micropython tft display libraries supplier

From a quick look at those links it seems that the displays have their own CPU. You develop the GUI using the manufacturer"s tools then connect the display to your system. That system could be a MicroPython host. As far as I know nobody has done this, but it certainly should work.

There are open source touch GUI solutions for MicroPython, but these are based on cheap dumb displays. The host runs the application which communicates with the GUI code via callbacks.

micropython tft display libraries supplier

TFT_display_init() Perform display initialization sequence. Sets orientation to landscape; clears the screen. SPI interface must already be setup, tft_disp_type, _width, _height variables must be set.

compile_font_file Function which compiles font c source file to binary font file which can be used in TFT_setFont() function to select external font. Created file has the same name as source file and extension .fnt

micropython tft display libraries supplier

Cross-platform Has no external dependencies and can be compiled for any vendor"s any MCU or MPU, and (RT)OS to drive ePaper, OLED or TFT displays, or even monitors.

The NuMaker-HMI-MA35D1-S1 is an evaluation board for Nuvoton NuMicro MA35D1 series microprocessors, and consists of three parts: a NuMaker-SOM-MA35D16A81 SOM board, a NuMaker-BASE-MA35D1B1 base board and a 7” TFT-LCD daughter...

micropython tft display libraries supplier

We have used Liquid Crystal Displays in the DroneBot Workshop many times before, but the one we are working with today has a bit of a twist – it’s a circle!  Perfect for creating electronic gauges and special effects.

LCD, or Liquid Crystal Displays, are great choices for many applications. They aren’t that power-hungry, they are available in monochrome or full-color models, and they are available in all shapes and sizes.

Today we will see how to use this display with both an Arduino and an ESP32. We will also use a pair of them to make some rather spooky animated eyeballs!

There are also some additional connections to the display. One of them, DC, sets the display into either Data or Command mode. Another, BL, is a control for the display’s backlight.

The above illustration shows the connections to the display.  The Waveshare display can be used with either 3.3 or 5-volt logic, the power supply voltage should match the logic level (although you CAN use a 5-volt supply with 3.3-volt logic).

Another difference is simply with the labeling on the display. There are two pins, one labeled SDA and the other labeled SCL. At a glance, you would assume that this is an I2C device, but it isn’t, it’s SPI just like the Waveshare device.

This display can be used for the experiments we will be doing with the ESP32, as that is a 3.3-volt logic microcontroller. You would need to use a voltage level converter if you wanted to use one of these with an Arduino Uno.

The Waveshare device comes with a cable for use with the display. Unfortunately, it only has female ends, which would be excellent for a Raspberry Pi (which is also supported) but not too handy for an Arduino Uno. I used short breadboard jumper wires to convert the ends into male ones suitable for the Arduino.

Once you have everything hooked up, you can start coding for the display. There are a few ways to do this, one of them is to grab the sample code thatWaveshare provides on their Wiki.

The Waveshare Wiki does provide some information about the display and a bit of sample code for a few common controllers. It’s a reasonable support page, unfortunately, it is the only support that Waveshare provides(I would have liked to see more examples and a tutorial, but I guess I’m spoiled by Adafruit and Sparkfun LOL).

Open the Arduino folder. Inside you’ll find quite a few folders, one for each display size that Waveshare supports. As I’m using the 1.28-inch model, I selected theLCD_1inch28folder.

You can see from the code that after loading some libraries we initialize the display, set its backlight level (you can use PWM on the BL pin to set the level), and paint a new image. We then proceed to draw lines and strings onto the display.

After uploading the code, you will see the display show a fake “clock”. It’s a static display, but it does illustrate how you can use this with the Waveshare code.

This library is an extension of the Adafruit GFX library, which itself is one of the most popular display libraries around. Because of this, there isextensive documentation for this libraryavailable from Adafruit.  This makes the library an excellent choice for those who want to write their own applications.

As with the Waveshare sample, this file just prints shapes and text to the display. It is quite an easy sketch to understand, especially with the Adafruit documentation.

The sketch finishes by printing some bizarre text on the display. The text is an excerpt from The Hitchhiker’s Guide to the Galaxy by Douglas Adams, and it’s a sample of Vogon poetry, which is considered to be the third-worst in the Galaxy!

Here is the hookup for the ESP32 and the GC9A01 display.  As with most ESP32 hookup diagrams, it is important to use the correct GPIO numbers instead of physical pins. The diagram shows the WROVER, so if you are using a different module you’ll need to consult its documentation to ensure that you hook it up properly.

The TFT_eSPI library is ideal for this, and several other, displays. You can install it through your Arduino IDE Library Manager, just search for “TFT_eSPI”.

There is a lot of demo code included with the library. Some of it is intended for other display sizes, but there are a few that you can use with your circular display.

To test out the display, you can use theColour_Test sketch, found inside the Test and Diagnostic menu item inside the library samples.  While this sketch was not made for this display, it is a good way to confirm that you have everything hooked up and configured properly.

A great demo code sample is theAnimated_dialsketch, which is found inside theSpritesmenu item.  This demonstration code will produce a “dial” indicator on the display, along with some simulated “data” (really just a random number generator).

One of my favorite sketches is the Animated Eyes sketch, which displays a pair of very convincing eyeballs that move. Although it will work on a single display, it is more effective if you use two.

The first thing we need to do is to hook up a second display. To do this, you connect every wire in parallel with the first display, except for the CS (chip select) line.

The Animated Eyes sketch can be found within the sample files for the TFT_eSPI library, under the “generic” folder.  Assuming that you have wired up the second GC9A01 display, you’ll want to use theAnimated_Eyes_2sketch.

The GC9A01 LCD module is a 1.28-inch round display that is useful for instrumentation and other similar projects. Today we will learn how to use this display with an Arduino Uno and an ESP32.

micropython tft display libraries supplier

Useful Arduino utilities which are too small as separate libraries, but complex enough to be shared among multiple projects, and often have external dependencies to other libraries.

Fast and compact software I2C implementations (SimpleWireInterface, SimpleWireFastInterface) on Arduino platforms. Also provides adapter classes to allow the use of third party I2C libraries using the same API.

Simple Async HTTP Request library, supporting GET, POST, PUT, PATCH, DELETE and HEAD, on top of AsyncTCP libraries, such as AsyncTCP, ESPAsyncTCP, AsyncTCP_STM32, etc.. for ESP32 (including ESP32_S2, ESP32_S3 and ESP32_C3), WT32_ETH01 (ESP32 + LAN8720), ESP32 with LwIP ENC28J60, ESP8266 (WiFi, W5x00 or ENC28J60) and currently STM32 with LAN8720 or built-in LAN8742A Ethernet.

Enable inclusion of both ESP32 Blynk BT/BLE and WiFi libraries. Then select one at reboot or run both. Eliminate hardcoding your Wifi and Blynk credentials and configuration data saved in either LittleFS, SPIFFS or EEPROM.

Simple WiFiManager for Blynk and ESP32 with or without SSL, configuration data saved in either SPIFFS or EEPROM. Enable inclusion of both ESP32 Blynk BT/BLE and WiFi libraries. Then select one at reboot or run both. Eliminate hardcoding your Wifi and Blynk credentials and configuration data saved in either LittleFS, SPIFFS or EEPROM. Using AsyncWebServer instead of WebServer, with WiFi networks scanning for selection in Configuration Portal.

Simple WebServer library for AVR, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, SIPEED_MAIX_DUINO and RP2040-based (RASPBERRY_PI_PICO) boards using ESP8266/ESP32 AT-command shields with functions similar to those of ESP8266/ESP32 WebServer libraries

LiquidCrystal fork for displays based on HD44780. Uses the IOAbstraction library to work with i2c, PCF8574, MCP23017, Shift registers, Arduino pins and ports interchangably.

The most powerful and popular available library for using 7/14/16 segment display, supporting daisy chaining so you can control mass amounts from your Arduino!

Menu library for Arduino with IoT capabilities that supports many input and display devices with a designer UI, code generator, CLI, and strong remote control capability.

Adds tcUnicode UTF-8 support to Adafruit_GFX, U8G2, tcMenu, and TFT_eSPI graphics libraries with a graphical font creation utility available. Works with existing libraries

This library enables you to use Hardware-based PWM channels on Teensy boards, such as Teensy 2.x, Teensy LC, Teensy 3.x, Teensy 4.x, Teensy MicroMod, etc., to create and output PWM to pins. Using the same functions as other FastPWM libraries to enable you to port PWM code easily between platforms.

A simple library to display numbers, text and animation on 4 and 6 digit 7-segment TM1637 based display modules. Offers non-blocking animations and scrolling!

Monochrome LCD, OLED and eInk Library. Display controller: SSD1305, SSD1306, SSD1309, SSD1312, SSD1316, SSD1318, SSD1320, SSD1322, SSD1325, SSD1327, SSD1329, SSD1606, SSD1607, SH1106, SH1107, SH1108, SH1122, T6963, RA8835, LC7981, PCD8544, PCF8812, HX1230, UC1601, UC1604, UC1608, UC1610, UC1611, UC1617, UC1638, UC1701, ST7511, ST7528, ST7565, ST7567, ST7571, ST7586, ST7588, ST75160, ST75256, ST75320, NT7534, ST7920, IST3020, IST3088, IST7920, LD7032, KS0108, KS0713, HD44102, T7932, SED1520, SBN1661, IL3820, MAX7219, GP1287, GP1247, GU800. Interfaces: I2C, SPI, Parallel.

True color TFT and OLED library, Up to 18 Bit color depth. Supported display controller: ST7735, ILI9163, ILI9325, ILI9341, ILI9486,LD50T6160, PCF8833, SEPS225, SSD1331, SSD1351, HX8352C.

Simple WiFiWebServer, HTTP Client and WebSocket Client library for AVR Mega, megaAVR, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based (Nano-RP2040-Connect, RASPBERRY_PI_PICO, RASPBERRY_PI_PICO_W, ESP32/ESP8266, etc.) boards using WiFi, such as WiFiNINA, WiFi101, CYW43439, U-Blox W101, W102, ESP8266/ESP32-AT modules/shields, with functions similar to those of ESP8266/ESP32 WebServer libraries.

micropython tft display libraries supplier

I have a problem using this library. The only thing my display does so far is lighting up in a nice white. I am pretty new to python and GPIO so i can"t really complete the given data from the documentation to fullfill my needs.

What i need is a straight forward information on which pin on the display to connect to which pin on the raspberry pi 3b. What also would be great is information on which pins i can change in the code and which pins can be used for more than once in one project (like I2C or similar).

My hardware consists of a raspberry pi 3B and a red display (I dubble checked. It is the red "brother" to the black one shown in the first entry to this blog).

micropython tft display libraries supplier

MicroPython is a lean and efficient implementation of the Python 3 programming language that includes a small subset of the Python standard library and is optimised to run on microcontrollers and in constrained environments.

Other places you can look for MicroPython Libraries: PyPi - This filter shows just the MicroPython libraries on PyPi. Note: You cannot pip install MicroPython libraries. See the MicroPython docs for more information on managing packages with MicroPython.

ucrypto - MicroPython package for doing fast RSA and elliptic curve cryptography, specifically digital signatures. ECDSA API design inspired from fastecdsa and implementation based on tomsfastmath.

MicroDNSSrv - A micro DNS server for MicroPython to simply respond to A queries on multi-domains with or without wildcards (used on Pycom modules & ESP32).

sensor-mqtt-homeassistant - An ESP8266/ESP32 MicroPython-based sensor platform for GPIO, DHT, analog, LED and more. Includes remote updates for .py code from web server and MQTT/Home Assistant integration.

Web MicroWebSrv - A micro HTTP web server that supports WebSockets, HTML/Python language templating and routing handlers, for MicroPython (used on Pycom modules & ESP32).

MicroWebSrv2 - The last micro web server for IoTs (MicroPython) or large servers (CPython), that supports WebSocket, routes, template engine and with really optimized architecture (mem allocations, async I/Os).

micropython-nano-gui - A tiny display-only GUI with a limited set of GUI objects (widgets) for displays whose display driver is subclassed from the framebuf class. With drivers for TFT, ePaper and OLED displays.

micro-gui - Derived from nano-gui and supporting the same displays and hosts, this provides for user input via push buttons or a navigation joystick and an optional rotary encoder.

micropython-rgbled - This wrapper module aims to reduce the work needed to work with NeoPixel (WS2812) and DotStar (APA102) RGB LED strips and matrixes.

MicroPython-SN74HCS264 - MicroPython Driver for SN74HCS264 8-Bit Parallel-Out Serial Shift Registers With Schmitt-Trigger Inputs and Inverted Outputs.

ADXL345_spi_micropython - Library for interacting through the SPI protocol with an "Analog Devices ADXL345" accelerometer from an MCU flashed with MicroPython.

Threading MicroWorkers - A micro workers class that easily manages a pool of threads to optimise simultaneous jobs and jobs endings, for MicroPython (used on Pycom modules & ESP32).

Code Generation micropy-cli - Micropy CLI is a project management/generation tool for writing MicroPython code in modern IDEs such as Visual Studio Code.

micropython-package-template - GitHub workflow supported MicroPython package template with deploys to the Python Package Index on a push to the main branch and test deploys to the Test Python Package Index on PRs.

IDEs BIPES - Web-based IDE for MicroPython with file manager, editor, code generation from blocks, IoT dashboard and Serial/USB/Bluetooth/WebREPL console on the web browser. Source: https://github.com/BIPES.

micropython tft display libraries supplier

Now it"s time to run it! Save the file, and press F5 (or click on the Tools->downloadAndRun). You should now see something on your display. If it is something strange, you have to press the reset button on the side of the board. Your display should now look like on the picture.

micropython tft display libraries supplier

In this tutorial Tony Goodhew explains how to use the basic graphics procedures which are included in the display driver, and for the ambitious makers out there he also provides examples for advanced shapes and graphics!

All the other graphical and text objects we would like to display can be built from this single pixel instruction; such as lines, circles, rectangles, triangles and text strings at different sizes.

This is all carried out with code. Display manufacturers usually supply some of these procedures/methods but leave the rest up to the end user to construct.

At the top of our driver program we will always import a minimal set of libraries using this block at the top of our MicroPython script (we add even more later when we want to do advanced programs):

The third line here imports the Framebuffer library which includes several very useful routines to draw objects on the display. The garbage collection library, gc, has also been imported so that we can check how much memory is available.

Each program contains the screen driver code, sets up the buttons/joystick (if applicable), sets the width and height variables, loads the essential libraries, defines the colour (R, G, B) and clear (c) procedures, then displays some colour checking text like this:

Draw a dark grey rectangle in the centre of the screen. Draw 500 white pixels inside the square, none touching the edge. (Random was explained in the previous display tutorial.)

This is routine is very complicated. It splits the original triangle into two with a horizontal line and then fills them in. If you uncomment all the # lcd.show() lines and sleep instructions it will slow right down and you can see it working (unfortunately, the 2” display needs such a large buffer that there is not enough memory for the filled triangles code):

In the centre of the screen display a ‘bull’s eye’ circular target with a ‘gold’ centre, 4 other colours and scores 10, 8, 6, 4 and 2 written in the appropriate positions.

You may have noticed that on some screens the text is very small and difficult to read. In a following tutorial will add an extra font, with more characters, which we can display in different sizes.

This article was written by Tony Goodhew. Tony is a retired teacher of computing who starting writing code back in 1968 when it was called programming - he started with FORTRAN IV on an IBM 1130! An active Raspberry Pi community member, his main interests now are coding in MicroPython, travelling and photography.