sainsmart tft lcd code quotation

SainSmart 3.2" TFT LCD Display is a LCD touch screen module. It has 40pins interface and SD card and Flash reader design. It is a powerful and mutilfunctional module for your project.The Screen include a controller SSD1289, it"s a support 8/16bit data interface , easy to drive by many MCU like STM32 ,AVR and 8051. It is designed with a touch controller in it . The touch IC is ADS7843 , and touch interface is included in the 40 pins breakout. It is the version of product only with touch screen and touch controller.

sainsmart tft lcd code quotation

LCD-specified initialization code is provided, so that you can save time to optimize power control register and gamma curves for best display performance. We have test the provided code, it gives the best display performanace

sainsmart tft lcd code quotation

This is Sainsmart 5 inch TFT LCD module with the TFT LCD shield kit for arduino enthusiasts.It includes one piece of 5 inch TFT LCD display and a TFT LCD shield for Arduino MEGA2560 (R3).We will provided you the whole document including the example project of arduino due with the kit. We will supply you the technical support after your purchase.

LCD-specified initialization code is provided, so that you can save time to optimize power control register and gamma curves for best display performance. We have test the provided code, it gives the best display performanace

It is 100% compatible with the normal MCU like ARM AVR PIC and 8051,especially on arduino family such as arduino due and arduino mega2560(R3).The module uses the LCD controller Chip SSD1963 with 5 inch LCD including the touchscreen.

sainsmart tft lcd code quotation

Reason: The hooks on the backight of ER-TFT032-3.1 is always complained by most customers for inconvenient assembly. So we cancel the hooks in the new version of ER-TFT032-3.2.That"s the only difference for these two versions.

ER-TFT032-3.2 is 240x320 dots 3.2" color tft lcd module display with ILI9341 controller and optional 4-wire resistive touch panel and 3.2 inch capactive touch panel with controller FT6236,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.It supports 8080 8/16-bit parallel,3/4-wire serial interface. FPC with zif connector is easily to assemble or remove.Lanscape mode is also available.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 3.2"TFT Touch Shield with Libraries, Examples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.

sainsmart tft lcd code quotation

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.

As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.

Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.

As the code is a bit longer and for better understanding I will post the source code of the program in sections with description for each section. And at the end of this article I will post the complete source code.

I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.

After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.

So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels  down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.

Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.

In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work  you can check my particular tutorial. Here you can download that file:

sainsmart tft lcd code quotation

SainSmart 3.2" TFT LCD Display is a LCD touch screen module. It has 40pins interface and SD card and Flash reader design. It is a powerful and mutilfunctional module for your project.The Screen include a controller SSD1289, it"s a support 8/16bit data interface , easy to drive by many MCU like STM32 ,AVR and 8051. It is designed with a touch controller in it . The touch IC is ADS7843 , and touch interface is included in the 40 pins breakout. It is the version of product only with touch screen and touch controller.

3.2"" TFT LCD module with 40 IO, it is more than a LCD module and colleagues also includes an SD card slot, whether with touch function. (Here we are with touch screen function module)

sainsmart tft lcd code quotation

That wiring graphic for ILI9341 is very well defined for sure, if the SD circuit on the sainsmart display is usable and you want to use it then mentioning that it needs a unique CS signal from Teensy may be helpful - Edit: I mean that the rest of the (apparently) separate lines of the two sets SPI pins should be safe to tie; I have not looked at the DS nor schematic for the display so there may be something which makes this a bad idea but not likely imho.

sainsmart tft lcd code quotation

It is 100% compatible with the normal MCU like ARM AVR PIC and 8051,especially on Arduino family such as Arduino Due and Arduino MEGA2560(R3).The module uses the LCD controller Chip SSD1963 with 7 inch LCD including the touchscreen.

LCD-specificed intialization code is provided, so that you can save time to optimize power control register and gamma curves for best display performance. We have test the provided code, it gives the best display performanace

This shiled is just for 7 inch TFT LCD.If you need the LCD Extend shield for 3.2"" or 5"", you may foudn a similar shield which is also provided from our store.

sainsmart tft lcd code quotation

So here"s the deal on this screen: It"s a 7" (or 5 depending who you ask) HDMI LCD screen with GPIO pins for touch capability. I purchased it from "sainsmart" who sold it to me as a 7" HDMI LCD screen (800x480)

Searching the driver package on the pre-built image (5_HDMI_LCD.tar.gz) leads me to waveshare"s 5" screen.....I have tried their drivers, and they work exactly the same as the ones provided by sainsmart. I"m assuming one of those manufactures is copying the other. In any case!

sainsmart tft lcd code quotation

Adafruit_ST7735 is the library we need to pair with the graphics library for hardware specific functions of the ST7735 TFT Display/SD-Card controller.

Basically, besides the obvious backlight, we tell the controller first what we are talking to with the CS pins. CS(TFT) selects data to be for the Display, and CS(SD) to set data for the SD-Card. Data is written to the selected device through SDA (display) or MOSI (SD-Card). Data is read from the SD-Card through MISO.

So when using both display and SD-Card, and utilizing the Adafruit libraries with a SainSmart display, you will need to connect SDA to MOSI, and SCL to SCLK.

Note: Adafruit displays can have different colored tabs on the transparent label on your display. You might need to adapt your code if your display shows a little odd shift. I noticed that my SainSmart display (gree tab) behaves best with the code for the black tab – try them out to see which one works best for yours.

Below the code parts for a LOW SPEED display (pay attention to the highlighted lines) – keep in mind that the names of the pins in the code are based on the Adafruit display:

#define sclk 4 // SainSmart: SCL#define mosi 5 // SainSmart: SDA#define cs 6 // SainSmart: CS#define dc 7 // SainSmart: RS/DC#define rst 8 // SainSmart: RES

#define sclk 13 // SainSmart: SCL#define mosi 11 // SainSmart: SDA#define cs 10 // SainSmart: CS#define dc 9 // SainSmart: RS/DC#define rst 8 // SainSmart: RES

You can name your BMP file “parrot.bmp” or modify the Sketch to have the proper filename (in “spitftbitmap” line 70, and in “soft_spitftbitmap” line 74).

#define SD_CS 4 // Chip select line for SD card#define TFT_CS 10 // Chip select line for TFT display#define TFT_DC 9 // Data/command line for TFT#define TFT_RST 8 // Reset line for TFT (or connect to +5V)

#define SD_CS 4 // Chip select line for SD card#define TFT_CS 10 // Chip select line for TFT display#define TFT_DC 9 // Data/command line for TFT#define TFT_RST 8 // Reset line for TFT (or connect to +5V)

Based on these functions, I did create a little demo to show what these functions do. Either download the file or just copy the code and paste it into an empty Arduino Sketch.

tft.print("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, fringilla sed malesuada et, malesuada sit amet turpis. Sed porttitor neque ut ante pretium vitae malesuada nunc bibendum. Nullam aliquet ultrices massa eu hendrerit. Ut sed nisi lorem. In vestibulum purus a tortor imperdiet posuere. ");

sainsmart tft lcd code quotation

TFT refreshes more quickly response than a monochrome LCD display and shows motion more smoothly. TFT displays use more electricity in driving than monochrome LCD screens, so they not only cost more in the first place, but they are also more expensive to drive tft lcd screen.

The Arduino TFT screen is a backlit TFT LCD screen with a micro SD card slot in the back. You can draw text, images, and shapes to the screen with the TFT library. The screen"s pin layout is designed to easily fit into the socket of an Arduino Esplora and Arduino Robot, but it can be used with any Arduino board.14-Sept-2022

Performance wise LEDs are far better than TFT and LCD displays. LEDs provide high contrast than LCDs/TFTs. In a LED display, you will see perfect black and perfect white which is not able to see in TFT or LCD. LED has a better viewing angle.17-Dec-2020

TFT displays also have a much longer lifespan than AMOLED displays and are available in a far greater range of standard sizes, which can be cut down to fit a space restricted enclosure for a relatively low cost adder.

If you"ve ever used a smartphone, tablet or touch screen computer, you"ve likely used a Thin Film Transistor touch screen. A TFT touch screen is a combination device that includes a TFT LCD display and a touch technology overlay on the screen.

SPI TFT Touch screen and Quad SPI TFT (Serial Peripheral Interface) is a synchronous serial data transfer protocol named by Motorola, . Here two or more serial devices are connected to each other in full-duplex mode. The devices connected to each other are either Master or Slave.

To run your display easily, you should use Arduino LCDs libraries and add them to your code. Otherwise running the display may be very difficult. There are many free libraries you can find on the internet but the important point about the libraries is their compatibility with the LCD"s driver.12-Oct-2018

sainsmart tft lcd code quotation

I divided the program into several subrutines to make it easier to understand. The code is well documented, but, if you have trouble understanding it, leave a comment and I"ll try to explain it.