st7789 tft display brands

We"ve been looking for a screen like this for a long time - it only has a 1.5" diagonal but has a high density of 220 ppi, 240x240 pixels with a wide angle display. It looks a lot like our 1.44" 128x128 screen, but it has 4x more pixels and it looks great from any angle. We have seen displays of this calibre used in smart watches and small electronic devices, but they have always been a MIPI interface. Finally, we found one that is SPI compatible and has a user-friendly display driver, so it works with all microcontrollers or microcomputers!
This pretty little display card is the best way to add a small colorful and very bright screen to any project. As the display uses 4 SPI wires to communicate and has its own addressable frame buffer per pixel, it can be used with any type of microcontroller. Even a very small one with little memory and few pins available! The 1.54" screen has 240x240 16-bit color pixels and is an IPS screen, so the color is very beautiful up to 80 degrees relative to the axis in any direction. The TFT driver (ST7789) is very similar to the popular ST7735, and our Arduino library supports it well.
Our breakout has a soldered TFT display (it uses a delicate flexible circuit connector) as well as a 3.3V regulator with very low voltage drop and a 3/5V level adapter so you can use it with 3.3V or 5V power and logic. We also had some space, so we placed a microSD card holder so you could easily load color bitmaps from a microSD card formatted FAT16/FAT32. The microSD card is not included.
![]()
This is a 280 X 280 pixels TFT display module, with a 1.69inch display size making it a great fit for small size projects like wearable IoT or any other portable devices. The display’s driver IC is ST7789, which you can find many libraries to quickly start with.

There are several popular libraries out there that work with this display. It took me a little longer to get it working than I expected but that was because with no CS pin, the SPI mode needs to be set to SPI_MODE2. With that set, it works like a charm!
This display (like many others) is very fragile and will be damaged if it’s not protected. The one I received came in a small plastic box that no longer fit when I soldered the pins on so I cut a small hole in the box so the pins could stick through.

Since the display uses 4-wire SPI to communicate and has its own pixel-addressable frame buffer, it can be used with every kind of microcontroller. Even a very small one with low memory and few pins available! The 1.9" display has 320x170 16-bit full-color pixels and is an IPS display, so the color looks great up to 80 degrees off-axis in any direction. The TFT driver (ST7789) is very similar to the popular ST7735, and tthe Arduino library supports it well.
The breakout has the TFT display soldered on (it uses a delicate flex-circuit connector) as well as an ultra-low-dropout 3.3V regulator, auto-reset circuitry, and a 3/5V level shifter so you can use it with 3.3V or 5V power and logic. Adafruit also had a little extra space, so they placed a microSD card holder so you can easily load full color bitmaps from a FAT16/FAT32 formatted microSD card. The microSD card is not included.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - Adafruit have written a full open-source graphics Arduino library that can draw pixels, lines, rectangles, circles, text, and bitmaps as well as example code. The code is written for Arduino but can be easily ported to your favorite microcontroller! Wiring is easy, we strongly encourage using the hardware SPI pins of your Arduino as software SPI is noticeably slower when dealing with this size display. For Raspberry Pi or other Single Board Computer Python users, there is a user-space Pillow-compatible library. For CircuitPython there"s a displayio driver for native support.
This display breakout also features an 18-pin "EYE SPI" standard FPC connector with flip-top connector. You can use an 18-pin 0.5mm pitch FPC cable to connect to all the GPIO pins, for when you want to skip the soldering.
Please note! This display is designed original for smartwatches and similar, where there"s a glass over the screen. Without something gently holding the screen down, the backlight can eventually peel away from the TFT. (It"s not destructive but it"s unattractive) You can prevent this by, ideally, adding a plastic or glass cover/overlay. If using bare, try dabbing a touch of E6000 or similar craft glue on the thin side edges, or using a thin piece of tape to keep the front TFT attached to the backlight.

When you find these modules for sale, they are often mistakenly identified as an OLED display but they are in fact IPS LCD which has a similar wide viewing angle to OLED.
In the above example, Node32-Lite and this 0.96-inch LCD. Please refer to the tutorial here: ST7789 interfacing with ESP32 to make the connections, Arduino library installation, and modification needed for it to works on this LCD.
Ms.Josey
Ms.Josey