tft lcd display teardown free sample

Established in 2010, Topfoison has devoted itself to the manufacturing and development of high-quality products for the Wearable device, Smart Watch, VR, Medical device, Industrial LCD display including Color LCD modules/OLED/LCD display/Round lcd screen/Round AMOLED/ Square transflective lcd screen/ IPS full wide display/ 1080p fhd AMOLED and 2K 1440p lcd. Topfoison focus on1.22-7.0 inch small size displays, all the products produced in our company enjoys the most advanced production craft and technology as well as the strictly ISO quality management system.

tft lcd display teardown free sample

By these two functions, You can find out the resolution of the display. Just add them to the code and put the outputs in a uint16_t variable. Then read it from the Serial port by Serial.println();. First add Serial.begin(9600); in setup().

tft lcd display teardown free sample

Liquid crystal displays (LCDs) are the most widely used display technology. Their applications cover TV, mobile phone, appliances, automotive, smart home, industrial meters, consumer electronics, POS, marine, aerospace, military etc. LCD screen display problem can occur for several reasons.

Effect of environmental conditions on the LCD assembly. Environmental conditions include both the effects of temperature and humidity, and cyclic loading.

Effect of manufacturing process. With the development of LCD for more than 40 years and the modern manufacturing equipment, this kind if defects are getting rear.

Common failures seen in LCDs are a decrease in screen contrast, non-functioning pixels or the whole display, and broken glass. Different kinds of LCD display problem need to have different kinds of fix methods or make the decision not worthwhile to repair.

Broken glassIf you accidently drop the LCD and you find it broken on the surface but the display still works. You might just break the touch panel; you can find a repair house or find a youtube video to replace the touch panel. If you find the display not showing, especially you find the fluid leaking out. You need to reply the whole display modules.

Dim LCD displayLCD can’t emit light itself. It uses backlight. Normally, the backlight is not fully driven, you can increase the LED backlight to make a dim LCD display brighter. But if you LCD display has been used for a long time, it is possible that the LED backlight has to be the end of life (not brightness enough) if you turn on 100% backlight brightness. In that case to fix LCD screen, you have to find a way to change the backlight. For some display, it is an easy job but it can be difficult for other displays depending on the manufacturing process.

Image sticking (Ghosting)Sometimes, you will find the previous image still appearing at the background even if you change to another image. It is also called burn in. This kind of failure doesn’t need to repair by professionals. You can simply shut off the display overnight, this kind of problem will go away. Please do remember that displaying a static image for a long time should be avoided.

With the modern manufacturing process and design, this kind of failure rarely happens. Normally, it is caused by no power. Please check if the battery dead or adapter (power supply) failure or even check if you have plug in firmly or with the wrong power supply. 99% the display will be back on.

LCD has white screen – If a LCD has a white screen which means the backlight is good. Simply check your signal input sources which are the most causes. It can also be caused by the display totally damaged by ESD or excess heat, shock which make the LCD controller broken or the connection failure which has to be repaired by professionals.

Blur ImagesAs the LCD images are made of RGB pixels, the screen shouldn’t be blur like old CRT displays. If you do see blur images, they might be caused by two reasons. 1) LCD has certain response time, if you are playing games or watch fast action movies, some old LCD displays can have image delays. 2) The surface of the LCD is made of a layer of plastic film with maximum hardness of 3H. If you clean the surface often or use the wrong detergent or solvent which cause the surface damage. To fix damage on LED screen it’s need to be changed with professionals.

If you have any questions about Orient Display displays and touch panels. Please feel free to contact: Sales Inquiries, Customer Service or Technical Support.

tft lcd display teardown free sample

VIS024TN01 is a 2.4″ TFT LCD display module model that adopts TN type LCD with 240*320 resolution. CTP (Capacity Touch Panel) or RTP(Resistive Touch Panel) can be added according to user requirements.

The 2.4-inch TFT-LCD is probably the most sold LCD panel size in the world in terms of unit shipments. It has a wide range of applications and life cycle.

Based on the substantial and long-term shipments of 2.4 inch TFT LCD panels, we can guarantee a stable supply of this LCD display module throughout the life cycle of your product.

Based on the 2.4 inch LCD’s high stability, low price, and excellent storage and operating temperature range, this type of LCD display module can be widely used in feature phones, smart homes, pos machines, industrial instruments (meters), and small medical equipment and other products.

tft lcd display teardown free sample

ER-TFT028A3-4 is 240x320 dots 2.8" color tft lcd module display with ST7789V controller and optional capacitive touch panel and 4-wire resistive touch panel,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.It supports 8080 8-bit,9-bit,16-bit,18-bit parallel,3-wire,4-wire serial spi interface. FPC with zif connector is easily to assemble or remove.Lanscape mode is also available.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 2.8"TFT Touch Shield with Libraries, Examples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.

tft lcd display teardown free sample

Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big (5" diagonal) bright (18 white-LED backlight) and colorful 800x480 pixels with individual pixel control. As a bonus, this display has a capacitive touch panel attached on screen by default.

This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.

tft lcd display teardown free sample

VIS024TN01 is a 2.4″ TFT LCD display module model that adopts TN type LCD with 240*320 resolution. CTP (Capacity Touch Panel) or RTP(Resistive Touch Panel) can be added according to user requirements.

The 2.4-inch TFT-LCD is probably the most sold LCD panel size in the world in terms of unit shipments. It has a wide range of applications and life cycle.

Based on the substantial and long-term shipments of 2.4 inch TFT LCD panels, we can guarantee a stable supply of this LCD display module throughout the life cycle of your product.

Based on the 2.4 inch LCD’s high stability, low price, and excellent storage and operating temperature range, this type of LCD display module can be widely used in feature phones, smart homes, pos machines, industrial instruments (meters), and small medical equipment and other products.

tft lcd display teardown free sample

PAF70UWFNWC01is a 7 Inch Intelligent display with capacitive touch, it is composed of a colour TFT-LCD panel, driver IC, FPC and a back light unit with a Capacitive Touch Panel with a BT815 controller board. The module display area contains 800 x 480 pixels. This product accords with RoHS environmental criterion.

Shenzhen SLS Industrial Co.,ltd established in 2003, is a professional LCD module manufacturer and solution provider. We have 1 full-auto COG assembly line, 2 semi-auto assembly line, backlight assembly line, no dust TP bonding line and manufacturing tech support, we can provide unique, innovative and cost effective LCD module development and manufacturing. Our product range includes: middle-small size TFT LCD, industrial capacitive touch panel... Our LCD products have been widely used in communications, GPS, Equipment, electronic audio-visual, instrumentation, household appliances, PDA and other industries.

tft lcd display teardown free sample

A full color 240xRGBx320 pixel TFT display module with 2.2" diagonal active area. Very small text and images look sharp on this graphic display, with its dense pixel pitch of 0.141 x 0.141 millimeters. The TFT"s 6:00 o" clock viewing direction works well for devices that must be easy to read above eye level without fading, such as signal analyzers or other benchtop laboratory equipment.

With a built-in Sitronix ST7789V or compatible display controller, the logic voltage range of 2.5v to 3.3v allows direct connection to 3.3v processors.

Buy with confidence. Our Logistics department is experienced at sending products anywhere in the world where permitted. This TFT display module has a limited 1-year warranty and free technical support.

tft lcd display teardown free sample

This is Sainsmart 5 inch TFT LCD module with the TFT LCD shield kit for arduino enthusiasts.It includes one piece of 5 inch TFT LCD display and a TFT LCD shield for Arduino MEGA2560 (R3).We will provided you the whole document including the example project of arduino due with the kit. We will supply you the technical support after your purchase.

LCD-specified initialization code is provided, so that you can save time to optimize power control register and gamma curves for best display performance. We have test the provided code, it gives the best display performanace

It is 100% compatible with the normal MCU like ARM AVR PIC and 8051,especially on arduino family such as arduino due and arduino mega2560(R3).The module uses the LCD controller Chip SSD1963 with 5 inch LCD including the touchscreen.

tft lcd display teardown free sample

Over the past decade the TFT-LCD has been a popular flat panel display choice. With the increase in demand, the sizes of the TFT-LCDs have been getting larger. To make large-sized TFT-LCDs, the original manufacturing process needs to be changed to meet the requirements. Such a change usually results in various defects, which decrease the yield rate significantly, therefore, defect inspection plays a key role in TFT-LCD manufacture. However, in current practice, this task still relies heavily on human observers, which is not only time consuming, but also prompt to be unreliable. Accordingly, automatic optical inspection (AOI) has been suggested as the most efficient way to detect defects.

TFT-LCD manufacture consists of three processes, namely the TFT array process, the cell process, and the module assembly process. In recent years, there has been a large body of work regarding the so-called mura-defect detection, e.g., [1–4]. Mura is a serious kind of defect and needs to be detected in the cell process. Once a mura defect is found in a panel, this panel must be discarded if not repairable, which raises the production costs greatly. In fact, most mura defects are caused by the inline defects of the TFT array process. The inline defects vary greatly, and their sizes are too small to be observed, making the problem of inline defect inspection intractable.

Inline defect inspection involves three sub-tasks: defect detection, target defect identification, and classification. Defect detection refers to judging whether an image contains a defect or not, and target defect identification means determining whether the defect detected is crucial to the product yield. Defect classification plays a critical role in production-equipment diagnosis because different defects have different causes. Liu et al. [5] have recently proposed a system to deal with the problem of inline defect detection, which was developed based on the locally linear embedding (LLE) method [6] and the support vector data description (SVDD) [7]. LLE is a manifold learning method to extract nonlinear features from a pattern. However, it suffers from the out-of-sample problem [8,9]. SVDD is essentially a one-class classifier. Although it is efficient for anomaly detection, it cannot be applied in a multi-class classification problem. For inline defect classification, the SVDD is not a good candidate. Liu et al. [10] have also proposed a target defect identification system. In their work the SVDD was extended to an SVDD ensemble for modeling the target defects. If a test pattern is accepted by the SVDD ensemble, the pattern belongs to the target class. In TFT array process, the target defects would cause serious damages to the LCD panels.

Principal component analysis (PCA) is a popular subspace analysis method for pattern representation and reconstruction. However, due to its linear nature [11], its performance is sometimes limited. Recently, a nonlinear version of PCA has been proposed, called kernel PCA (KPCA) [12]. KPCA first maps the input data into a higher dimensional feature space via a nonlinear mapping, then performs the linear PCA in that space to find a set of eigenvectors that are nonlinearly related to the input data. Thus, KPCA can capture the nonlinear relationships between pixels in an image, and extract more discriminating features from an image and reduce the dimensionality of the input image. In face recognition studies, e.g., [13], KPCA has shown to have better performance than PCA in terms of feature extraction. To enhance the LCD defect detection/classification rate, in this paper we adopt the powerful KPCA as the feature extractor.

In TFT array process, various kinds of inline defects would occur. Their occurrence frequencies are different. For example, “particle” is the most commonly-seen defect while the defect “abnormal photo-resist coating” seldom appears. It implies that the available training samples for each defect would be different, leading to a very imbalanced training dataset. In SVM, the error penalties for positive and negative classes are the same. This will make the learned optimal separating hyperplane (OSH) move toward the smaller class. More precisely, if the positive class is smaller than the negative class, then the OSH will move toward the positive class, which will further result in numerous false negative errors. We call this phenomenon the “class-boundary-skew (CBS) problem”. Due to this problem, the success of using SVM in defect detection and classification is limited. Therefore, how to solve the CBS problem when applying SVM to defect inspection becomes a very critical studying issue.

Several works have proposed ways to solve the CBS problem [17–22]. The methods of [20,21] use different sampling techniques to the training data before data enter the classifier. The different error cost (DEC) algorithm of [17,19] is embedded into the formulation of SVM such that the skew phenomenon of the OSH can be corrected. This method does not change the information of the data structure beforehand. The SDC method [18] combines the SMOTE [22] and the different error cost algorithm [17]. For LCD defect inspection, since every defect image stands for one particular defect information, we do not intend to use any pre-sampling techniques like those fall into the first category that may change the data structure. Therefore, the DEC algorithm [17] is adopted in this paper to deal with the CBS problem due to the imbalanced defect training dataset. By introducing the DEC algorithm to SVM, the imbalanced SVM (ISVM), a variant of SVM is proposed. In fact, the concept of ISVM is similar to that of adaptive SVM proposed in [23]. However, in their work only 1-norm soft margin is considered. In this paper, we reformulate the ISVM with 2-norm soft margin, and provide the corresponding KKT conditions. Results will show that the proposed version of 2-norm soft margin ISVM achieves better defect classification performance.