sainsmart 1.8 tft lcd raspberry pi free sample

The 1.8" TFT LCD SPI-bus display modules available from Adafruit and SainSmart are functionally equivalent, except that the SainSmart unit can be driven at a much faster SPI bus rate than the Adafruit (32 MHz vs. 4 MHz in my testing). Fabien Royer has shown that this is due to a slow level shifter in the Adafruit unit.
The original st7735fb kernel driver was by Matt Porter, and was enhanced by Lady Ada, Neil Greatorex, and myself. I started with Neil"s proposed version of Matt"s st7735fb driver, which I extracted from Lady Ada"s raspberrypi kernel repo. I applied Neil"s version to the current raspberrypi 3.2.27+ kernel, then I made multiple enhancements to the st7735fb driver (and fixed a glitch in the bcm2708 SPI driver). I"ve since collaborated with Neil to develop further enhancements, and ported the driver to the upcoming 3.6.y Raspberry Pi kernel.
* My version of the st7735fb_map driver allows either CE0 (SPI 0.0) or CE1 (SPI 0.1) to be configured. ** My version allows the configuration of any GPIO pin for D/C and RESET. *** Since I"m not using the MicroSD card device on the back of the display modules, the remaining pins are left unconnected.
Clone my raspberrypi-linux repo, then select either the 3.2.27-based branch or the 3.6.y-based branch (run "uname -a" on your Pi if you"re not sure which you need):
The board supports multiple different 1.8" panel pinouts including Adafruit and SainSmart, and sports mounting pads for three GPIO buttons. Very nice!

Adafruit_ST7735 is the library we need to pair with the graphics library for hardware specific functions of the ST7735 TFT Display/SD-Card controller.
Basically, besides the obvious backlight, we tell the controller first what we are talking to with the CS pins. CS(TFT) selects data to be for the Display, and CS(SD) to set data for the SD-Card. Data is written to the selected device through SDA (display) or MOSI (SD-Card). Data is read from the SD-Card through MISO.
So when using both display and SD-Card, and utilizing the Adafruit libraries with a SainSmart display, you will need to connect SDA to MOSI, and SCL to SCLK.
As mentioned before, the display has a SLOW and a FAST mode, each serving it’s own purpose. Do some experiments with both speeds to determine which one works for your application. Of course, the need of particular Arduino pins plays a role in this decision as well …
Note: Adafruit displays can have different colored tabs on the transparent label on your display. You might need to adapt your code if your display shows a little odd shift. I noticed that my SainSmart display (gree tab) behaves best with the code for the black tab – try them out to see which one works best for yours.
Low Speed display is about 1/5 of the speed of High Speed display, which makes it only suitable for particular purposes, but at least the SPI pins of the Arduino are available.
Below the code parts for a LOW SPEED display (pay attention to the highlighted lines) – keep in mind that the names of the pins in the code are based on the Adafruit display:
#define sclk 4 // SainSmart: SCL#define mosi 5 // SainSmart: SDA#define cs 6 // SainSmart: CS#define dc 7 // SainSmart: RS/DC#define rst 8 // SainSmart: RES
#define sclk 13 // SainSmart: SCL#define mosi 11 // SainSmart: SDA#define cs 10 // SainSmart: CS#define dc 9 // SainSmart: RS/DC#define rst 8 // SainSmart: RES
You can name your BMP file “parrot.bmp” or modify the Sketch to have the proper filename (in “spitftbitmap” line 70, and in “soft_spitftbitmap” line 74).
#define SD_CS 4 // Chip select line for SD card#define TFT_CS 10 // Chip select line for TFT display#define TFT_DC 9 // Data/command line for TFT#define TFT_RST 8 // Reset line for TFT (or connect to +5V)
#define SD_CS 4 // Chip select line for SD card#define TFT_CS 10 // Chip select line for TFT display#define TFT_DC 9 // Data/command line for TFT#define TFT_RST 8 // Reset line for TFT (or connect to +5V)
However, if your application needs your screen sideways, then you’d want to rotate the screen 90 degrees, effectively changing the display from a 128×160 pixel (WxH) screen to a 160×128 pixel display. Valid values are: 0 (0 degrees), 1 (90 degrees), 2 (180 degrees) and 3 (270 degrees).
tft.print("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, fringilla sed malesuada et, malesuada sit amet turpis. Sed porttitor neque ut ante pretium vitae malesuada nunc bibendum. Nullam aliquet ultrices massa eu hendrerit. Ut sed nisi lorem. In vestibulum purus a tortor imperdiet posuere. ");

In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.
The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.
This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.
The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.
The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:
In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.

The unit is a Waveshare 3.2inch, and here is some discussion on the drivers being built into the kernel issue https://github.com/notro/rpi-firmware/issues/6
So, is anyone able to recommend similar sized TFT that I will be able to use without proprietary kernels, so I can get cracking with my first project?
I did this and it worked, but when i restarted the pi it went back to the screen not working.......is there a way to save these setting so I don"t have to type all this when ever I switch on the pi?
I did this and it worked, but when i restarted the pi it went back to the screen not working.......is there a way to save these setting so I don"t have to type all this when ever I switch on the pi?
But, to get anything on the TFT, I have F4 out of Emulation Station into Shell, and type FRAMEBUFFER=/dev/fb1 startx to bring up anything, and that only bring up Raspbian? desktop not the GUI for Emulation Station.
I"m trying to get a SainSmart St7735 working with my Pi. I"m following the steps but I don"t have a /dev/fb1 directory. Just /dev/fb0. Should I have both if its installed properly?
First, I"d suggest that you get a network connection working, and then make sure that you can ssh to the pi, so that you have command line access from another computer. Then install:
The board comes with a CD that has a 4GB image that can be copied to an SD Card and the pi can run off of it. It shows a desktop, and *does* have a working touchscreen interface. Unfortunately, it seems buggy, and incompletely implemented. The method of making it work as described above seems to have a lot more future to it.
Can anybody suggest where I"m going wrong?? My Linux troubleshooting chops are not very good. I"m trying to figure out whats not installed. The firmware update installs. I"m using sudo modprobe fbtft_device name=flexfb because I have a SainSmart 1.8 ST7735. The command executes so I know the fbtft module is loaded. However, I don"t have a /dev/fb1. I"m not sure if thats a hardware or software issue. Does anyone have any troubleshooting tips?
First, I"d suggest that you get a network connection working, and then make sure that you can ssh to the pi, so that you have command line access from another computer. Then install:
The image I"m using on the SD card is RetroPie by default boots into a program called "Emulation Station", so you can boot right into paying video games with nothing but a USB controller plugged in, bypassing the desktop environment.
Its quite strange, when my Pi is connected to an external monitor via HDMI and power up its show "emulation station" (witch is good, as I want to to boot into this, Just on the TFT), BUT..... the TFT is black.
So guess my questions are, why is the HDMI showing what I want the TFT to show, and why do I see a totally different environment when also connected via VNC?
I"ve got the exact same screen as you on its way to me, and I"m intending to use it with retropie as well. Just curious if rpi-fbcp fixed your issues?
The issue I have is, this means the emulator runs via framebuffer /dev/fd0 (the HDMI port) as primary and fbcp = FrameBufferCopy is duplicating the buffer from the HDMI to /dev/fb1 (the LCD GPIO port). At first glace, my screen seems slow.

The TFT isn"t "plug & play" with the Raspberry, a patch has to be applied to the kernel to be able to interface via SPI with the ST7735R controller chip on the TFT. Once working, the display will act as a framebuffer device.
As it takes over three hours to compile the kernel on the PI, I will show how to cross compile from another Linux PC. In my case, it is Ubuntu 12.10 running within VMWare on a Windows 7 Quad core PC. Kernel compile time is 15 mins.
-Copy config from the Raspberry Pi to the Ubuntu box using SCP. Replace "raspberrypi" below with the IP address of your Raspberry Pi if hostname lookup fails.
If you are planning on displaying the console on the TFT, then enabling these options in .config will allow you to change the font size and rotate the display later on.
To enable parallel processing for a faster compile. If you have a dual core processor add -j 3 to the end of the command below. If you have quad core, add -j 6
The last step below is to SCP the files from from Ubuntu to the Raspberry Pi. If you have trouble SCPing into your Ubuntu box you may need to install open SSH on Ubuntu with sudo apt-get install openssh-server. This step also copies the files from my home folder "mark"... yours would be different.
If you build the st7735 driver pair as built-in, add these options to the end of the line in /boot/cmdline.txt. This will display the console on the TFT.

Self collection avaliable at Oxley Bizhub, 71 Ubi Rd 1 #10-47 Singapore 408732 (To wait for confirmation before collection - Appointment required). Additional charge of $10 apply for delivery by courier in Singapore, FREE shipping for orders above $60.
We ship internationally too through Air Courier or Registered Mail (select on Checkout), do contact us for larger orders. All shipping taxes after shipment will be borne by customer for overseas orders.

The 1.8inch LCD uses the PH2.0 8PIN interface, which can be connected to the Raspberry Pi according to the above table: (Please connect according to the pin definition table. The color of the wiring in the picture is for reference only, and the actual color shall prevail.)
The example we provide is based on STM32F103RBT6, and the connection method provided is also the corresponding pin of STM32F103RBT6. If you need to transplant the program, please connect according to the actual pin.
ST7735S is a 132*162 pixel LCD, and this product is a 128*160 pixel LCD, so some processing has been done on the display: the display starts from the second pixel in the horizontal direction, and the first pixel in the vertical direction. Start to display, so as to ensure that the position corresponding to the RAM in the LCD is consistent with the actual position when displayed.
The LCD supports 12-bit, 16-bit and 18-bit input color formats per pixel, namely RGB444, RGB565, RGB666 three color formats, this routine uses RGB565 color format, which is also a commonly used RGB format
Note: Different from the traditional SPI protocol, the data line from the slave to the master is hidden since the device only has display requirement.
2.We use Dev libraries by default. If you need to change to BCM2835 or WiringPi libraries ,please open RaspberryPi\c\Makefile and modify lines 13-15 as follows:
If you need to draw pictures, or display Chinese and English characters, we provide some basic functions here about some graphics processing in the directory RaspberryPi\c\lib\GUI\GUI_Paint.c(.h).
2. The module_init() function is automatically called in the INIT () initializer on the LCD, but the module_exit() function needs to be called by itself
Python has an image library PIL official library link, it do not need to write code from the logical layer like C, can directly call to the image library for image processing. The following will take 1.54inch LCD as an example, we provide a brief description for the demo.
The first parameter is a tuple of 2 elements, with (40, 50) as the left vertex, the font is Font2, and the fill is the font color. You can directly make fill = "WHITE", because the regular color value is already defined Well, of course, you can also use fill = (128,255,128), the parentheses correspond to the values of the three RGB colors so that you can precisely control the color you want. The second sentence shows Micro Snow Electronics, using Font3, the font color is white.
The demo is developed based on the HAL library. Download the demo, find the STM32 program file directory, and open the LCD_demo.uvprojx in the STM32\STM32F103RBT6\MDK-ARM directory to check the program.
Open main.c, you can see all the test programs, remove the comments in front of the test programs on the corresponding screen, and recompile and download.
For the screen, if you need to draw pictures, display Chinese and English characters, display pictures, etc., you can use the upper application to do, and we provide some basic functions here about some graphics processing in the directory STM32\STM32F103RB\User\GUI_DEV\GUI_Paint.c(.h)
DEV_Config.cpp(.h): It is the hardware interface definition, which encapsulates the read and write pin levels, SPI transmission data, and pin initialization;
image.cpp(.h): is the image data, which can convert any BMP image into a 16-bit true color image array through Img2Lcd (downloadable in the development data).
The hardware interface is defined in the two files DEV_Config.cpp(.h), and functions such as read and write pin level, delay, and SPI transmission are encapsulated.
For the screen, if you need to draw pictures, display Chinese and English characters, display pictures, etc., you can use the upper application to do, and we provide some basic functions here about some graphics processing in the directory GUI_Paint.c(.h)

I"m trying to output some data from a python script to a Sainsmart 1.8 TFT display. Followed the instructions from https://github.com/notro/fbtft/wiki, I am able to show the raspberry"s screen on the tft display with
When I try to output data from my python script, a pygame window ("pop up"-like) opens, but not on the tft screen, but on the main screen connected to the Raspberry with HDMI.

Connecting an LCD to your Raspberry Pi will spice up almost any project, but what if your pins are tied up with connections to other modules? No problem, just connect your LCD with I2C, it only uses two pins (well, four if you count the ground and power).
In this tutorial, I’ll show you everything you need to set up an LCD using I2C, but if you want to learn more about I2C and the details of how it works, check out our article Basics of the I2C Communication Protocol.
There are a couple ways to use I2C to connect an LCD to the Raspberry Pi. The simplest is to get an LCD with an I2C backpack. But the hardcore DIY way is to use a standard HD44780 LCD and connect it to the Pi via a chip called the PCF8574.
The PCF8574 converts the I2C signal sent from the Pi into a parallel signal that can be used by the LCD. Most I2C LCDs use the PCF8574 anyway. I’ll explain how to connect it both ways in a minute.
I’ll also show you how to program the LCD using Python, and provide examples for how to print and position the text, clear the screen, scroll text, print data from a sensor, print the date and time, and print the IP address of your Pi.
Connecting an LCD with an I2C backpack is pretty self-explanatory. Connect the SDA pin on the Pi to the SDA pin on the LCD, and the SCL pin on the Pi to the SCL pin on the LCD. The ground and Vcc pins will also need to be connected. Most LCDs can operate with 3.3V, but they’re meant to be run on 5V, so connect it to the 5V pin of the Pi if possible.
If you have an LCD without I2C and have a PCF8574 chip lying around, you can use it to connect your LCD with a little extra wiring. The PCF8574 is an 8 bit I/O expander which converts a parallel signal into I2C and vice-versa. The Raspberry Pi sends data to the PCF8574 via I2C. The PCF8574 then converts the I2C signal into a 4 bit parallel signal, which is relayed to the LCD.
Before we get into the programming, we need to make sure the I2C module is enabled on the Pi and install a couple tools that will make it easier to use I2C.
Now we need to install a program called I2C-tools, which will tell us the I2C address of the LCD when it’s connected to the Pi. So at the command prompt, enter sudo apt-get install i2c-tools.
Next we need to install SMBUS, which gives the Python library we’re going to use access to the I2C bus on the Pi. At the command prompt, enter sudo apt-get install python-smbus.
Now reboot the Pi and log in again. With your LCD connected, enter i2cdetect -y 1 at the command prompt. This will show you a table of addresses for each I2C device connected to your Pi:
We’ll be using Python to program the LCD, so if this is your first time writing/running a Python program, you may want to check out How to Write and Run a Python Program on the Raspberry Pi before proceeding.
There are a couple things you may need to change in the code above, depending on your set up. On line 19 there is a function that defines the port for the I2C bus (I2CBUS = 0). Older Raspberry Pi’s used port 0, but newer models use port 1. So depending on which RPi model you have, you might need to change this from 0 to 1.
The function mylcd.lcd_display_string() prints text to the screen and also lets you chose where to position it. The function is used as mylcd.lcd_display_string("TEXT TO PRINT", ROW, COLUMN). For example, the following code prints “Hello World!” to row 2, column 3:
On a 16×2 LCD, the rows are numbered 1 – 2, while the columns are numbered 0 – 15. So to print “Hello World!” at the first column of the top row, you would use mylcd.lcd_display_string("Hello World!", 1, 0).
You can create any pattern you want and print it to the display as a custom character. Each character is an array of 5 x 8 pixels. Up to 8 custom characters can be defined and stored in the LCD’s memory. This custom character generator will help you create the bit array needed to define the characters in the LCD memory.
The code below will display data from a DHT11 temperature and humidity sensor. Follow this tutorial for instructions on how to set up the DHT11 on the Raspberry Pi. The DHT11 signal pin is connected to BCM pin 4 (physical pin 7 of the RPi).
By inserting the variable from your sensor into the mylcd.lcd_display_string() function (line 22 in the code above) you can print the sensor data just like any other text string.
These programs are just basic examples of ways you can control text on your LCD. Try changing things around and combining the code to get some interesting effects. For example, you can make some fun animations by scrolling with custom characters. Don’t have enough screen space to output all of your sensor data? Just print and clear each reading for a couple seconds in a loop.
Ms.Josey
Ms.Josey