a-si active matrix tft lcd h-ips supplier
Microtech Technology Company Limitedestablished in 2001,offers professional design and manufacturing services for hundreds types of Liquid Crytal Display modules and Touch Panels-TN,FSTN,TFT,RTP,CTP.With the advantages of high contrast,fast response time,wide viewable angle and low power consumption,Microtech"s products are widely used in Industrial Equipment,Medical devices,Home Intelligent Devices,Digital cameras,Video Game Devices,Instruments etc.Since its establishment,the management has been following human-oriented strategy and developing reliance among customers.To comply with these beliefs and ISO 9001:2015 standards,Microtech keeps on recruiting capable professionals,adopting advanced technology,developing new products,improving process and enhancing quality.Based on its strong R&D capacity, outstanding product quality and professional service,Microtech has won the high reputation from both mainland and oversea customers,and established long-term strategic partner relationship with them.
In order to obtain an excellent quality management team and offer our customers professional & efficient service and satisfied products,We comprehensively carry out Zero Defect quality management,implement ISO9001:2008 standards training and organize the examination /enrollment of quality management personnel national professional qualification.Our Mission "Efficient and timely service is the key to our success.Our success is tied with our client"s success. We are dedicated to provide excellent service to our customer at the most competitive prices." To provide customer a value added LCD product by stringent quality control,comprehensive technical support,and utilization of latest technology.
With our motto "Quality and Services are vital to enterpriess",Microtech aims to produce high quality LCD module to meet the customers" specific needs in all-round way.Meanwhile we seek for continuous service improvement,increase our market share,strengthen our competitiveness,and ultimately,expand our market worldwide!
Product Introduction:This is a Mipi 4 Lane 1024*600 7 Inch Ips Lcd Panel Cut For Industrial Field. This TFT- LCD Dislplay model TS8270UN-2 can be customized in size, pixel and in other parameters. EU and US standard with OEM and ODM service. This is the best selling products in Tianzhengda for many brand around the globe.
This 10.1 inch TFT LCD display has a 1024x600 resolution screen with IPS technology, which delivers sunlight readable brightness, better color reproduction, better image consistency, and better optical characteristics at any angle. For extra protection, this 24-bit true color TFT also includes an EMI filter on the input power supply line. This 10.1" display is RoHS compliant with LVDS interface, and does not include a touchscreen. This 10.1" IPS display has been designed with the same mechanical footprint and pinout and includes the same HX8282 driver IC as the TN display, making this a compatible replacement option for the TN models.
4DLCD-35480320-CTP-IPS is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color IPS TFT-LCD panel, driver IC, FPC and a backlight unit.
This is a Raw TFT Display, it features no processor and cannot be programmed directly. It needs to be coupled with a Processor and circuitry capable of driving this type of display. For complete modules ready to go, please refer to our Intelligent Display Module products.
4DLCD-28320240-CTP-IPS is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color IPSTFT-LCD panel, driver IC, FPC and a backlight unit.
This is a Raw TFT Display, it features no processor and cannot be programmed directly. It needs to be coupled with a Processor and circuitry capable of driving this type of display. For complete modules ready to go, please refer to our Intelligent Display Module products.
IPS (In-Plane Switching) lcd is still a type of TFT LCD, IPS TFT is also called SFT LCD (supper fine tft ),different to regular tft in TN (Twisted Nematic) mode, theIPS LCD liquid crystal elements inside the tft lcd cell, they are arrayed in plane inside the lcd cell when power off, so the light can not transmit it via theIPS lcdwhen power off, When power on, the liquid crystal elements inside the IPS tft would switch in a small angle, then the light would go through the IPS lcd display, then the display on since light go through the IPS display, the switching angle is related to the input power, the switch angle is related to the input power value of IPS LCD, the more switch angle, the more light would transmit the IPS LCD, we call it negative display mode.
The regular tft lcd, it is a-si TN (Twisted Nematic) tft lcd, its liquid crystal elements are arrayed in vertical type, the light could transmit the regularTFT LCDwhen power off. When power on, the liquid crystal twist in some angle, then it block the light transmit the tft lcd, then make the display elements display on by this way, the liquid crystal twist angle is also related to the input power, the more twist angle, the more light would be blocked by the tft lcd, it is tft lcd working mode.
A TFT lcd display is vivid and colorful than a common monochrome lcd display. TFT refreshes more quickly response than a monochrome LCD display and shows motion more smoothly. TFT displays use more electricity in driving than monochrome LCD screens, so they not only cost more in the first place, but they are also more expensive to drive tft lcd screen.The two most common types of TFT LCDs are IPS and TN displays.
Used to describe a clocked parallel TFT connection that uses 18 data lines (6 for Red, 6 for Green, 6 for Blue) as well as Hsync, Vsync, data enable, and pixel clock to transfer data to the TFT. Theoretical color depth is 218 or 262,144 colors.
Used to describe a clocked parallel TFT connection that uses 24 data lines (8 for Red, 8 for Green, 8 for Blue) as well as Hsync, Vsync data enable, and pixel clock to transfer data to the TFT. Theoretical color depth is 224or 16,777,216 colors.
6800 is a parallel interface that uses Read/Write signal and an Enable signal to control the data bus. Communications with a display are only enabled when the enable signal is pulled high. The level of the Read/Write signal then determines whether data will be read from the display or written to the display. If the Read/Write signal is high, data will be read from the display whereas if the Read/Write signal is low, data will be written to the display. Sometimes the Write will be shown as a “notted” signal. For instance, there may be a bar over the name, a preceding exclamation mark, slash, or dash. While this looks like negation notation, in this context it simply means the signal is active low.
A liquid crystal display structure in which switching transistors or diodes are attached to each pixel to control the on/off voltage. It produces a brighter and sharper display with a broader viewing angle than a passive matrix display. Also known as AMLCD (active matrix liquid crystal display). See TFT (thin film transistor).
This is often described as a matte coating as it is non-reflective to the user since it diffuses rather than reflects ambient light. It provides a method for manufacturers to avoid glare on the viewing surface from other light sources and has been used in the LCD monitor market for many years since the first TFT displays started to emerge. The matte coating is included as an outer polarizing later which has been coarsened by mechanical or chemical processes. This achieves a surface coating which is not smooth and so can diffuse ambient light rather than reflect it.
An adhesive is applied between the display and touch panel using the inactive area around the perimeter of the module. This bonding method results in some inactive space ‘air gap’ between the touch panel substrate and the display. This is the most cost-effective and common solution.
AMOLED is Active Matrix OLED. An Active Matrix OLED uses a TFT (Thin Film Transistor) transistor-per-pixel architecture. Using a transistor-per-pixel allows higher resolution displays to be made and avoids the problems associated with high duty cycle passive displays.
An anti-reflection (AR) coating is a type of optical coating applied to the surface touch panel to reduce reflection. Many coatings consist of transparent thin film structures with alternating layers of contrasting refractive index. Layer thicknesses are chosen to produce destructive interference in the beams reflected from the interfaces, and constructive interference in the corresponding transmitted beams.This makes the structure’s performance change with wavelength and incident angle, so that color effects often appear at oblique angles. Good performance can often be achieved for a relatively wide range of frequencies: usually a choice of IR, visible, or UV is offered.
A backlight is used behind the LCD glass to allow the LCM to be read in dark conditions. The vast majority of backlights are now LED. Historically there were also EL (electroluminescent) and CCFL (Cold Cathode Fluorescent Light) backlights, but as LED efficiency has increased and cost has decreased, EL and CCFL backlights have all but disappeared.
A frame of plastic or metal, fitting over the LCD glass, to protect the edges of the glass and actas a pressure device, compressing the elastomer connector between the PCB and LCD glass.
Normally an LCD’s backlight is set to the brightness that will make a white pixel fully illuminated. CABC automatically dims the backlight to the lowest level required for the brightest pixel on the display.
Character LCDs include a fixed CGROM to define the bulk of the characters they display. However, since the CGROM cannot be changed the designers also included the CGRAM — a small number of characters (typically 8) that can be redefined at run-time. These eight characters are usually mapped to characters 0DEC (0x00HEX) to 7DEC (0x07HEX). The CGRAM definitions can be used to make small animations, bar graphs, and similar small graphic or sprite images. This term very likely has its beginning in the granddaddy of all LCD controllers, the venerable Hitachi HD44780.
The CGROM stores the font that is displayed on a character LCD. When you tell a character LCD to display the letter ‘A’, it needs to know which dots to turn on so that we see an ‘A’. This information is stored in the CGROM. By definition, (since it is a ROM) the font that is stored in the CGROM cannot be changed. Be sure to check the datasheet of the character LCD module to make sure that it can display the characters you need. Typically, a CGROM for a character display module has 240 characters defined. The lower half of the CGROM maps to the normal ASCII characters. Since the early character display controllers were designed in Japan, many CGROM have Japanese characters in the upper 128 positions. There are also some CGROMs that have European or Cyrillic characters in these upper locations.
The WS0010 is a more modern character OLED controller, and the designers have included several CGROMs that can be chosen at run-time, so there is not the need to lock in a particular character set at design time. Since the CGROM is completely determined at the time of manufacture of the LCD controller, the designers also included a CGRAM, which allows the bitmaps of a few characters to be redefined at run-time. This term very likely has its beginning in the granddaddy of all LCD controllers, the venerable Hitachi HD44780).
The Display Data RAM holds the letters that get shown on the LCD of a character LCD module. For instance, the letter ‘A’ is stored in its ASCII equivalent 65DEC (0x41HEX) in the DDRAM.
So a 20×2 character LCD would have enough DDRAM to store 40 letters. The value in the DDRAM is used to find the correct bitmap in the CGROM (Character Generator ROM) or CGRAM (Character Generator RAM), it is this small bitmap that gets displayed on the LCD. This term very likely has its beginning in the granddaddy of all LCD controllers, the venerable Hitachi HD44780.
Translucent material used for light diffusion placed between backlight lighting sources and the back side of an LCD. This material will create a more uniform backlight for an LCD from several unique sources of light.
Refers to a graphic controller from Bridgetek/FTDI. EVE graphic controllers are easy to use and can control the display, touch, backlight, and audio features of an embedded system, with each appearing to the host MCU as a memory-mapped SPI device. The host MCU sends commands and data using SPI protocol. EVE modules accept high level commands, simplify writing images and fonts (included angled fonts) on TFTs. Fonts, buttons, and tables can each be easily sent to a TFT using a one-line command.
A silicone rubber strip made up of sequentially spaced conductive and non-conductive material. A thin conductive material used to make connections between an LCD and a PC board.
A dead short is created when excess DC voltage is applied to an LCD. Conductive particles from one piece of glass are transferred through the liquid crystal fluid and deposited on the conductive surface of the opposite piece of glass.
The space left between the epoxy seals on one end of the LCD glass after assembly. This space,used to fill the glass with the liquid crystal fluid, is noted by a mound of epoxy.
An LCD construction technique where the cell geometry is optimized for maximum contrast and viewing angle. The geometry is different for each LCD fluid.
HDMI means it is able to send a lot of data, very quickly. However, HDMI isn’t an analog communication like VGA, S-Video or parallel like 24-bit or 18-bit RGB TFTs. HDMI is actually a high-speed serial interface using a fancy TMDS (Transition Minimized Differential Signaling) protocol.
Typically, both the master and slave are implemented in hardware. The I2C master can be implemented in software quite easily, but it can be rather difficult to meet the timing requirements of I2C in a software slave implementation. As micro controllers continue to get faster, writing an I2C software slave will become easier. The I2C standard is pretty well defined, so there is not a huge amount of variation in I2C as it is implemented on LCD, capacitive touch and OLED controllers.
An LCD is composed of two pieces of glass with a thin layer of liquid crystals between the glass layers. When a voltage is applied to the glass, the orientation of the crystals can be changed. This change in the crystal’s orientation (called polarization) will make either a dark or a light area, creating a character or image on the display.
A twisted nematic LCD design where the backlight is blocked when pixels are in the unselected state. Therefore, when no voltage is applied, the screen is black.
A twisted nematic LCD design where light is transmitted when pixels are in the unselected state. Therefore, when no voltage is applied, the screen is white.
Optical bonding improves the optical performance of the display. It eliminates the air gap between the cover glass and the LCD, and usually includes an anti-reflective (A/R) coating (as well as anti-smudge and anti-glare treatments on the cover glass). Optical bonding improves the contrast ratio by reducing the amount of reflected light, thus improving the viewability of the LCD screen. This is especially important in outdoor.
Besides the optical advantages, bonding a sheet of glass to the LCD also improves the durability of the display. It can resist scratches, condensation, and has an improved range of operating temperatures. As touchscreen devices become ubiquitous in consumer markets, this increased ruggedness becomes even more important. Also, by reducing the light loss due to reflection, the battery life of the device can be extended as the device does not need as much backlight to power the display.
On-Cell Touch (OCT) technology permits the Projected Capacitive (PCAP) touch sensor layer to be built into the LCD structure. With this integrated structure, the touch functionality is embedded within the display itself rather than a separate touch screen component on top of the display. The reduction in the number of layers also reduces parallax errors providing a superior touch interface. Fewer layers also means backlight intensity can be reduced while providing the same brightness level. The usual multitouch display has an 88% transparency while an OCT display is 93%. This helps reduce lighting power requirements and extends battery life.
For optical bonding optically clear adhesive is applied over the entire surface between the display assembly and touch panel. This bonding method removes all air and air bubbles from the viewing area providing a more rugged and optically attractive solution. Removal of ‘air gap’ between the module and touch panel eliminates surface-to-surface reflections which degrade contrast and ultimately viewing angles, especially significant in sunlight conditions.
Passive Matrix refers to the arrangement of the driving electrodes in the OLED display. In PMOLED displays, there is an array of horizontal conductors and an array of vertical conductors, with the OLED material between them. A pixel is formed where the vertical and horizontal conductors intersect.
A technique where the alignment layer (Polyimide) on the LCD substrate is rubbed in one or more directions. This process aligns the liquid crystal molecules parallel to the buffing direction.
An SMT component is usually smaller than its through-hole counterpart because it has either smaller leads or no leads at all. It may have short pins or leads of various styles, flat contacts, a matrix of solder balls (BGAs), or terminations on the body of the component.
SPI is a simple serial bus that is often used by LCD or OLED controllers. SPI as implemented for OLED and LCD controllers typically uses a “3-wire SPI” or “4-wire SPI” scheme. SPI was originally championed by Motorola (now Freescale). In its original “pure” form SPI uses four signals:
TFTs are also known as “Active Matrix TFT LCD modules” and have an array of these thin film transistors fabricated on the glass that makes the LCD. By using this active transistor-per-pixel architecture, the contrast of each pixel is good, allowing bright full-color, full motion images to be displayed.
VA is also called VTN, PMVA, GDV, etc. it is a type of LCD in which the liquid crystals naturally align vertically to the glass substrates. When no voltage is applied, the liquid crystals remain perpendicular to the substrate, creating a black display between crossed polarizers. When voltage is applied, the liquid crystals shift to a tilted position, allowing light to pass through and create a gray-scale display depending on the amount of tilt generated by the electric field. VA displays have a deeper-black background, a higher contrast ratio, a wider viewing angle, and better image quality at extreme temperatures over traditional twisted-nematic displays.
IPS (in-plane switching) is a screen technology for liquid-crystal displays (LCDs). In IPS, a layer of liquid crystals is sandwiched between two glass surfaces. The liquid crystal molecules are aligned parallel to those surfaces in predetermined directions (in-plane). The molecules are reoriented by an applied electric field, whilst remaining essentially parallel to the surfaces to produce an image. It was designed to solve the strong viewing angle dependence and low-quality color reproduction of the twisted nematic field effect (TN) matrix LCDs prevalent in the late 1980s.
The TN method was the only viable technology for active matrix TFT LCDs in the late 1980s and early 1990s. Early panels showed grayscale inversion from up to down,Vertical Alignment (VA)—that could resolve these weaknesses and were applied to large computer monitor panels.
Shortly thereafter, Hitachi of Japan filed patents to improve this technology. A leader in this field was Katsumi Kondo, who worked at the Hitachi Research Center.thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.Super IPS). NEC and Hitachi became early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and in-plane switching subsequently remain the dominant LCD designs through 2006.
In this case, both linear polarizing filters P and A have their axes of transmission in the same direction. To obtain the 90 degree twisted nematic structure of the LC layer between the two glass plates without an applied electric field (OFF state), the inner surfaces of the glass plates are treated to align the bordering LC molecules at a right angle. This molecular structure is practically the same as in TN LCDs. However, the arrangement of the electrodes e1 and e2 is different. Because they are in the same plane and on a single glass plate, they generate an electric field essentially parallel to this plate. The diagram is not to scale: the LC layer is only a few micrometers thick and so is very small compared with the distance between the electrodes.
In practice, other schemes of implementation exist with a different structure of the LC molecules – for example without any twist in the OFF state. As both electrodes are on the same substrate, they take more space than TN matrix electrodes. This also reduces contrast and brightness.
Unlike TN LCDs, IPS panels do not lighten or show tailing when touched. This is important for touch-screen devices, such as smartphones and tablet computers.
Toward the end of 2010 Samsung Electronics introduced Super PLS (Plane-to-Line Switching) with the intent of providing an alternative to the popular IPS technology which is primarily manufactured by LG Display. It is an "IPS-type" panel technology, and is very similar in performance features, specs and characteristics to LG Display"s offering. Samsung adopted PLS panels instead of AMOLED panels, because in the past AMOLED panels had difficulties in realizing full HD resolution on mobile devices. PLS technology was Samsung"s wide-viewing angle LCD technology, similar to LG Display"s IPS technology.
"TFT Technology: Enhancing the viewing angle". Riverdi (TFT Module Manufacturer). Archived from the original on 23 April 2016. Retrieved 5 November 2016. However, [twisted nematic] suffers from the phenomenon called gray scale inversion. This means that the display has one viewing side in which the image colors suddenly change after exceeding the specified viewing angle. (see image Inversion Effect) External link in |quote= (help)
tech2 News Staff (19 May 2011). "LG Announces Super High Resolution AH-IPS Displays". Firstpost.com. Archived from the original on 11 December 2015. Retrieved 10 December 2015.
Baker, Simon (30 April 2011). "Panel Technologies: TN Film, MVA, PVA and IPS Explained". Tftcentral.co.uk. Archived from the original on 29 June 2017. Retrieved 13 January 2012.
As the key component behind liquid crystal displays (LCD), these materials change light polarization to create vibrant, high-resolution images on digital screens. The growth of LCD technology has helped propel the larger display panel market enormously, with industry valuation projected to reach $178.20 billion by 2026.
A prolific variety of LCD types has been developed to best meet their exact use-cases and end-environments. Displays may be optimized for power consumption, contrast ratio, color reproduction, optimal viewing angle, temperature range, cost, and more.
Passive Matrix LCDs are addressed with common and segment electrodes. A pixel or an icon is formed at the intersection where a common and a segment electrode overlap. Common electrodes are addressed one-at-a-time in a sequence. Segment electrodes are addressed simultaneously with the information corresponding to all pixels or icons connected to the current common electrode. This method is referred to as multiplexing.
Passive Matrix LCDs offer a cost advantage (both parts and tooling) and are highly customizable. The counterpart to Passive Matrix displays are Active Matrix displays.
Active-Matrix LCDs were developed to overcome some of the limitations of Passive Matrix LCDs – namely resolution, color, and size. Within an Active-Matrix LCD, an “active element” is added to each pixel location (the intersection between a horizontal row and vertical column electrode). These active elements, which can be diodes or transistors, create a threshold and allow control of the optical response of the liquid crystal structure to the applied voltage. Transistors are used as switches to charge a capacitor, which then provides the voltage to the pixel. Whenever a row is turned on, one at a time, all transistor switches in that row are closed and all pixel capacitors are charged with the appropriate voltage. The capacitor then keeps the voltage applied to the pixel after the row is switched off until the next refresh cycle.
Furthermore, the processes used for manufacturing Active-Matrix LCDs can create much finer details on the electrode structure. This allows splitting each pixel in three sub-pixels with different color. This together with the better voltage control allows full color displays.
The transistor switches used in Active Matrix Displays must not protrude significantly above the surface of the display substrates lest they might interfere with a uniform liquid crystal layer thickness. They must be implemented in thin films of suitable materials. Hence, the name Thin Film Transistors (TFT). While AM and TFT have a different meaning, they are often used interchangeably to indicate a higher performance display.
TFTs can be formed by amorphous silicon (denoted α-Si TFT), by poly-crystalline silicon (LTPS for Low Temperature Poly Silicon), or by semiconducting metal oxides (Ox-TFT or IGZO-TFT for Indium Gallium Zinc Oxide).
Currently the most common Electronics Display Technology on the market is LCD technology and among LCD technologies, TFT display technology is the most widely used across consumer applications (laptops, tablets, TVs, Mobile phones, etc.) as well as many industrial, automotive, and medical applications.
As the first commercially successful LCD technology, Passive Matrix Twisted Nematic (TN) LCDs use a 90° twist of the nematic LC fluid between two polarizers to display information. The twist of the LC fluid either blocks light from passing through the LCD cell or allows light to pass, depending on the applied voltage. The applied voltage changes the twisted nematic orientation into an orientation that does not change the polarization of tight. This is called the TN effect.
Initially, Passive TN LCDs were used in segmented, icon, or character displays where an image element was turned “on” and “off” depending on how the fluid was driven. Improvements were made along the way to address the limited viewing angle of TN technology, which can suffer from contrast loss or even inversion at shallow angles.
The numbers of rows or icons that can be addressed in a TN display without Active Matrix addressing is very limited. This is related to how strongly the liquid crystal responds to the applied voltage. Twisting the LC nematic fluid more than 180 degrees (typically between 210 and 270 degrees) causes the display to require a much smaller voltage difference between on and off pixels. This in turn allows addressing of many more rows without an active matrix. Displays with a twist between 210 and 270 degrees are called Super Twisted Nematic displays.
The birefringence of an STN display can be approximated with a stretched transparent plastic film. Adding such a film to an STN display instead of the 2nd STN display is a lot more attractive and has almost the same performance. This is referred to as a Film Compensated STN display (FSTN, or sometimes if two films are used as FFSTN).
The advantage of these technologies is a much wider and more symmetrical viewing angle along with the elimination of the contrast inversion (or color shift) seen in TN TFT LCDs when viewed from various angles. IPS and FFS displays also are less sensitive to pressure, which is a big advantage in touchscreen displays.
Throughout the development of these technologies, there were the initial type, super, advanced, pro, etc. versions, which led to a lot of acronyms like (S-IPS, AS-IPS, H-IPS, FFS-Pro)
Legacy LCDs normally have the driver ICs (integrated circuit) mounted on a printed circuit board (PCBA) which consists of a flat sheet of insulating material used to mount and connect the driver IC and electronic periphery to the LCD. PCBs can be a single-sided, double-sided or multi-layer.