plasma display screens uk factory
A plasma display panel (PDP) is a type of flat panel display that uses small cells containing plasma: ionized gas that responds to electric fields. Plasma televisions were the first large (over 32 inches diagonal) flat panel displays to be released to the public.
Until about 2007, plasma displays were commonly used in large televisions (30 inches (76 cm) and larger). By 2013, they had lost nearly all market share due to competition from low-cost LCDs and more expensive but high-contrast OLED flat-panel displays. Manufacturing of plasma displays for the United States retail market ended in 2014,
Plasma displays are bright (1,000 lux or higher for the display module), have a wide color gamut, and can be produced in fairly large sizes—up to 3.8 metres (150 in) diagonally. They had a very low luminance "dark-room" black level compared with the lighter grey of the unilluminated parts of an LCD screen. (As plasma panels are locally lit and do not require a back light, blacks are blacker on plasma and grayer on LCD"s.)LED-backlit LCD televisions have been developed to reduce this distinction. The display panel itself is about 6 cm (2.4 in) thick, generally allowing the device"s total thickness (including electronics) to be less than 10 cm (3.9 in). Power consumption varies greatly with picture content, with bright scenes drawing significantly more power than darker ones – this is also true for CRTs as well as modern LCDs where LED backlight brightness is adjusted dynamically. The plasma that illuminates the screen can reach a temperature of at least 1,200 °C (2,190 °F). Typical power consumption is 400 watts for a 127 cm (50 in) screen. Most screens are set to "vivid" mode by default in the factory (which maximizes the brightness and raises the contrast so the image on the screen looks good under the extremely bright lights that are common in big box stores), which draws at least twice the power (around 500–700 watts) of a "home" setting of less extreme brightness.
Plasma screens are made out of glass, which may result in glare on the screen from nearby light sources. Plasma display panels cannot be economically manufactured in screen sizes smaller than 82 centimetres (32 in).enhanced-definition televisions (EDTV) this small, even fewer have made 32 inch plasma HDTVs. With the trend toward large-screen television technology, the 32 inch screen size is rapidly disappearing. Though considered bulky and thick compared with their LCD counterparts, some sets such as Panasonic"s Z1 and Samsung"s B860 series are as slim as 2.5 cm (1 in) thick making them comparable to LCDs in this respect.
Wider viewing angles than those of LCD; images do not suffer from degradation at less than straight ahead angles like LCDs. LCDs using IPS technology have the widest angles, but they do not equal the range of plasma primarily due to "IPS glow", a generally whitish haze that appears due to the nature of the IPS pixel design.
Less visible motion blur, thanks in large part to very high refresh rates and a faster response time, contributing to superior performance when displaying content with significant amounts of rapid motion such as auto racing, hockey, baseball, etc.
Earlier generation displays were more susceptible to screen burn-in and image retention. Recent models have a pixel orbiter that moves the entire picture slower than is noticeable to the human eye, which reduces the effect of burn-in but does not prevent it.
Due to the bistable nature of the color and intensity generating method, some people will notice that plasma displays have a shimmering or flickering effect with a number of hues, intensities and dither patterns.
Earlier generation displays (circa 2006 and prior) had phosphors that lost luminosity over time, resulting in gradual decline of absolute image brightness. Newer models have advertised lifespans exceeding 100,000 hours (11 years), far longer than older CRTs.
Uses more electrical power, on average, than an LCD TV using a LED backlight. Older CCFL backlights for LCD panels used quite a bit more power, and older plasma TVs used quite a bit more power than recent models.
Fixed-pixel displays such as plasma TVs scale the video image of each incoming signal to the native resolution of the display panel. The most common native resolutions for plasma display panels are 852×480 (EDTV), 1,366×768 and 1920×1080 (HDTV). As a result, picture quality varies depending on the performance of the video scaling processor and the upscaling and downscaling algorithms used by each display manufacturer.
Early plasma televisions were enhanced-definition (ED) with a native resolution of 840×480 (discontinued) or 852×480 and down-scaled their incoming high-definition video signals to match their native display resolutions.
The following ED resolutions were common prior to the introduction of HD displays, but have long been phased out in favor of HD displays, as well as because the overall pixel count in ED displays is lower than the pixel count on SD PAL displays (852×480 vs 720×576, respectively).
Early high-definition (HD) plasma displays had a resolution of 1024x1024 and were alternate lighting of surfaces (ALiS) panels made by Fujitsu and Hitachi.
Later HDTV plasma televisions usually have a resolution of 1,024×768 found on many 42 inch plasma screens, 1280×768 and 1,366×768 found on 50 in, 60 in, and 65 in plasma screens, or 1920×1080 found on plasma screen sizes from 42 inch to 103 inch. These displays are usually progressive displays, with non-square pixels, and will up-scale and de-interlace their incoming standard-definition signals to match their native display resolutions. 1024×768 resolution requires that 720p content be downscaled in one direction and upscaled in the other.
Ionized gases such as the ones shown here are confined to millions of tiny individual compartments across the face of a plasma display, to collectively form a visual image.
A panel of a plasma display typically comprises millions of tiny compartments in between two panels of glass. These compartments, or "bulbs" or "cells", hold a mixture of noble gases and a minuscule amount of another gas (e.g., mercury vapor). Just as in the fluorescent lamps over an office desk, when a high voltage is applied across the cell, the gas in the cells forms a plasma. With flow of electricity (electrons), some of the electrons strike mercury particles as the electrons move through the plasma, momentarily increasing the energy level of the atom until the excess energy is shed. Mercury sheds the energy as ultraviolet (UV) photons. The UV photons then strike phosphor that is painted on the inside of the cell. When the UV photon strikes a phosphor molecule, it momentarily raises the energy level of an outer orbit electron in the phosphor molecule, moving the electron from a stable to an unstable state; the electron then sheds the excess energy as a photon at a lower energy level than UV light; the lower energy photons are mostly in the infrared range but about 40% are in the visible light range. Thus the input energy is converted to mostly infrared but also as visible light. The screen heats up to between 30 and 41 °C (86 and 106 °F) during operation. Depending on the phosphors used, different colors of visible light can be achieved. Each pixel in a plasma display is made up of three cells comprising the primary colors of visible light. Varying the voltage of the signals to the cells thus allows different perceived colors.
The long electrodes are stripes of electrically conducting material that also lies between the glass plates in front of and behind the cells. The "address electrodes" sit behind the cells, along the rear glass plate, and can be opaque. The transparent display electrodes are mounted in front of the cell, along the front glass plate. As can be seen in the illustration, the electrodes are covered by an insulating protective layer.
Control circuitry charges the electrodes that cross paths at a cell, creating a voltage difference between front and back. Some of the atoms in the gas of a cell then lose electrons and become ionized, which creates an electrically conducting plasma of atoms, free electrons, and ions. The collisions of the flowing electrons in the plasma with the inert gas atoms leads to light emission; such light-emitting plasmas are known as glow discharges.
Relative spectral power of red, green and blue phosphors of a common plasma display. The units of spectral power are simply raw sensor values (with a linear response at specific wavelengths).
In a monochrome plasma panel, the gas is mostly neon, and the color is the characteristic orange of a neon-filled lamp (or sign). Once a glow discharge has been initiated in a cell, it can be maintained by applying a low-level voltage between all the horizontal and vertical electrodes–even after the ionizing voltage is removed. To erase a cell all voltage is removed from a pair of electrodes. This type of panel has inherent memory. A small amount of nitrogen is added to the neon to increase hysteresis.phosphor. The ultraviolet photons emitted by the plasma excite these phosphors, which give off visible light with colors determined by the phosphor materials. This aspect is comparable to fluorescent lamps and to the neon signs that use colored phosphors.
Every pixel is made up of three separate subpixel cells, each with different colored phosphors. One subpixel has a red light phosphor, one subpixel has a green light phosphor and one subpixel has a blue light phosphor. These colors blend together to create the overall color of the pixel, the same as a triad of a shadow mask CRT or color LCD. Plasma panels use pulse-width modulation (PWM) to control brightness: by varying the pulses of current flowing through the different cells thousands of times per second, the control system can increase or decrease the intensity of each subpixel color to create billions of different combinations of red, green and blue. In this way, the control system can produce most of the visible colors. Plasma displays use the same phosphors as CRTs, which accounts for the extremely accurate color reproduction when viewing television or computer video images (which use an RGB color system designed for CRT displays).
Plasma displays are different from liquid crystal displays (LCDs), another lightweight flat-screen display using very different technology. LCDs may use one or two large fluorescent lamps as a backlight source, but the different colors are controlled by LCD units, which in effect behave as gates that allow or block light through red, green, or blue filters on the front of the LCD panel.
Contrast ratio is the difference between the brightest and darkest parts of an image, measured in discrete steps, at any given moment. Generally, the higher the contrast ratio, the more realistic the image is (though the "realism" of an image depends on many factors including color accuracy, luminance linearity, and spatial linearity). Contrast ratios for plasma displays are often advertised as high as 5,000,000:1.organic light-emitting diode. Although there are no industry-wide guidelines for reporting contrast ratio, most manufacturers follow either the ANSI standard or perform a full-on-full-off test. The ANSI standard uses a checkered test pattern whereby the darkest blacks and the lightest whites are simultaneously measured, yielding the most accurate "real-world" ratings. In contrast, a full-on-full-off test measures the ratio using a pure black screen and a pure white screen, which gives higher values but does not represent a typical viewing scenario. Some displays, using many different technologies, have some "leakage" of light, through either optical or electronic means, from lit pixels to adjacent pixels so that dark pixels that are near bright ones appear less dark than they do during a full-off display. Manufacturers can further artificially improve the reported contrast ratio by increasing the contrast and brightness settings to achieve the highest test values. However, a contrast ratio generated by this method is misleading, as content would be essentially unwatchable at such settings.
Each cell on a plasma display must be precharged before it is lit, otherwise the cell would not respond quickly enough. Precharging normally increases power consumption, so energy recovery mechanisms may be in place to avoid an increase in power consumption.LED illumination can automatically reduce the backlighting on darker scenes, though this method cannot be used in high-contrast scenes, leaving some light showing from black parts of an image with bright parts, such as (at the extreme) a solid black screen with one fine intense bright line. This is called a "halo" effect which has been minimized on newer LED-backlit LCDs with local dimming. Edgelit models cannot compete with this as the light is reflected via a light guide to distribute the light behind the panel.
Image burn-in occurs on CRTs and plasma panels when the same picture is displayed for long periods. This causes the phosphors to overheat, losing some of their luminosity and producing a "shadow" image that is visible with the power off. Burn-in is especially a problem on plasma panels because they run hotter than CRTs. Early plasma televisions were plagued by burn-in, making it impossible to use video games or anything else that displayed static images.
Plasma displays also exhibit another image retention issue which is sometimes confused with screen burn-in damage. In this mode, when a group of pixels are run at high brightness (when displaying white, for example) for an extended period, a charge build-up in the pixel structure occurs and a ghost image can be seen. However, unlike burn-in, this charge build-up is transient and self-corrects after the image condition that caused the effect has been removed and a long enough period has passed (with the display either off or on).
Plasma manufacturers have tried various ways of reducing burn-in such as using gray pillarboxes, pixel orbiters and image washing routines, but none to date have eliminated the problem and all plasma manufacturers continue to exclude burn-in from their warranties.
The first practical plasma video display was co-invented in 1964 at the University of Illinois at Urbana–Champaign by Donald Bitzer, H. Gene Slottow, and graduate student Robert Willson for the PLATO computer system.Owens-Illinois were very popular in the early 1970s because they were rugged and needed neither memory nor circuitry to refresh the images.CRT displays cheaper than the $2500 USD 512 × 512 PLATO plasma displays.
Burroughs Corporation, a maker of adding machines and computers, developed the Panaplex display in the early 1970s. The Panaplex display, generically referred to as a gas-discharge or gas-plasma display,seven-segment display for use in adding machines. They became popular for their bright orange luminous look and found nearly ubiquitous use throughout the late 1970s and into the 1990s in cash registers, calculators, pinball machines, aircraft avionics such as radios, navigational instruments, and stormscopes; test equipment such as frequency counters and multimeters; and generally anything that previously used nixie tube or numitron displays with a high digit-count. These displays were eventually replaced by LEDs because of their low current-draw and module-flexibility, but are still found in some applications where their high brightness is desired, such as pinball machines and avionics.
In 1983, IBM introduced a 19-inch (48 cm) orange-on-black monochrome display (Model 3290 Information Panel) which was able to show up to four simultaneous IBM 3270 terminal sessions. By the end of the decade, orange monochrome plasma displays were used in a number of high-end AC-powered portable computers, such as the Compaq Portable 386 (1987) and the IBM P75 (1990). Plasma displays had a better contrast ratio, viewability angle, and less motion blur than the LCDs that were available at the time, and were used until the introduction of active-matrix color LCD displays in 1992.
Due to heavy competition from monochrome LCDs used in laptops and the high costs of plasma display technology, in 1987 IBM planned to shut down its factory in Kingston, New York, the largest plasma plant in the world, in favor of manufacturing mainframe computers, which would have left development to Japanese companies.Larry F. Weber, a University of Illinois ECE PhD (in plasma display research) and staff scientist working at CERL (home of the PLATO System), co-founded Plasmaco with Stephen Globus and IBM plant manager James Kehoe, and bought the plant from IBM for US$50,000. Weber stayed in Urbana as CTO until 1990, then moved to upstate New York to work at Plasmaco.
In 1992, Fujitsu introduced the world"s first 21-inch (53 cm) full-color display. It was based on technology created at the University of Illinois at Urbana–Champaign and NHK Science & Technology Research Laboratories.
In 1994, Weber demonstrated a color plasma display at an industry convention in San Jose. Panasonic Corporation began a joint development project with Plasmaco, which led in 1996 to the purchase of Plasmaco, its color AC technology, and its American factory for US$26 million.
In 1995, Fujitsu introduced the first 42-inch (107 cm) plasma display panel;Philips introduced the first large commercially available flat-panel TV, using the Fujitsu panels. It was available at four Sears locations in the US for $14,999, including in-home installation. Pioneer also began selling plasma televisions that year, and other manufacturers followed. By the year 2000 prices had dropped to $10,000.
In the year 2000, the first 60-inch plasma display was developed by Plasmaco. Panasonic was also reported to have developed a process to make plasma displays using ordinary window glass instead of the much more expensive "high strain point" glass.
In late 2006, analysts noted that LCDs had overtaken plasmas, particularly in the 40-inch (100 cm) and above segment where plasma had previously gained market share.
Until the early 2000s, plasma displays were the most popular choice for HDTV flat panel display as they had many benefits over LCDs. Beyond plasma"s deeper blacks, increased contrast, faster response time, greater color spectrum, and wider viewing angle; they were also much bigger than LCDs, and it was believed that LCDs were suited only to smaller sized televisions. However, improvements in VLSI fabrication narrowed the technological gap. The increased size, lower weight, falling prices, and often lower electrical power consumption of LCDs made them competitive with plasma television sets.
Screen sizes have increased since the introduction of plasma displays. The largest plasma video display in the world at the 2008 Consumer Electronics Show in Las Vegas, Nevada, was a 150-inch (380 cm) unit manufactured by Matsushita Electric Industrial (Panasonic) standing 6 ft (180 cm) tall by 11 ft (340 cm) wide.
At the 2010 Consumer Electronics Show in Las Vegas, Panasonic introduced their 152" 2160p 3D plasma. In 2010, Panasonic shipped 19.1 million plasma TV panels.
Panasonic was the biggest plasma display manufacturer until 2013, when it decided to discontinue plasma production. In the following months, Samsung and LG also ceased production of plasma sets. Panasonic, Samsung and LG were the last plasma manufacturers for the U.S. retail market.
When deciding whether to use plasma or liquid crystal diode (LCD) displays for your applications, you need to consider many factors. Both provide brilliant colour, sharp text contrast, and crystal-clear images. But the way in which plasma and LCD screens process and display incoming video/computer signals is markedly different.
Both plasma and LCD technology provide stark enough contrasts to make displays sharp and pleasing. But when it comes to contrast output, plasma technology outperforms LCD screens. Some plasma displays have a 3000:1 contrast ratio, which is the measure of the blackest black compared to the whitest white. LCDs use electric charges to untwist liquid crystals, thereby blocking light and emitting darker pixels. Despite this process, LCD displays don’t produce more than a 1000:1 contrast ratio.
Pixels contain enough information to produce every colour in the spectrum. Because plasmas use each and every pixel on their screens, colour information is reproduced more accurately. Plasma screens display moving images with remarkable clarity, though burn-in can be an issue. For displays with lots of light and dark imagery, plasma panels provide excellent performance with their high-contrast levels, colour saturation, and overall brightness.
LCD displays, on the other hand, manipulate light waves and reproduce colours by subtracting colours from white light. Though this makes it more difficult to maintain colour accuracy and vibrancy compared to plasma screens, LCDs have an advantage with their higher-than-average number of pixels per square inch. These additional pixels make LCD technology better at displaying static images from computers or VGA sources in full-colour detail. Plus, there’s no flicker and very little screen burn-in.
With LCD screens, there are essentially no parts to wear out. LCD screens last as long as their backlights do, with displays lasting, on average, 50,000–75,000 hours. That’s why LCD screens are especially good for long-term applications, such as digital signage or displays that require around-the-clock use.
Plasma screens, however, use a combination of electric currents and noble gases (argon, neon, and xenon) to produce a glow, which in turn yields brilliant colour. The half-life of these gases, however, is only around 25,000 hours. The glow they produce grows dimmer over time.
Plasmas light every pixel on the screen, making the brightness on the screen consistent and giving plasmas the edge when it comes to viewing angles. In fact, plasma screens have as much as a 160° viewing angle compared to LCDs. This makes viewing the images on the screen easier to see from a variety of angles. In doing so, however, plasmas consume much more power.
LCDs display at 130–140° angles, but their use of fluorescent backlighting requires much less power to operate than plasmas. This also makes LCDs less prone to burn-in or ghosting of images.
You don’t hear much about plasma TVs these days, and for good reason: no one’s made them for several years. But for a TV technology that was once the pinnacle of picture quality, where did plasma TVs go?
But what do we recall when we talk about plasma TVs? The technology that made flat screens an everyday reality for you and I originated in a humble lab in the University of Illinois. The potential of what started as an academic experiment to create a display for educational computers became very apparent to TV manufacturers, which had been struggling to find a realistic solution to take over from cumbersome CRT (Cathode Ray Tube) TV sets.
Plasma screens feature millions of cells, filled with gas, sitting neatly between two sheets of glass. When they’re charged with electricity, the cells – or pixels – lit up to form the image. That charged-up gas is called plasma, hence the name of the screens.
CRT models, on the other hand, feature a single tube that defines the size of the screen. The move to plasma technology and its use of millions of cells made it far easier to enlarge screen sizes, while also making them thin – far more slender than normal CRT sets. In addition, the higher definition and refresh rate resulted in a much higher-quality picture.
To understand the lure of plasma and how it managed to conquer hearts and living rooms alike, you must look beyond the pretty screen and deep into the heart of the technology behind it.Next-gen TVs: the OLED, Micro LED and holographic TVs of the future
“The glass is comparable to window glass, unlike LCD. There are horizontal and vertical electrode grids and a phosphor array. The connection between the two is scanned, firing the discharge at the intersection and causing the phosphor to glow,” says analyst Paul Gray(opens in new tab), who leads TV research at Omdia, a global firm that provides analysis across the technology ecosystem. “The phosphor side is similar to CRT, while the plasma is a glow discharge like a neon lamp.”
But the genesis of the technology had nothing to do with the entertainment industry. Larry F Weber, a fellow of the Institute of Electrical and Electronics Engineers wrote the following in IEEE Transactions on Plasma Science(opens in new tab):
“As with any invention, it all started with a need. In this case, it was the need for a high-quality display for computer-based education. The University of Illinois started a project in 1960 called PLATO (Programmed Logic for Automatic Teaching Operations) to conduct research on the use of computers for education… The plasma display panel (PDP) was invented by Prof. Donald L Bitzer, Prof. H Gene Slottow, and their graduate student Robert H Wilson in 1964 to meet the need for a full graphics display for the PLATO system.”
The first manufacturer to take the dive into making plasma in serious numbers was Fujitsu, making a 42-inch screen in 1997. That screen was selling for $20,000 (around £15,000 / AU$26,000), according to San Francisco Business Times(opens in new tab).
“The starters were Fujitsu and Panasonic, but NEC, Pioneer, Samsung, LGE and Chunghwa (CPT) all made the displays,” says Gray. “Most brands had plasma in their ranges. It’s important to remember that in the early 2000s, the PDP [Plasma Display Panel] was in the lead in large-screen TVs such as 42-inch models, and there was serious concern whether 42-inch LCD was economically feasible. Sony and Sharp even worked on a hybrid technology called PALC, Plasma-addressed Liquid Crystal.”
It was the first time that a large TV was available in a form that could be mounted on a wall. This was a huge leap forward from the furniture-piece CRT TV sets that were boxy and heavy, although sturdy. Remember, also, that it was a strange world where small screens and large screens (LCD and projection respectively) were flat, but the ones in the middle (14-inch to 37-inch) were curved.
Plasma TVs had come a long way since its first iteration. It went on to dominate the consumer market for TV screens and provided one of the best viewing experiences available.
Plasma TVs had panels that lit up small cells of gases (xenon and neon) between two plates of glass, offering very bright and crisp images even on a large screen surface, according toSamsung(opens in new tab), which was one of the main manufacturers of plasma TVs. The screens contain phosphors that created the image on the screen light up themselves and don’t require backlighting.
The technology meant that large screens (typically from 42 inches to 63 inches) “offer high contrast ratios, gorgeously saturated colours, and allow for wide viewing angles – meaning every seat in the house is a great one,” according to Samsung, while it worked “well in dimly lit rooms, which is great for watching movies.” It could also “track fast-moving images without motion blur,” making plasma “ideal for watching action-packed sports or playing video games. The sharpness of visual detail is astonishing.”
However, there were some disadvantages. Plasma was more of an electricity guzzler than LCD (Panasonic had got the consumption pretty much to parity, and plasma’s power consumption depended heavily on the amount of light in the video content). It was heavier, with many more power electronics packed in each set. It wasn’t as bright, meaning that to enjoy it fully, you really needed to like your dimly lit, cinema-style watching experience – which wasn’t a disadvantage if you weren’t a fan of daytime telly. Burn-in was an issue, too, especially for avid gamers.
By 2005, six million units of plasma were being shipped globally per year, according to Omdia’s data. “The business peaked at 18.4 million in 2010,” says Gray.
But then other technologies started to catch up. LCD screens were lighter and brighter. They consumed far less energy and performed better in daylight.
“Essentially, the fundamental problem was the pace of innovation,” says Gray. “Plasma needed to counter the LCD industry, which had more players working on development. It faced either an uneconomic level of R&D or, alternatively, slowly falling behind. Samsung and LG were only in the PDP [Plasma Display Panel] market as an insurance policy, while the Japanese were unwilling to make big bets. In fairness, they acted rationally – while Korea Inc got its money back in LCD, Taiwan Inc only broke even and China Inc’s chances of ever making a positive return on its LCD investment are slim.”
The plasma honeymoon didn’t last, then, and there were some basic factors that had a severe impact on sales – including one of the criticisms commonly levelled at OLED, being low brightness.
“Plasma wasn’t as bright as LCD. Critically in US retailers, the TV area was brightly lit and PDP looked washed out,” says Gray. “Plasma – like all emissive displays – struggled with fine pixel densities. Only Panasonic managed to make a 1080p 42-inch, and even then it wasn’t a great product commercially. Manufacturing yield was reportedly poor. In the end, LCD had massive manufacturing capacity and the advantage of scale. PDP simply wasn’t unique enough.”
As manufacturers started making huge losses, they began to phase out plasma. Pioneer putting an end to the production of its much-loved Kuro screens was notable. When Panasonic announced that it would no longer make plasma screens, everybody knew that the end was near. LG and Samsung followed suit shortly after. And just like that, the light went out on plasma.What is OLED? The TV panel tech explainedToday"s best LG CX OLED deals
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
Since 1983, Planar display solutions have benefitted countless organizations in every application. Planar displays are usually front and center, dutifully delivering the visual experiences and critical information customers need, with proven technology that is built to withstand the rigors of constant use.
Speaking at the launch of the ZT60 TV in New York – the model is sold here as the ZT65 – the vice president of Panasonic Display, Kiyoshi Okamoto, told
Okamoto says there are no plans to restart plasma development at any time in the future, and that "OLED is one of the key future products" for the future. As previously reported, Panasonic has an OLED development partnership with Sony, but Okamoto said the company is continuing to study demand for such screens before announcing its plans.
Okamoto also said that the company would continue to advertise the superior picture quality of plasma over LCD/LED TVs, but said Panasonic had invested too heavily in plasma, and should now now invest more in LCD, especially in the marketing of the sets.
Panasonic has responded to reports it"s set to exit the plasma TV business, saying that "we are looking into a variety of options, but nothing has been decided at the moment."
"In addition, for non-TV use, we are expanding our Business to Business (B2B) opportunities for the PDP business with products such as the Interactive Plasma Display.
Reports from Japan say the company is expected to announce next week that it"s starting a three-year plan to trim down its loss-making TV business, and that the strategy could see it stopping plasma panel production next year and also reducing the scale of its in-house LCD panel manufacturing.
As a result, the division is likely to undergo radical downsizing starting in the next financial year, one element of which will be the ending of plasma production at the company"s Amagasaki plantnear Osaka, pictured above. That"s expected to take place as soon as next year.
Sources at the company told the Japanese press the company would reduce plasma TV production gradually in consideration of relationships with retailers and other partners, and will consider withdrawing from that sector of the market during the 2014-15 financial year.
It has already reportedly halted development of any new plasma models, and earlier this year announced the closure of its plasma TV factory in Shanghai.
Other reports in Japan suggest the company is to sell its healthcare business and use the proceeds to boost its TV business, but it"s not clear whether this sale would fund the OEL development program or be used to help offset the costs of the plasma/LCD pull-back.
Panasonic"s 2013 TV range was announced at the start of the year, and includes plasma and LED sets – but how long that will remain the case seems uncertain.
Plasma screens, which use electrically charged ionised gases, are often applauded for their brightness, deep blacks, and high frame rates, considered ideal for watching sport and films.
But they tend to use more electricity and are considerably bulkier than the now more popular liquid-crystal display (LCD) and light-emitting diode (LED) TVs.
With the introduction of increasingly advanced organic LED TVs, which arguably have better black levels, brightness and colour gamut than plasmas, there was little reason to continue manufacturing plasma screens, Mr Kypreos said.
Plasma TVs contain tiny pockets of gas, and when a voltage is applied to them, they turn into a plasma state. The voltage then strikes the mercury within the plasma to emit ultraviolet (UV) rays, which pass through phosphor cells to produce an image. Each pixel in the TV contains three phosphor cells: red, green, and blue, and these three colors combine to produce a color. Essentially, plasma TVs don"t require a backlight, and each pixel is self-emissive as it produces its own light.
Unlike plasma TVs, LCD TVs use a backlight. Initially, LCD TVs used Cold-Cathode Fluorescent Lamp (CCFL) as their backlight. These are long tubes that are placed horizontally across the screen behind the LCD panel. When the light is turned on, it applies a voltage to the pixels, which makes them rotate a certain way to allow light through and produce an image. When it wants to display black, the pixels are rotated to create an opaque screen so that light doesn"t get through. This is what makes them different from plasma TVs because each pixel isn"t self-emitting.
Plasma and LED TVs each present their own advantages and disadvantages in terms of picture quality, price, build, and availability. It"s generally thought that plasma produces a better picture quality due to their superior contrast ratio, but LED TVs became more popular because of other factors, like a lower cost and greater availability.
Below you can see the differences in picture quality between two older TVs from 2013. It"s clear the plasma was better at the time, but LED TVs have also gotten better since then, so picture quality has greatly improved.
Contrast ratio was one of the main advantages and selling points of plasma TVs. Since each pixel emitted its own light, it simply turned itself off when it wanted to display a black image. This allowed the TV to display very deep blacks, but because there was always a bit of charge left in the plasma, it still wasn"t a perfect black level.
On the other hand, LED TVs can"t achieve a perfect black level because the backlight is always on. However, technology has evolved to greatly improved the contrast of LED TVs, even to the point where it"s also as good as what plasma once was. There are two main types of LCD panels in TVs: Vertical Alignment (VA) and In-Plane Switching (IPS). VA panels produce a better contrast than IPS, and high-end TVs also have local dimming features that turn off certain zones of the LED backlights. Still, you won"t get a perfect black level, but most modern LED TVs produce such deep blacks that even in a dark environment it looks like perfect black levels. For reference, plasma TVs had a max contrast of about 4,000:1, according to DisplayMate.com, but some recent LED TVs can reach a contrast of over 20,000:1 with local dimming enabled, like the Samsung QN90A QLED.
LED TVs are a clear winner here, and it"s one of the reasons why they surpassed plasmas in terms of popularity. LED TVs get significantly brighter, so they can fight glare from light sources easier. Additionally, plasma TVs had to use glass on their front panel, which caused intense glare if you had any lamps or windows around the TV. LED TVs can use a coating on their glass panel to help reflect and diffuse light, making it a better choice for well-lit rooms.
Plasmas were designed for dark-room viewing, but since most people don"t have dedicated home theater setups and often watch with a few light sources around, they weren"t that useful. As you can see below, the plasma TV had pronounced reflections, to the point where it"s even hard to see the image, and instead you"re watching yourself watch TV. Reflections are still noticeable on an LED TV, but at least you can see the image.
Pixels on plasma TVs emitted light in all directions, creating extremely wide viewing angles, much better than most LED TVs. This means that the image remained accurate when viewing from the side, which was great for watching sports or a show with a few people. Out of the two main panel types for LED TVs, IPS has wider viewing angles than VA panels, but it"s still not as good as plasma.
TV manufacturers have tried different technologies to improve viewing angles on VA panels. Samsung has an "Ultra Viewing Angle" layer, and Sony uses their "X-Wide Angle" technology to increase the viewing angles, both at the cost of a lower contrast ratio. It"s still not as good as plasma, but they"re wide enough for watching TV in a fairly large seating area.
Below you can see the differences in viewing angles between a plasma and a VA panel. These TVs were tested on different test benches, so you shouldn"t directly compare the videos, but we included them to give you an idea of how each technology affects the viewing angle.
Plasma TVs were great for motion handling, like with sports and video games due to their quick response time. Since each pixel had to retain a certain charge at any given moment, it was ready to display an image almost instantly. This meant fast-moving scenes looked crisp and smooth, with no motion blur behind them. However, for LED TVs, it can be a toss-up; some lower-end models have a slow response time that causes motion blur, while other high-end TVs have a really fast response time.
In terms of refresh rate, plasma TVs had a higher internal refresh rate, up to 600Hz, while LED TVs tend to be 60 or 120Hz. However, the refresh rate depends on the content, and since most content doesn"t go past 120 frames per second, having a higher refresh rate TV isn"t very useful.
Screen uniformity is another area where plasma TVs win. Since they didn"t have a backlight, they could evenly control each pixel. LED TVs can suffer from uniformity issues, like darker edges or Dirty Screen Effect in the center, because the backlight output may not be even across the panel. However, this is only really noticeable when watching content with large areas of uniform color, like a hockey or basketball broadcast, or if you"re going to use the TV as a PC monitor. It shouldn"t be noticeable with other types of content, and since uniformity can vary between units, you shouldn"t worry about it too much.
One of the reasons plasma TVs didn"t last too long at the top of the TV world is because of their risk of temporary image retention and permanent burn-in. Plasmas lose their brightness over the years, and in the worst case, would have permanent burn-in with certain colors staying on the screen, as you can see here. Even after watching content with static elements, like the news, for an extended period, the outline of the static elements would stay on the screen for a few minutes after changing the channel.
These problems are particularly annoying, especially if you watch a lot of TV. There was no way to help reduce this issue, and after a few years, depending on how much you used the TV, your plasma would need replacing. LEDs don"t suffer from this same permanent burn-in, so you won"t have to worry about replacing your LED TV down the line because of burn-in.
Due to their different technologies, LED and plasma TVs are built differently. Plasma TVs tended to be heavier and thicker because the panel itself was larger. Although plasmas were the first flat-screen TVs available at a consumer level at the end of the 20th century, LCD TVs quickly became even thinner, easier to package, and lighter to carry from the store to your house. These days, LED TVs are as thin as 1", like the Samsung QN85A QLED.
Plasma TVs also required a lot of power to work and tended to get very hot. With the growth of environment-friendly consumer practices, it became clear LED TVs would win out since they required a lot less electricity, and in a way were better for the environment.
Both plasma and LED TVs were made with larger sizes, but LED had a slight advantage because they were also made in displays smaller than 32 inches, like with monitors. Although small TVs are rare now, you can still find a basic 28 or 32 inch TV for a kitchen or bedroom with an LED panel. Plasma TVs weren"t made that small. LED TVs also cost less to produce and are cheaper on the market, so at the end of the day, the lower cost drove LED sales.
When 4k TVs started to become the norm over 1080p and 720p TVs in the mid-2010s, manufacturers started to produce 4k LED TVs, while plasma TVs were stuck at 1080p. This presented a major advantage for LED TVs, as a higher resolution helps create a crisper image, and this essentially was the nail in the coffin for plasma TVs. Since manufacturers were focused on making 4k LED TVs, plasma TVs became less available, and by 2014, Panasonic, LG, and Samsung all stopped their plasma production. LED TVs surpassed plasma sales in 2007, and they haven"t looked back since.
There were a few other problems that contributed to the decline of plasma TVs. First of all, plasma TVs didn"t work at high altitudes because of the change in air pressure with the gasses inside. They would create a buzzing noise, and the image wouldn"t look the same, so this could have been problematic if you lived at a high altitude. LED TVs can be used at any altitude; you shouldn"t use them in extreme cold or extreme heat, but this is standard practice for any electronic, and temperature is easier to control than your altitude. Also, plasma TVs emitted a radio frequency that could have interfered with other devices around, like if you had a radio in the same room. Each of these issues are simply inconvenient for most people.
The simple answer is yes, but it doesn"t mean you should go out tomorrow and buy a new TV just because you read this article. If you aren"t experiencing any issues with your plasma, then you probably don"t need to replace it right away. However, if you notice your plasma is starting to show some signs of permanent burn-in, it"s probably a good idea to get a new TV before the burn-in becomes worse.
There could be other advantages if you upgrade your TV, like technological advancements and a higher 4k resolution. Modern TVs come with a built-in smart system, which isn"t something that most plasmas had, and this allows you to directly stream your favorite content without the need for an external streaming device. As mentioned, LED TVs aren"t very costly, and you can easily find the best 4k TVs for under $500.
At the same time that plasma TVs met their end, OLEDs grew from the ashes of their predecessor. After LG released the first commercially available 55 inch OLED in 2012, it soon competed with LED TVs. OLED, which stands for Organic Light-Emitting Diode, is different from plasma, but shares many of the same characteristics, while also avoiding some of plasma"s downfalls.
OLEDs use self-emissive pixels, but what sets them apart is how the pixels completely shut off, creating an infinite contrast ratio and perfect black uniformity. This is an improvement from plasma because it was never able to reach those perfect blacks. OLEDs also have wide viewing angles and a near-instant response time like plasmas. Sadly, they don"t get extremely bright, but they"re still better for well-lit rooms than plasma because they get a bit brighter and have much better reflection handling. Also, OLEDs have the same burn-in risk as plasma, but this only happens with constant exposure to the same static elements, and we don"t expect it to be a problem for people who watch varied content.
Another advantage for OLED is how thin they are, especially compared to plasma, and they aren"t as heavy. For example, the LG GX OLED is a TV designed to sit flush against the wall and it"s only 0.94" thick!
Although plasma TVs once dominated the TV market for a short time at the turn of the 21st century, their disadvantages outweighed their advantages, and LED-backlit LCD TVs soon held the market share of sales. There were a few reasons for this, like burn-in issues, low peak brightness, and a thick and heavy design compared to LED TVs. Despite plasma TVs" superior overall picture quality, improved contrast, and very quick response time, it wasn"t enough to convince consumers to keep buying them once 4k LED TVs became readily available. If you still have a plasma, it"s likely you"ll need to replace it within the next few years, and you"ll probably buy a new LED TV.
Today is a sad day for plasma TVs. Panasonic has announced that it will stop making the screens from December. As one of the greatest makers of plasma televisions, this must surely be the end for this type of TV.
After Pioneers"s brilliant Kuro line bit the dust recently it was Panasonic that sat at the top of most plasma TV lists. But after investing heavily in a plasma screen factory it looks like Panasonic couldn"t hit the sales of over 1,000 TVs a day it needed to make in order to retain value, and so it has sold up.
Many people prefer plasma to LCD or LED as it can achieve truer blacks and faster refresh rates - ideal for sports and movies. But with OLED on the horizon of affordable and 4K getting up to speed there"s no place for the power-consuming, heavy, large and hot plasma TV anymore - even though it was cheaper for the quality than the competition.
Sano Y, Nakamura T, Numomura K, Konishi T, Usui M, Tanaka A, Yoshida T, Yamada H, Oida O, Fujimura R (1998) High-contrast 50-in color ac plasma display with 1365 × 768 pixels. SID 98 DIGEST, 275
Whang KW, Bae HS, Lee KH, Kim TJ (2005) The effect of cell geometry and plasma loss on the luminous efficiency in ac plasma display panel. SOD 05 DIGEST, 1130
Andoh S, Murase K, Umeda S (1976) Discharge-time lag in a plasma display-selection of protection layer (γ Surface). IEEE Trans Electron Devices 23(3):319
Urade T, Iemori T, Osawa M, Nakayama N, Morita I (1976) A protecting layer for the dielectric in AC plasma panels. IEEE Trans Electron Devices 23(3):313
Ryu SM, Han M, Yang DY, Lee SS, Kim DJ, Park LS (2007) Ultra-slim barrier ribs for plasma display panel by X-ray lithography process, SID 07 DIGEST, 1205
Kajiyama H, Tanno H, Shinoda T, Fukasawa T, Ramasamy R, Shanmugavelayutham G, Yasuda T (2007) Lifetime improvement of Eu-doped BAM by plasma treatment, SID 07 DIGEST, p 1321
Park MS, Park DH, Kim BH, Ryu BG, Kim ST, Seo GW, Kim DY, Park ST, Kim JB (2006) Effect of aging discharge on the MgO protective layer of AC-plasma display panel, SID 06 DIGEST, p 1399
Park CS, Tae HS, Kwon YK, Seo SB, Heo EG, Lee BH, Lee KS (2006) Experimental study on halo-type boundary image sticking in 42-in AC plasma display panel, SID 06 DIGEST, p 1213
Hirakawa H, Katayama T, Kuroki S, Nakahara H, Nanto T, Yoshikawa K, Otsuka A, Wakitani M (1998) Cell structure and driving method of a 25-in. (64-cm) diagonal high-resolution color AC plasma display. SID 98 DIGEST, p 279
Kojima T, Toyonaga R, Sakai T, Tajima T, Sega S, Kuriyama T, Koike J, Murakami H (1979) Sixteen-inch gas-discharge display panel with 2-lines-at-a-time-driving. Proc SID 20:153
Since 2001, Turboprops has been the leader in the manufacturing and distribution of electronic display props for model home staging, home builders, furniture retailers and trade show displays. Our mission is to continue to provide prompt personalized service and the most durable and realistic display props in the industry.
BERLIN (Reuters) - Plasma television technology has a bright future despite an onslaught on its home turf from rival LCD (liquid crystal display) TVs, makers of plasma screens told Reuters at the IFA consumer electronics fair in Berlin.A technician looks at a 102-inch plasma flat television screen at the booth of South-Korea"s Samsung Electronics in preparation for the CeBIT computer fair in Hanover, Germany, March 7, 2005. Plasma television technology has a bright future despite an onslaught on its home turf from rival LCD (liquid crystal display) TVs, makers of plasma screens told Reuters at the IFA consumer electronics fair in Berlin. REUTERS/Christian Charisius
Last year, four times as many LCD TVs as plasma TVs were sold, according to research firm iSuppli, which predicts that ratio will leap to seven to one this year, as LCD encroaches on plasma’s traditional territory of larger screens.
But Matsushita, whose Panasonic brand TVs are the world’s best-selling plasma televisions, believes it can fend off LCD’s advance through a combination of quality improvements, cost-cutting and better power efficiency.
Hiro Wada, who is in charge of planning for visual products and display devices at Panasonic, said he believed plasma could maintain a share of at least 30 percent of the market for flat-screen TVs bigger than 37 inches in the medium term.
“We have a chance because demand for bigger screens is increasing,” Wada told Reuters in an interview at IFA. He said Matsushita, which is investing $1.5 billion in a plasma panel factory in Japan, aimed to stay number one in the plasma market.
He added that plasma technology, which has only been commercial for about 10 years, still had plenty of room to improve. LCD television technology has been commercial for more than 30 years.
Plasma, a self-illuminating system, uses electricity to excite tiny pockets of gases sandwiched between two panes of glass to produce light, giving natural-looking images with high contrast that look good from different viewing angles.
LCD is backlit and its crystals produce colors by blocking varying amounts of light. It is generally more energy efficient than plasma and can be powered by batteries, making it widely used in phone and digital camera displays.
Wada said Panasonic was working on improving luminous efficiency, which would bring down power consumption, and was also cutting production costs through single-scan technology, which uses one instead of two chips to drive the display.
Makers of all kinds of TVs are locked in a price war, and plasma makers are under more pressure than ever as LCD makers advance on their territory of higher-margin large screens.
LG Electronics’ digital display business chief told Reuters at IFA that LG would stay in the plasma business for the long term, despite some investors urging it to sell or shut down the loss-making unit.
Kang said he was not at the moment considering a joint venture or other form of cooperation for LG’s plasma business, the world’s second biggest, amid consolidation in the industry, preferring to strengthen LG’s own business first.
Panasonic has been a leader as one of the top 3 manufacturers of plasma display products and was the first manufacturer to obtain CRT-like black levels by reducing pre-discharge emission. They have managed to maintain the competitive advantage that the company became known for in 2000 and 2001 with regard to black levels and gray scaling. Nevertheless, Panasonic is always tweaking performance, trying to find better ways to improve plasma. Though Panasonic also produces a limited number of LCD TVs, their focus has been plasma technology.
In this review we summarize the 50 offerings in Panasonic’s professional HDTV lineup, including the new 10th generation TH-50PH10UK. The plasma panels used in Panasonic’s professional line of displays are typically cycled into the consumer line of TVs after they have run for a while in the pro-lineup. For example, the current-generation 50-inch consumer model, the TH-50PX75U uses the same panel 9th generation panel as the discontinued 50-inch TH-50PH9U pro display. While picture quality has been consistent throughout the latest 4 or 5 versions of the Panasonic professional plasma, we explain the small changes that were made with each generation.
The Panasonic professional plasma televisions may be purchased for professional or commercial display/broadcast use, but also can work well for the consumer in the home theater. They do not include tuners or speakers, both of which can be purchased and installed as optional accessories.
The ultimate test of all plasma televisions is how well they show when they are actually tested for video quality. Forget the native pixel resolution, the built in progressive scanning converter, the astronomically unrealistic contrast ratio figure shown. The manufacturers wanting to sell their product provide the specifications. Comparing TV"s of any kind side by side with the same input source at the same starting point is the way to truly understand how the signal information is converted, processed and shown. Call it the eyeball test. With plasma displays the differences are much more considerable with the competing LCD technologies than with other quality plasma manuacturers. Reviewing across different technologies is very difficult due to inherent strengths and weaknesses.
The new TH-50PH10UK offers very little differentiation from its predecessor, however Panasonic has had 10 generations to work out the flaws! The company has been consumed with addressing the following concerns: 1) "How long does the plasma last", 2) "Will the plasma develop burn in?", 3) " Is plasma as bright as LCD?" 4) "What are the best inputs to use with plasma?" 5) What about energy consumption?" These are legitimate questions given of all the conflicting information consumers are fed. So Panasonic has strived to answer and ease these concerns and has addressed them all with their new specifications and improvements introduced first in the 7UY series and carried through to the 10U series.
Since plasma monitors are primarily visual devices the picture displayed is omnipotent in consideration for which one to purchase. There are a few other considerations (listed in this review under "Other Considerations") but image quality is of primary importance unless computer presentation scaling is the call. The Panasonic TH-50PH10UK shows one of the best most realistic pictures you will see on a high definition plasma TV. With higher end signals of HDTV 1080I or progressive scan 480P the unit is rarely matched for an 1366 X 768 native pixel resolution plasma TV. We have reviewed the Gateway, Sampo, Samsung, Akai, LG, NEC, Hitachi, Visio, and Sony plasmas, and the unanimous feeling among our reviewers is that Panasonic, Pioneer, Samsung and LG are the overall winners on plasma picture quality.
Images are exceptionally sharp and crisp for HDTV input signals. Color reproduction was superb but the words most often used to describe the unit"s on-screen image versus the other flat screen TV"s were, "great depth, rich and clear, vibrant." I know the description of the picture sounds a bit like a good cabernet, but those are our thoughts. There are a few standout reasons that the Panasonic Plasmas triumph. One is the gray scaling in dark scenes. Two is the black levels. And three is color reproduction.Gray Scaling: Image detailing in dark scenes is a sticking point with most plasma manufacturers due to the pressure of always attempting to increase black levels and contrast to keep up with the competition. With many manufacturers, much feature matter is lost as what was intended to be shadow detail turns to an over saturated black - thus losing all detail. Panasonic plasmas have been overcoming this problem for years and are only getting better.
Black Levels: The Panasonic TH-50PH10UK continues to show the dominant deep black levels that have won Panasonic so many accolades in this area. As discussed with gray scaling, it"s really a combination of excellent black levels and great dark matter detailing within gray scales that create a superb picture for the human eye. Though we don’t entirely buy into the Panasonic (nor any other manufacturer) contrast ratio listing of 10,000:1 (we measured the 10U at around 855:1), I do believe they have the best black level technology.
Panasonic"s plasma color reproduction strives for realism - not overjuiced overipe colors. The Panasonic professional model plasma is very well calibrated right out of the box in movie or standard mode to settings that will not fatigue the eye.
When viewing progressive 720P or 1080I HD signals I"m always pleased with the reproduction and picture depth. 3 dimensional images on a good plasma will surpass LCD every time.
When changing the signal from a DVD player to 480I from 480P, there is now an almost imperceptible decrease noticed in the picture quality on this plasma TV. This is due to an excellent 3:2 pulldown conversion chip for film and video processing is also included to deliver clear, smooth images from film sources. The Panasonic TH-50PH10UK also upconverts satellite and cable signals to progressive scan quality, thus giving much better picture quality than before on television grade signals.
While several manufacturers claim to have almost caught Panasonic in black level production and contrast, the Panasonic models continue to display the deepest blacks and smoothest gray scaling that I have seen. While viewing the anamorphic widescreen 2.40:1 DVD release of Fight Club—a dark film by anyone"s description—I was able to discern sufficient definition in the dark detailing of fight scenes, clothing, and distanced objects. The proof that the Panasonic plasma could handle gray scales with no false contouring (banding effects in dark gradations) was also evidenced in the DVD release of Scorcese"s Raging Bull. As De Niro pummeled opponents relentlessly, I was amazed that even with this black and white DVD release there were zero banding/ false contouring effects evident. It is not even a consideration any more with Panasonic"s plasma TV offerings. This accomplishment is very difficult for most plasma TVs. The picture from the Panasonic plasma always deliver the most realistic colors, in part because these units do not get offensively warm with oversaturated reds as do so many other models. Gray scaling is drastically improved on this new model—with the most even dark level variations witnessed and monitored by my Sencore color analyzer.
In addition to their phenomenal film and video handing, Panasonic plasma"s are hands-down the most versatile displays to use with computer inputs. We tested several previous Panasonic models extensively using the display’s VGA input. The VGA board down-sampled and up-sampled input resolutions ranging from 640x480 to 1920x1200 with incredible clarity. We tested 18 different resolutions supported by the TV"s video board and each one immediately scaled to the center of the screen with incredible clarity.. With Panasonic"s scaling technology we saw quality at higher resolutions that exceeded what we"ve observed on even higher resolution LCDs. With more than 70 different resolution/refresh combinations supported, the TH-50PH10UK is a great choice for conference room ty