lcd module specifications price

ERMC4002SBS-1 is 40 characters wide,2 rows character lcd module,SPLC780C controller (Industry-standard HD44780 compatible controller),6800 4/8-bit parallel interface,single led backlight with white color included can be dimmed easily with a resistor or PWM,stn- blue lcd negative,white text on the blue color,wide operating temperature range,rohs compliant,built in character set supports English/Japanese text, see the SPLC780C datasheet for the full character set. It"s optional for pin header connection,5V or 3.3V power supply and I2C adapter board for arduino.

lcd module specifications price

ERM1602FS-3 is 16 characters wide,2 rows character lcd module,SPLC780C controller (Industry-standard HD44780 compatible controller),6800 4/8-bit parallel interface,single led backlight with white color included can be dimmed easily with a resistor or PWM,fstn-lcd positive,black text on the white color,high contrast,wide operating temperature range,wide view angle,rohs compliant,built in character set supports English/Japanese text, see the SPLC780C datasheet for the full character set. It"s optional for pin header connection,5V or 3.3V power supply and I2C adapter board for arduino.

lcd module specifications price

NHD-12232KZ-NSW-BBW-P | Monochrome Graphic Module | 122x32 Pixels | Transmissive LCD | Side White Backlight | STN (-) Negative Blue Display | 2x10 Pin Header Soldered

Newhaven 122x32 graphic Liquid Crystal Display module shows white pixels on a blue background. This transmissive LCD Display requires a backlight for visibility and offers a wide operating temperature range from -20 to 70 degrees Celsius. This NHD-12232KZ-NSW-BBW-P display has a 2x10 pin header soldered. It has an optimal view of 6:00, operates at 5V supply voltage and is RoHS compliant.

lcd module specifications price

The 204G 20x4 LCD displays are available in STN or FSTN LCD modes with or without an LED backlight. The backlight color options include yellow green, white, blue, pure green, or amber color.

lcd module specifications price

The 16x2 Alphanumeric LCD Display Module is equally popular among hobbyists and professionals for its affordable price and easy to use nature. As the name suggests the 16x2 Alphanumeric LCD can show 16 Columns and 2 Rows therefore a total of (16x2) 32 characters can be displayed. Each character can either be an alphabet or number or even a custom character. This particular LCD gas a green backlight, you can also get a Blue Backlight LCD to make your projects stand our and visually appealing, apart from the backlight color both the LCD have the same specifications hence they can share the same circuit and code. If your projects require more characters to be displayed you can check the 20x4 Graphical LCD which has 20 Columns and 4 Rows and hence can display up to 80 characters.

The 16x2 LCD pinout diagram is shown below. As you can see the module has (from right) two power pins Vss and Vcc to power the LCD. Typically Vss should be connected to ground and Vcc to 5V, but the LCD can also operate from voltage between 4.7V to 5.3V. Next, we have the control pins namely Contrast (VEE), Register Select (RS), Read/Write (R/W) and Enable (E). The Contrast pin is used to set the contrast (visibility) of the characters, normally it is connected to a 10k potentiometer so that the contrast can be adjusted. The Read/Write pin will be grounded in most cases because we will only be writing characters to the LCD and not read anything from it. The Register Select (RS) and Enable pin (E) pin are the control pins of the LCD and will be connected to the digital pins GPIO pins of the microcontroller. These pins are used to instruct the LCD where place a character when to clear it etc.

From DB0 to DB7 we have our eight Data Pins which are used to send information about the characters that have to be displayed on the LCD. The LCD can operate in two different modes, in the 4-bit Modeonly pins DB4 to DB7 will be used and the pins DB0 to DB3 will be left idle. In 8-bit Mode, all the eight-pin DB0 to DB7 will be used. Most commonly the 4-bit mode is preferred since it uses only 4 Data pins and thus reduces complexity and GPIO pin requirement on the microcontroller.Finally, we have the LED+ and LED- pins which are used to power the backlight LED inside our Display module. Normally the LED+ pin is connected to 5V power through a 100 ohm current limiting resistor and the LED- pin is connected to Ground.

lcd module specifications price

16x2 LCD modules are very commonly used in most embedded projects, the reason being its cheap price, availability, programmer friendly and available educational resources.

16×2 LCD is named so because; it has 16 Columns and 2 Rows. There are a lot of combinations available like, 8×1, 8×2, 10×2, 16×1, etc. but the most used one is the 16×2 LCD. So, it will have (16×2=32) 32 characters in total and each character will be made of 5×8 Pixel Dots. A Single character with all its Pixels is shown in the below picture.

Now, we know that each character has (5×8=40) 40 Pixels and for 32 Characters we will have (32×40) 1280 Pixels. Further, the LCD should also be instructed about the Position of the Pixels. Hence it will be a hectic task to handle everything with the help of MCU, hence an Interface IC like HD44780is used, which is mounted on the backside of the LCD Module itself. The function of this IC is to get the Commands and Data from the MCU and process them to display meaningful information onto our LCD Screen. You can learn how to interface an LCD using the above mentioned links. If you are an advanced programmer and would like to create your own library for interfacing your Microcontroller with this LCD module then you have to understand the HD44780 IC working and commands which can be found its datasheet.

lcd module specifications price

Learn all about touch types, brightness, backlights, color depths, and more. We’ve created a key terms and definitions library to guide you along your lcd technology search.

LCD brightness, or more technically “Luminance”, is measured in millicandles of luminance per square meter, also known as “NITs”. Serious specifies a “minimum typical” brightness for each display, meaning that the described LCD has a typical luminance specification at least that amount. LCD brightness is measured at the LCD’s initial power-up. See backlight longevity, below, for how LCD backlights degrade over time.

LCD backlight lifetime is a function of the specific LEDs selected for the backlight, and is measured in thousands of hours. If the backlight is maintained at 100% full power from initial LCD powerup fresh from the Serious factory, the typical brightness after that many hours will be typically 50% of its initial luminance.

Color LCDs get darker when operated below the minimum temperature range, and respond more sluggishly to visual changes. At higher temperatures, LCDs get washed out. At certain temperature extremes, the LCD driver chips may not function at all. The LCD temperature range is the minimum range where the LCD is deemed to perform acceptably without factoring in any backlight warming. LCD backlights do generate (when fully powered) several degrees of heat that can help obtain better LCD functionality at the low end of the LCD specification.

Note this range does not mean the SIM will cease functioning necessarily. Most SIMs are rated at -40 to +80C, so it is possible the SIM can continue to function even if the LCD is not visible to the user.-20 to +70C: most cost effective, most common

This is the number of bits the LCD uses to represent one pixel. There is often a GUI performance penalty for going above 16 bits because 4 bytes (vs. 2) have to be used to represent a pixel on the driver MCU and typically this impacts memory and performance (or, alternatively, the power of the MCU required to deliver equivalent performance).  Unless your GUI has extensive large shading gradients, 16-bit is almost always adequate for most applications.16 bit / 65K colors: most cost effective, most widely available, suitable for most applications (RGB565)

LCD technology is rapidly evolving. There are several types of “viewing technology” now available. Some are a function of the raw LCD panel fabrication process, others a result of optically bonded film techniques.

TFT-TN Portrait: traditional portrait mode viewing. When the LCD is viewed with the long edge vertically, has good viewing from 3 sides (typically 9, 12, and 3 o’clock) and reduced angle viewing from one (typically 6 o’clock)

Multi Viewing Angle (MVA): Multi-domain Vertical Alignment (MVA), often called “Multi Viewing Angle” is a new technology combining optics with LCD manufacturing techniques providing good viewing angles from all 4 directions without contrast or color shifting. MVA carries a price premium and is becoming less common as OVA is less expensive with similar results, and IPS delivers better performance and more common.

In Plane Switching (IPS): an LCD fabrication technology which gives excellent viewing angles from all directions without contrast/color shift. It carries a higher price premium and is more common in larger panels (10.1″+) in the industrial/embedded space.

BEZEL OPENING: inner limit where your bezel should be contacting the surface of the touch panel & LCD with any gasket and not adversely affect touch performance

ACTIVE AREA (A.A.): active pixel area of the LCD, and of the touch region; you will want to ensure visually the center (C) of this active area is visible to the end user, and accessible for touch interface

Color can be technically and empirically measured, but how it is perceived by the human eye is the true goal of color appearance in an LCD. A color “gamut” is a specific range of color out of the full color palette most relevant to how the human eye perceives color.

This diagram shows the “standard” color spaces we want to reference when we talk about what color appearance can be generated by a specific LCD:The colored areain the graph is the total range of color visibleto the human eye. Not all these colors can be generated by an LCD. D65 is the white point

When colors are displayed on a specific LCD, they deliver colors in an area similar to the dashed triangle on the diagram above — in other words, a subset of the NTSC space, and often close to the sRGB space used to take and edit photographs digitally. In web and GUI development tools, colors are generally represented by a triplet of 3 hex values from 0x00-0xFF (i.e. 0-255 decimal, or 0-100%) in triplets such as 0x223344 where 0x22 is hex 22 for the red value, 0x33 for green, and 0x44 for blue. Each individual color (red, green. blue) when driven at 100% (0xFF) represents a corner of the dashed “LCD performance” triangle.

Because the NTSC gamut is the most relevant color space to the human eye, the standard mechanism for determining an LCD’s color performance is to compare the LCD’s performance (the dashed triangle) against this NTSC gamut:NTSC(gamut)% = area of dashed triangle / area of NTSC triangle * 100%

lcd module specifications price

The CFA533-***-KC series is a 16x2 I2C LCD with keypad. The I2C interface allows you to use just two lines (SDA & SCL) to have bi-directional communication with the I2C LCD. Other devices can also share those two I2C control lines with the LCD. Only 4 wires are needed to connect this I2C LCD: power, ground, SDA (I2C Serial DAta) and SCL (I2C Serial CLock).

The CFA533 can run on 3.3v to 5.0v directly, with no changes needed, so you do not need to do any level translation between your embedded processor and the I2C LCD. Simply power the CFA533 from the same supply as your processor and the I2C signal levels will match up.

Using only one address on your I2C bus, you can add all the elements that you need for your front panel. The CFA533 I2C LCD can also read up to 32 DS18B20 digital temperature sensors, giving you an easy way to integrate temperature sensing over the I2C bus. No additional firmware or pins are needed on the host system.

This CFA533-TFH variant features crisp dark letters against a white, backlit background. The keypad has a matching white LED backlight. Since the LCD is a backlit positive FSTN, the CFA533-TFH I2C LCD is readable in direct sunlight, as well as complete darkness.