hardware.
Response Time is the measurement of time it takes for a pixel/segment to change from black (OFF state) to white (ON state) and then back to black again. In other words, how fast the picture can be changed. A slow response time can result in the blurring of the picture in games, movies and even cad type programs.
If you do not see a Thin Film Transistor (TFT) Display module that meets your specifications, or you need a replacement TFT, we can build a custom TFT displays to meet your requirements. Custom TFTs require a one-time tooling fee and may require higher MOQs.
Ready to order samples for your TFT design? Contact one of our US-based technical support people today concerning your design requirements. Note: We can provide smaller quantities for samples and prototyping.
As an option, you can order this TFT pre-assembled onto a breakout/carrier board. The board allows easy prototyping through its 0.1" headers. You can also include the carrier board in your end product to simplify construction and assembly.
This development kit includes everything needed to get started with the 3.5" EVE module: a 320x240 display mounted on an EVE2 graphically accelerated PCBA, a Seeeduino, an EVE breakout board, jumper wires, USB cable and a ribbon cable. We even assemble this kit and pre-load some demonstration software so that you can have a functioning module in your hands within seconds.
Because the display module includes an EVE (embedded video engine) chip, it"s a perfect choice for an HMI. EVE is a graphics controller solution that can control both display and audio operations. Additionally, Bridgetek/FTDI supports the EVE chip with graphical design toolchains to aid in development.
This kit consists of a CFAF320240F-035T a 320x240 3.5" Full Color TFT LCD module mounted on a carrier board (CFA-10074). The carrier board supports a current driver for the LED backlight of the display.
This TFT LCD display module is perfect for the designer who"s looking to have a graphic and audio processor already embedded in the display unit. Powered by an FTDI/BridgeTek FT810 Embedded Video Engine (EVE) graphics accelerator chip, simply send over a few commands via SPI or I2C and the EVE will put your stored image up on the display. Need to draw a line, create dials/knobs/buttons, or rotate an image? Send a handful of bytes and the EVE will take care of it.
Further information including programming examples, interface design software, and more can be found on FTDI’s website here: https://www.ftdichip.com/Support/Utilities.htm or on our GitHub repository.